

ELLIOT B. KOFFMAN
Temple University

PAUL A. T. WOLFGANG
Temple University

John Wiley & Sons, Inc.

OBJECTS , ABSTRACT ION ,

DATA STRUCTURES
AND DESIGN USING C++

ASSOCIATE PUBLISHER Dan Sayre
ACQUISITIONS EDITOR Paul Crockett / Bill Zobrist
PROJECT MANAGER Cindy Johnson, Publishing Services
SENIOR EDITORIAL ASSISTANT Bridget Morrisey
SENIOR PRODUCTION EDITOR Ken Santor
MARKETING MANAGER Phyllis Diaz Cerys
PRODUCT MANAGER Catherine Shultz
SENIOR DESIGNER Kevin Murphy
COVER DESIGNER Howard Grossman
TEXT DESIGN AND COMPOSITION Greg Johnson, Art Directions
MEDIA EDITOR Stefanie Liebman
FRONT COVER PHOTO © John Burcham/Image State
BACK COVER PHOTO © Philip and Karen Smith/Image State

This book was set in 10 point Sabon, and printed and bound by R.R. Donnelley–Crawfordsville. The cover was
printed by Phoenix Color Corporation.

This book is printed on acid free paper.

CREDITS: Figure 1.2, page 67, Booch, Jacobson, Rumbaugh, Unified Modeling Language User Guide (AW Object
Tech Series), pg. 451, ©1999 by Addison Wesley Longman, Inc. Reprinted by permission of Pearson Education, Inc.,
publishing as Pearson Addison Wesley. Figure 6.1, page 358, Photodisc/Punchstock.

Copyright © 2006 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, with-
out either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website
http://www.wiley.com/go/permissions.

To order books or for customer service please, call 1-800-CALL WILEY (225-5945).

[insert CIP data here]

ISBN-13 978-0-471-46755-7
ISBN-10 0-471-46755-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

iii

Preface
Our goal in writing this book was to combine a strong emphasis on problem solving
and software design with the study of data structures. To this end, we discuss appli-
cations of each data structure to motivate its study. After providing the specification
(a header file) and the implementation of an abstract data type, we cover case stud-
ies that use the data structure to solve a significant problem. Examples include a
phone directory using an array and a list, postfix expression evaluation using a stack,
simulation of an airline ticket counter using a queue, and Huffman coding using a
binary tree and a priority queue. In the implementation of each data structure and in
the solutions of the case studies, we reinforce the message “Think, then code” by per-
forming a thorough analysis of the problem and then carefully designing a solution
(using pseudocode and UML class diagrams) before the implementation. We also
provide a performance analysis when appropriate. Readers gain an understanding of
why different data structures are needed, the applications they are suited for, and the
advantages and disadvantages of their possible implementations.

The text is designed for the second course in programming, especially those that
apply object-oriented design (OOD) to the study of data structures and algorithms.
The text could carry over to the third course in algorithms and data structures for
schools with a three-course sequence. In addition to the coverage of the basic data
structures and algorithms (lists, stacks, queues, trees, recursion, sorting), there are
chapters on sets and maps, balanced binary search trees, and graphs. Although we
expect that most readers will have completed a first programming course in C++,
there is an extensive review chapter for those who may have taken a first program-
ming course in a different object-oriented language, or for those who need a
refresher in C++.

Think, Then Code To help readers “Think, then code,” we provide the appropriate
software design tools and background in the first two chapters before they begin
their formal study of data structures. The first chapter discusses two different mod-
els for the software life cycle and for object-oriented design (OOD), the use of the
Uniform Modeling Language™ (UML) to document an OOD, and the use of inter-
faces to specify abstract data types and to facilitate contract programming. We
develop the solution to an extensive case study to illustrate these principles. The sec-
ond chapter focuses on program correctness and efficiency by discussing exceptions
and exception handling, different kinds of testing and testing strategies, debugging
with and without a debugger, reasoning about programs, and using big-O notation.
As part of our emphasis on OOD, we introduce two design patterns in Chapter 3,
the object factory and delegation. We make use of them where appropriate in the
textbook.

Case Studies As mentioned earlier, we apply these concepts to design and implement
the new data structures and to solve approximately 20 case studies. Case studies fol-
low a five-step process (problem specification, analysis, design, implementation, and
testing). As is done in industry, we sometimes perform these steps in an iterative fash-
ion rather than in strict sequence. Several case studies have extensive discussions of
testing and include methods that automate the testing process. Some case studies

iv Preface

are revisited in later chapters, and solutions involving different data structures are
compared.

Data Structures in the C++ Standard Library Each data structure that we introduce
faithfully follows the C++ Standard Library (commonly called the STL) for that data
structure (if it exists) and readers are encouraged throughout the text to use the STL
as a resource for their programming. We begin the study of a new data structure by
specifying an abstract data type as an interface, which we adapt from the C++ STL.
Therefore, our expectation is that readers who complete this book will be familiar
with the data structures available in the C++ STL and will be able to use them imme-
diately and in their future programming. They will also know “what is under the
hood” so they will have the ability to implement these data structures. The degree
to which instructors cover the implementation of the data structures will vary, but
we provide ample material for those who want to study it thoroughly.

We use modern C++ programming practices to a greater extent than most other data
structures textbooks. Because this book was written after object-oriented program-
ming became widely used and was based on our earlier Java book, it incorporates
advances in C++ programming as well as lessons learned from Java. The programs
in the text have been tested using the g++ versions 3.4.3 and 4.0.0 compilers and the
Microsoft Visual Studio .NET 2003 C++ compiler.

Intended Audience
This book was written for anyone with a curiosity or need to know about data struc-
tures, those essential elements of good programs and reliable software. We hope that
the text will be useful to readers with either professional or educational interest. In
developing this text, we paid careful attention to the ACM’s Computing Curricula
2001, in particular, the curriculum for the second (CS102o – Objects and Data
Abstraction) and third (CS103o – Algorithms and Data Structures) introductory
courses in programming in the three-course, “objects-first” sequence. The book is
also suitable for CS112o – Object Oriented Design and Methodology, the second
course in the two-course “objects-first” sequence. Further, although the book follows
the object-oriented approach, it could be used after a first course that does not,
because the principles of object-oriented programming are introduced and motivated
in Chapters 1, 3, and the C++ Primer (Chapter P). Consequently it could be used for
the following courses: CS102I (The Object-Oriented Paradigm), CS103I (Data
Structures and Algorithms), and CS112I (Data Abstraction) in the “imperative-first”
approach or CS112F (Objects and Algorithms) in the “functional-first” approach.

Prerequisites
Our expectation is that the reader will be familiar with the C++ primitive data types
including int, bool, char, and double; control structures including if, switch, while,
and for; the string class; the one-dimensional array; and input/output using text
streams. For those readers who lack some of the concepts or who need some review,
we provide complete coverage of these topics in the C++ Primer. This chapter pro-
vides full coverage of the background topics and has all the pedagogical features of

the other chapters (discussed below). We expect most readers will have some expe-
rience with C++ programming, but someone who knows another high-level lan-
guage should be able to undertake the book after careful study of the C++ Primer.
We do not require prior knowledge of inheritance or vectors as we introduce them
in Chapters 3 and 4.

Pedagogy
The book contains the following pedagogical features to assist inexperienced pro-
grammers in learning the material.

• Learning Objectives at the beginning of each chapter tell readers what skills they
should develop.

• Introductions for each chapter help set the stage for what the chapter will cover
and tie the chapter contents to other material that they have learned.

• Case Studies emphasize problem solving and provide complete and detailed
solutions to real-world problems using the data structures studied in the
chapter.

• Chapter Summaries review the contents of the chapter.
• Boxed Features emphasize and call attention to material designed to help read-

ers become better programmers.

Pitfall boxes help readers with common problems and how to avoid
them.

Design Concept boxes illuminate programming design decisions and
tradeoffs.

Program Style boxes discuss program features that illustrate good pro-
gramming style and provide tips for writing clear and effective code.

Syntax boxes are a quick reference to the C++ language structures being
introduced.

• Self-Check and Programming Exercises at the end of each section provide imme-
diate feedback and practice for readers as they work through the chapter.

• Quick-Check, Review Exercises, and Programming Projects in each chapter give
readers a variety of skill-building activities, including longer projects that inte-
grate chapter concepts as they exercise the use of the data structures.

Theoretical Rigor
Chapter 2 discusses algorithm correctness and algorithm efficiency. We use the con-
cepts discussed in this chapter throughout the book. However, we have tried to
strike a balance between pure “hand waving” and extreme rigor when determining
the efficiency of algorithms. Rather than provide several paragraphs of formulas, we
have provided simplified derivations of algorithm efficiency using big-O notation.
We feel this will give readers an appreciation of the performance of various algo-
rithms and methods and the process one follows to determine algorithm efficiency
without bogging them down in unnecessary detail.

Preface v

Overview of the Book
Object-oriented software design is introduced in Chapter 1, as are UML class and
sequence diagrams. We use UML sequence diagrams to describe several use cases of
a simple problem: maintaining a phone number directory. We decompose the prob-
lem into two subproblems, the design of the user interface and the design of the
phone directory itself. We emphasize the role of an interface (or header file) as a
contract between the developer and client and its contribution to good software
design.

The next two chapters concentrate on software design topics. Following the intro-
duction to software design in Chapter 1, the topics of throwing and catching excep-
tions, debugging, testing, and algorithm efficiency are introduced in Chapter 2.
Chapter 3 provides a thorough discussion of inheritance, class hierarchies, abstract
classes, and an introduction to object factories.

Chapters 4 through 6 introduce the Standard Library (STL) as the foundation for
the traditional data structures: sequences (including vector and list classes), stacks,
queues, and deques. Each new data structure is introduced as an abstract data type
(ADT) and its specification is written in the form of an interface. We carefully fol-
low the C++ STL specification (when available), so that readers will know how to
use the standard data structures that are supplied by C++, and we show one or two
simple applications of the data structure. Next, we show how to implement the data
structure as a class that implements the interface. Finally, we study additional appli-
cations of the data structure by solving sample problems and case studies.

Chapter 7 covers recursion so that readers are prepared for the study of trees, a
recursive data structure. As discussed below, this chapter could be studied earlier.

Chapter 8 discusses binary trees, including binary search trees, heaps, priority
queues, and Huffman trees.

Chapter 9 covers sets, multisets, maps, and multimaps. Although the STL uses a
binary search tree to implement these data structures, this chapter also discusses
hashing and hash tables and shows how a hash table can be used in an implemen-
tation of these data structures. The Huffman Tree case study is completed in this
chapter.

Chapter 10 covers selection sort, bubble sort, insertion sort, Shell sort, merge sort,
heapsort, and quicksort. We compare the performance of the various sorting algo-
rithms and discuss their memory requirements. Unlike most textbooks, we have
chosen to show how to implement the sorting algorithms as they are implemented
in the C++ algorithm library using iterators to define the range of the sequence
being sorted, so they can be used to sort vectors and deques as well as arrays.

Chapters 11 and 12 cover self-balancing search trees and graphs, focusing on algo-
rithms for manipulating them. Included are AVL and Red-Black trees, 2-3 trees, 2-
3-4 trees, B-trees and B+ trees. We provide several well-known algorithms for
graphs including Dijkstra’s shortest path algorithm and Prim’s minimum spanning
tree algorithm. In most Computer Science programs of study, the last two or three
chapters would be covered in the second course of a two-course sequence in data
structures.

vi Preface

Pathways Through the Book
Figure 1 shows the dependencies among chapters in the book. Most readers will
start with Chapters 1, 2, and 3, which provide fundamental background on soft-
ware design, exceptions, testing, debugging, big-O analysis, class hierarchies, and
inheritance. In a course that emphasizes software design, these foundation chapters
should be studied carefully. Readers with knowledge of this material from a prior
course in programming may want to read these chapters quickly, focusing on mate-
rial that is new to them. Similarly, those interested primarily in data structures
should study Chapter 2 carefully, but they can read Chapters 1 and 3 quickly.

The basic data structures, lists (Chapter 4), stacks (Chapter 5), and queues (Chapter
6), should be covered by all. Recursion (Chapter 7) can be covered any time after
stacks. The chapter on trees (Chapter 8) follows recursion. Chapter 9 covers sets
and maps and hash tables. Although this chapter follows the chapter on trees, it can
be studied anytime after stacks if the case study on Huffman trees is omitted.
Similarly, Chapter 10 on sorting can be studied anytime after recursion, provided
the section on heapsort is omitted (heaps are introduced in Chapter 8). Chapter 11
(Self-Balancing Search Trees) and Chapter 12 (Graphs) would generally be covered
at the end of the second programming course if time permits, or in the third course
of a three-course sequence.

Readers with limited knowledge of C++ should begin with the C++ Primer (Chapter
P). An overview of UML is covered in Appendix B; however, features of UML are
introduced and explained as needed in the text.

These paths can be modified depending on interests and abilities. (See Figure 1 on
the next page.)

Supplements and Companion Web Sites
The following supplementary materials are available on the Instructor’s Companion
Web Site for this textbook at www.wiley.com/college/koffman. Items marked for
students are accessible on the Student Companion Web Site at the same address.
Navigate to either site by clicking the appropriate companion buttons for this text.

• Additional homework problems with solutions
• Source code for all classes in the book
• Solutions to end of section odd-numbered self-check and programming exer-

cises (for students)
• Solutions to all exercises for instructors
• Solutions to chapter-review exercises for instructors
• Sample programming project solutions for instructors
• PowerPoint slides
• Electronic test bank for instructors

Preface vii

Acknowledgments
Many individuals helped us with the preparation of this book and improved it
greatly. We are grateful to all of them. We would like to thank Anthony Hughes,
James Korsh, and Rolf Lakaemper, colleagues at Temple University, who used the
Java version of this book in their classes.

viii Preface

F I G U R E 1
Chapter Dependencies

1
Introduction to Software Design

2
Program Correctness and Efficiency

3
Inheritance and Class Hierarchies

4
Sequential Containers

5
Stacks

6
Queues and Deques

7
Recursion

8
Trees

9
Sets and Maps

10
Sorting

11
Self-Balancing Search Trees

12
Graphs

P
A C++ Primer

We are especially grateful to reviewers of this book and the Java version who pro-
vided invaluable comments that helped us correct errors and helped us set our
revision goals for the next version. The individuals who reviewed this book and its
Java predecessor are listed below.

C++ Reviewers
Prithviraj Dasgupta, University of Nebraska–Omaha
Michelle McElvany Hugue, University of Maryland
Kurt Schmidt, Drexel University
David J. Trombley
Alan Verbanec, Pennsylvania State University

Java Reviewers
Sheikh Iqbal Ahamed, Marquette University
Justin Beck, Oklahoma State University
John Bowles, University of South Carolina
Tom Cortina, SUNY Stony Brook
Chris Dovolis, University of Minnesota
Vladimir Drobot, San Jose State University
Ralph Grayson, Oklahoma State University
Chris Ingram, University of Waterloo
Gregory Kesden, Carnegie Mellon University
Sarah Matzko, Clemson University
Ron Metoyer, Oregon State University
Michael Olan, Richard Stockton College
Rich Pattis, Carnegie Mellon University
Sally Peterson, University of Wisconsin–Madison
J.P. Pretti, University of Waterloo
Mike Scott, University of Texas–Austin
Mark Stehlik, Carnegie Mellon University
Ralph Tomlinson, Iowa State University
Frank Tompa, University of Waterloo
Renee Turban, Arizona State University
Paul Tymann, Rochester Institute of Technology
Karen Ward, University of Texas–El Paso
Jim Weir, Marist College
Lee Wittenberg, Kean University
Martin Zhao, Mercer University

Besides the principal reviewers, there were a number of faculty members who
reviewed the page proofs and made valuable comments and criticisms of its content.
We would like to thank those individuals, listed below.

C++ Pages Reviewers
Tim H. Lin, California State Polytechnic University, Pomona
Kurt Schmidt, Drexel University
William McQuain, Virginia Polytechnic Institute and State University

Preface ix

Java Pages Reviewers
Razvan Andonie, Central Washington University
Ziya Arnavut, SUNY Fredonia
Antonia Boadi, California State University–Dominguez Hills
Christine Bouamalay, Golden Gate University
Amy Briggs, Middlebury College
Mikhail Brikman, Salem State College
Gerald Burgess, Wilmington College
Robert Burton, Brigham Young University
Debra Calliss, Mesa Community College
Tat Chan, Methodist College
Chakib Chraibi, Barry University
Teresa Cole, Boise State University
Jose Cordova, University of Louisiana Monroe
Joyce Crowell, Belmont University
Vladimir Drobot, San Jose State University
Francisco Fernandez, University of Texas–El Paso
Michael Floeser, Rochester Institute of Technology
Robert Franks, Central College
Barbara Gannod, Arizona State University East
Wayne Goddard, Clemson University
Simon Gray, College of Wooster
Bruce Hillam, California State University–Pomona
Wei Hu, Houghton College
Jerry Humphrey, Tulsa Community College
Edward Kovach, Franciscan University of Steubenville
Richard Martin, Southwest Missouri State University
Bob McGlinn, Southern Illinois University
Sandeep Mitra, SUNY Brockport
Saeed Monemi, California Polytechnic and State University
Lakshmi Narasimhan, University of Newcastle, Australia
Robert Noonan, College of William and Mary
Kathleen O’Brien, Foothill College
Michael Olan, Richard Stockton College
Peter Patton, University of St. Thomas
Eugen Radian, North Dakota State University
Rathika Rajaravivarma, Central Connecticut State University
Sam Rhoads, Honolulu Community College
Jeff Rufinus, Widener University
Rassul Saeedipour, Johnson County Community College
Vijayakumar Shanmugasundaram, Concordia College Moorhead
Gene Sheppard, Georgia Perimeter College
Linda Sherrell, University of Memphis
Meena Srinivasan, Mary Washington College
David Weaver, Shepherd University
Stephen Weiss, University of North Carolina–Chapel Hill
Glenn Wiggins, Mississippi College

x Preface

Finally, we want to acknowledge the participants in focus groups for the second pro-
gramming course organized by John Wiley and Sons at the Annual Meeting of the
SIGCSE Symposium, in March, 2004. Thank you to those listed below who
reviewed the preface, table of contents, and sample chapters and also provided valu-
able input on the book and future directions of the course:

Jay M. Anderson, Franklin & Marshall University
Claude Anderson, Rose-Hulman Institute
John Avitabile, College of Saint Rose
Cathy Bishop-Clark, Miami University–Middletown
Debra Burhans, Canisius College
Michael Clancy, University of California–Berkeley
Nina Cooper, University of Nevada–Las Vegas
Kossi Edoh, Montclair State University
Robert Franks, Central College
Evan Golub, University of Maryland
Graciela Gonzalez, Sam Houston State University
Scott Grissom, Grand Valley State University
Jim Huggins, Kettering University
Lester McCann, University of Wisconsin–Parkside
Briana Morrison, Southern Polytechnic State University
Judy Mullins, University of Missouri–Kansas City
Roy Pargas, Clemson University
J.P. Pretti, University of Waterloo
Reza Sanati, Utah Valley State College
Barbara Smith, University of Dayton
Suzanne Smith, East Tennessee State University
Michael Stiber, University of Washington, Bothell
Jorge Vasconcelos, University of Mexico (UNAM)
Lee Wittenberg, Kean University

We would also like to acknowledge the team at John Wiley and Sons who were
responsible for the inception and production of this book. Our editors, Paul
Crockett and Bill Zobrist, were intimately involved in every detail of this book,
from its origination to the final product. We are grateful to them for their confi-
dence in us and for all the support and resources they provided to help us accom-
plish our goal and to keep us on track. Bridget Morrisey was the editorial assistant
who provided us with additional help when needed. We would also like to thank
Phyllis Cerys for her many contributions to marketing and sales of the book.

Cindy Johnson, the developmental editor and production coordinator, worked very
closely with us during all stages of the manuscript development and production. We
are very grateful to her for her tireless efforts on our behalf and for her excellent
ideas and suggestions.

Greg Johnson was the compositor for the book, and he did an excellent job in
preparing it for printing.

Preface xi

We would like to acknowledge the help and support of our colleague Frank
Friedman, who read an early draft of this textbook and offered suggestions for
improvement. Frank and Elliot began writing textbooks together almost thirty years
ago and Frank’s substantial influence on the format and content of these books is
still present. Frank also encouraged Paul to begin his teaching career as an adjunct
faculty member, then full-time when he retired from industry. Paul is grateful for his
continued support.

Finally, we would like to thank our wives who provided us with comfort and sup-
port through the creative process. We very much appreciate their understanding and
the sacrifices that enabled us to focus on this book, often during time we would nor-
mally be spending with them. In particular Elliot Koffman would like to thank

Caryn Koffman

and Paul Wolfgang would like to thank

Sharon Wolfgang.

xii Preface

xiii

Contents

Preface iii

Chapter P A C++ Primer 1

P.1 The C++ Environment 2
Include Files 3
The Preprocessor 3
The C++ Compiler 3
The Linker 3
Functions, Classes, and Objects 3
The #include Directive 4
The using Statement and namespace std 5
Function main 6
Execution of a C++ Program 6
Exercises for Section P.1 7

P.2 Preprocessor Directives and Macros 7
Removing Comments 7
Macros 8
Conditional Compilation 9
More on the #include Directive 10
Exercises for Section P.2 11

P.3 C++ Control Statements 12
Sequence and Compound Statements 12
Selection and Repetition Control 12
Nested if Statements 14
The switch Statement 15
Exercises for Section P.3 16

P.4 Primitive Data Types and Class Types 16
Primitive Data Types 16
Primitive-Type Variables 19
Operators 19
Postfix and Prefix Increment 21
Type Compatibility and Conversion 22
Exercises for Section P.4 23

P.5 Objects, Pointers, and References 23
Object Lifetimes 23
Pointers 24
The Null Pointer 27
Dynamically Created Objects 27
References 29
Exercises for Section P.5 29

P.6 Functions 29
Function Declarations 30
Call by Value Versus Call by Reference 30
Operator Functions 31
Class Member Functions and Implicit Parameters 32
Exercises for Section P.6 32

P.7 Arrays and C Strings 33
Array-Pointer Equivalence 34
Array Arguments 36
String Literals and C Strings 36
Multidimensional Arrays 36
Exercises for Section P.7 37

P.8 The string Class 38
Strings Are Really Templates 43
Exercises for Section P.8 44

P.9 Input/Output Using Streams 44
Console Input/Output 44
Input Streams 45
Output Streams 49
Formatting Output Using I/O Manipulators 50
File Streams 54
openmode 54
String Streams 57
Exercises for Section P.9 58

Chapter Review, Exercises, and Programming Projects 59

Chapter 1 Introduction to Software Design 63

1.1 The Software Life Cycle 64
Software Life Cycle Models 65
Software Life Cycle Activities 67
Requirements Specification 68
Analysis 69
Design 70
Exercises for Section 1.1 72

xiv Contents

1.2 Using Abstraction to Manage Complexity 73
Procedural Abstraction 73
Data Abstraction 73
Information Hiding 74
Exercises for Section 1.2 75

1.3 Defining C++ Classes 75
Class Definition 75
The public and private Parts 77
Class Implementation 79
Using Class Clock 81
The Class Person 81
Constructors 85
Modifier and Accessor Member Functions 87
Operators 88
Friends 89
Implementing the Person Class 89
An Application That Uses Class Person 92
Classes as Components of Other Classes 94
Array Data Fields 94
Documentation Style for Classes and Functions 96
Exercises for Section 1.3 98

1.4 Abstract Data Types, Interfaces, and Pre- and Postconditions 98
Abstract Data Types (ADTs) and Interfaces 99
An ADT for a Telephone Directory Class 99
Contracts and ADTs 100
Preconditions and Postconditions 100
Exercises for Section 1.4 101

1.5 Requirements Analysis, Use Cases, and Sequence Diagrams 102
Case Study: Designing a Telephone Directory Program 102
Exercises for Section 1.5 108

1.6 Design of an Array-Based Phone Directory 108
Case Study: Designing a Telephone Directory Program (cont.) 108
Exercises for Section 1.6 113

1.7 Implementing and Testing the Array-Based Phone Directory 114
Case Study: Designing a Telephone Directory Program (cont.) 114
Exercises for Section 1.7 121

1.8 Completing the Phone Directory Application 121
Case Study: Designing a Telephone Directory Program (cont.) 121
Exercises for Section 1.8 125

Chapter Review, Exercises, and Programming Projects 125

Contents xv

xvi Contents

Chapter 2 Program Correctness and Efficiency 129

2.1 Program Defects and “Bugs” 130
Syntax Errors 131
Run-time Errors 131
Logic Errors 136
Exercises for Section 2.1 137

2.2 Exceptions 138
Ways to Indicate an Error 138
The throw Statement 138
Uncaught Exceptions 139
Catching and Handling Exceptions with try and catch Blocks 140
Standard Exceptions 141
The Exception Class Hierarchy 145
Catching All Exceptions 147
Exercises for Section 2.2 147

2.3 Testing Programs 148
Structured Walkthroughs 148
Levels and Types of Testing 149
Preparations for Testing 151
Testing Tips for Program Systems 152
Developing the Test Data 152
Testing Boundary Conditions 153
Who Does the Testing? 156
Stubs 156
Drivers 157
Testing a Class 157
Using a Test Framework 158
Regression Testing 159
Integration Testing 159
Exercises for Section 2.3 160

2.4 Debugging a Program 160
Using a Debugger 162
Exercises for Section 2.4 164

2.5 Reasoning about Programs: Assertions and Loop Invariants 166
Assertions 166
Loop Invariants 167
The C++ assert Macro 168
Exercises for Section 2.5 169

2.6 Efficiency of Algorithms 170
Big-O Notation 172
Comparing Performance 176
Algorithms with Exponential and Factorial Growth Rates 178
Exercises for Section 2.6 178

Chapter Review, Exercises, and Programming Projects 179

Contents xvii

Chapter 3 Inheritance and Class Hierarchies 185

3.1 Introduction to Inheritance and Class Hierarchies 186
Is-a Versus Has-a Relationships 187
A Base Class and a Derived Class 188
Initializing Data Fields in a Derived Class 190
The No-Parameter Constructor 191
Protected Visibility for Base-Class Data Fields 192
Exercises for Section 3.1 192

3.2 Member Function Overriding, Member Function Overloading, and
Polymorphism 193
Member Function Overriding 193
Member Function Overloading 194
Virtual Functions and Polymorphism 196
Exercises for Section 3.2 201

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy 202
Referencing Actual Objects 203
Summary of Features of Actual Classes and Abstract Classes 204
Assignments in a Class Hierarchy 204
Casting in a Class Hierarchy 205
Case Study: Displaying Addresses for Different Countries 206
Exercises for Section 3.3 209

3.4 Multiple Inheritance 210
Refactoring the Employee and Student Classes 212
Exercises for Section 3.4 212

3.5 Namespaces and Visibility 213
Namespaces 213
Declaring a Namespace 213
The Global Namespace 214
The using Declaration and using Directive 215
Using Visibility to Support Encapulation 217
The friend Declaration 217
Exercises for Section 3.5 219

3.6 A Shape Class Hierarchy 220
Case Study: Processing Geometric Shapes 220
Exercises for Section 3.6 224

Chapter Review, Exercises, and Programming Projects 225

Chapter 4 Sequential Containers 231

4.1 Template Classes and the Vector 232
Vector 233
Specification of the vector Class 235
Function at and the Subscripting Operator 236
Exercises for Section 4.1 237

xviii Contents

4.2 Applications of vector 238
The Phone Directory Application Revisited 239
Exercises for Section 4.2 239

4.3 Implementation of a vector Class 240
The Default Constructor 240
The swap Function 241
The Subscripting Operator 242
The push_back Function 243
The insert Function 244
The erase Function 244
The reserve Function 245
Performance of the KW::Vector 246
Exercises for Section 4.3 246

4.4 The Copy Constructor, Assignment Operator, and Destructor 247
Copying Objects and the Copy Constructor 247
Shallow Copy versus Deep Copy 247
Assignment Operator 250
The Destructor 251
Exercises for Section 4.4 252

4.5 Single-Linked Lists and Double-Linked Lists 252
A List Node 255
Connecting Nodes 256
Inserting a Node in a List 257
Removing a Node 257
Traversing a Linked List 258
Double-Linked Lists 258
Creating a Double-Linked List Object 262
Circular Lists 262
Exercises for Section 4.5 263

4.6 The list Class and the Iterator 264
The list Class 264
The Iterator 264
Common Requirements for Iterators 267
Exercises for Section 4.6 271

4.7 Implementation of a Double-Linked List Class 271
Implementing the KW::list Functions 272
Implementing the iterator 278
The const_iterator 283
Exercises for Section 4.7 284

4.8 Application of the list Class 285
Case Study: Maintaining an Ordered List 285
Exercises for Section 4.8 291

Contents xix

4.9 Standard Library Containers 292
Common Features of Containers 293
Sequences 294
Associative Containers 295
Vector Implementation Revisted 295
Exercises for Section 4.9 296

4.10 Standard Library Algorithms and Function Objects 297
The find Function 297
The Algorithm Library 299
The swap Function 302
Function Objects 303
Exercises for Section 4.10 306

Chapter Review, Exercises, and Programming Projects 307

Chapter 5 Stacks 311

5.1 The Stack Abstract Data Type 312
Specification of the Stack Abstract Data Type 312
Exercises for Section 5.1 315

5.2 Stack Applications 315
Case Study: Finding Palindromes 315
Case Study: Testing Expressions for Balanced Parentheses 320
Exercises for Section 5.2 325

5.3 Implementing a Stack 325
Adapter Classes and the Delegation Pattern 326
Revisiting the Definition File stack.h 327
Implementing a Stack as a Linked Data Structure 329
Comparison of Stack Implementations 331
Exercises for Section 5.3 331

5.4 Additional Stack Applications 332
Case Study: Evaluating Postfix Expressions 333
Case Study: Converting from Infix to Postfix 339
Case Study: Part 2: Converting Expressions with Parentheses 347
Exercises for Section 5.4 350

Chapter Review, Exercises, and Programming Projects 351

Chapter 6 Queues and Deques 357

6.1 The Queue Abstract Data Type 358
A Queue of Customers 358
A Print Queue 359
The Unsuitability of a “Print Stack” 359
Specification of the Queue ADT 359
Exercises for Section 6.1 362

xx Contents

6.2 Maintaining a Queue of Customers 362
Case Study: Maintaining a Queue 362
Exercises for Section 6.2 365

6.3 Implementing the Queue ADT 365
Using std::list as a Container for a Queue 365
Using a Single-Linked List to Implement the Queue ADT 367
Using a Circular Array for Storage in a Queue 370
Comparing the Three Implementations 375
Exercises for Section 6.3 376

6.4 The Deque 376
Specification of the Deque 376
Implementing the Deque Using a Circular Array 376
The Standard Library Implementation of the Deque 378
Exercises for Section 6.4 380

6.5 Simulating Waiting Lines Using Queues 380
Case Study: Simulate a Strategy for Serving Airline Passengers 381
Exercises for Section 6.5 398

Chapter Review, Exercises, and Programming Projects 398

Chapter 7 Recursion 403

7.1 Recursive Thinking 404
Steps to Design a Recursive Algorithm 406
Proving That a Recursive Function Is Correct 408
Tracing a Recursive Function 409
The Stack and Activation Frames 409
Exercises for Section 7.1 411

7.2 Recursive Definitions of Mathematical Formulas 412
Recursion Versus Iteration 415
Tail Recursion or Last-Line Recursion 416
Efficiency of Recursion 416
Exercises for Section 7.2 419

7.3 Recursive Search 420
Design of a Recursive Linear Search Algorithm 420
Implementation of Linear Search 420
Design of Binary Search Algorithm 421
Efficiency of Binary Search 423
Implementation of Binary Search 424
Testing Binary Search 426
Exercises for Section 7.3 426

7.4 Problem Solving with Recursion 426
Case Study: Towers of Hanoi 427
Case Study: Counting Cells in a Blob 431
Exercises for Section 7.4 434

Contents xxi

7.5 Backtracking 435
Case Study: Finding a Path Through a Maze 436
Exercises for Section 7.5 439

Chapter Review, Exercises, and Programming Projects 440

Chapter 8 Trees 445

8.1 Tree Terminology and Applications 447
Tree Terminology 447
Binary Trees 448
Some Types of Binary Trees 449
Fullness and Completeness 451
General Trees 452
Exercises for Section 8.1 453

8.2 Tree Traversals 454
Visualizing Tree Traversals 455
Traversals of Binary Search Trees and Expression Trees 455
Exercises for Section 8.2 456

8.3 Implementing a Binary_Tree Class 457
The BTNode Class 457
The Binary_Tree Class 458
Copy Constructor, Assignment, and Destructor 465
Exercises for Section 8.3 465

8.4 Binary Search Trees 466
Overview of a Binary Search Tree 466
Performance 468
The Binary_Search_Tree Class 468
Insertion into a Binary Search Tree 472
Removal from a Binary Search Tree 474
Testing a Binary Search Tree 479
Case Study: Writing an Index for a Term Paper 479
Exercises for Section 8.4 484

8.5 Heaps and Priority Queues 484
Inserting an Item into a Heap 485
Removing an Item from a Heap 486
Implementing a Heap 486
Priority Queues 489
The priority_queue Class 490
Using a Heap as the Basis of a Priority Queue 490
Design of the KW::priority_queue Class 491
Using a Compare Function Class 494
Exercises for Section 8.5 495

8.6 Huffman Trees 496
Case Study: Building a Custom Huffman Tree 498
Exercises for Section 8.6 504

Chapter Review, Exercises, and Programming Projects 505

xxii Contents

Chapter 9 Sets and Maps 511

9.1 Associative Container Requirements 512
The Set Abstraction 512
The Set Functions 513
The multiset 518
Standard Library Class pair 519
Exercises for Section 9.1 520

9.2 Maps and Multimaps 521
The map Functions 522
Defining the Compare Function 528
The multimap 528
Exercises for Section 9.2 530

9.3 Hash Tables 530
Hash Codes and Index Calculation 531
Functions for Generating Hash Codes 532
Open Addressing 533
Traversing a Hash Table 535
Deleting an Item Using Open Addressing 536
Reducing Collisions by Expanding the Table Size 536
Reducing Collisions Using Quadratic Probing 537
Problems with Quadratic Probing 538
Chaining 538
Performance of Hash Tables 539
Exercises for Section 9.3 541

9.4 Implementing the Hash Table 542
The KW::hash_map ADT 542
The Entry_Type 542
Class hash_map as Implemented by Hash_Table_Open.h 544
Class hash_map as Implemented by Hash_Table_Chain.h 551
Testing the Hash Table Implementations 553
Exercises for Section 9.4 554

9.5 Implementation Considerations for the hash_map 555
Defining the Hash Function Class 555
The hash_map::iterator and hash_map::const_iterator 556
Exercises for Section 9.5 558

9.6 Additional Applications of Maps 558
Case Study: Implementing the Phone Directory Using a Map 558
Case Study: Completing the Huffman Coding Problem 561
Exercises for Section 9.6 564

Chapter Review, Exercises, and Programming Projects 564

Contents xxiii

Chapter 10 Sorting 569

10.1 Using C++ Sorting Functions 570
Exercises for Section 10.1 572

10.2 Selection Sort 572
Analysis of Selection Sort 573
Code for Selection Sort Using Iterators 574
Code for an Array Sort 576
Exercises for Section 10.2 577

10.3 Bubble Sort 577
Analysis of Bubble Sort 578
Code for Bubble Sort 579
Exercises for Section 10.3 580

10.4 Insertion Sort 581
Analysis of Insertion Sort 582
Code for Insertion Sort 583
Using iterator_traits to Determine the Data Type

of an Element 584
Exercises for Section 10.4 586

10.5 Comparison of Quadratic Sorts 586
Comparisons versus Exchanges 588
Exercises for Section 10.5 588

10.6 Shell Sort: A Better Insertion Sort 588
Analysis of Shell Sort 590
Code for Shell Sort 590
Exercises for Section 10.6 592

10.7 Merge Sort 592
Analysis of Merge 593
Code for Merge 593
Algorithm for Merge Sort 595
Trace of Merge Sort Algorithm 595
Analysis of Merge Sort 596
Code for Merge Sort 597
Exercises for Section 10.7 598

10.8 Heapsort 599
Heapsort Algorithm 599
Algorithm to Build a Heap 601
Analysis of Heapsort Algorithm 601
Code for Heapsort 601
Exercises for Section 10.8 604

xxiv Contents

10.9 Quicksort 604
Algorithm for Quicksort 605
Analysis of Quicksort 605
Code for Quicksort 606
Algorithm for Partitioning 607
Code for partition 608
A Revised Partition Algorithm 610
Code for Revised partition Function 612
Exercises for Section 10.9 614

10.10 Testing the Sort Algorithms 614
Exercises for Section 10.10 616

10.11 The Dutch National Flag Problem (Optional Topic) 616
Case Study: The Problem of the Dutch National Flag 617
Exercises for Section 10.11 620

Chapter Review, Exercises, and Programming Projects 620

Chapter 11 Self-Balancing Search Trees 623

11.1 Tree Balance and Rotation 624
Why Balance Is Important 624
Rotation 625
Algorithm for Rotation 625
Implementing Rotation 627
Exercises for Section 11.1 628

11.2 AVL Trees 628
Balancing a Left-Left Tree 629
Balancing a Left-Right Tree 630
Four Kinds of Critically Unbalanced Trees 632
Implementing an AVL Tree 634
Inserting into an AVL Tree 636
Removal from an AVL Tree 642
Performance of the AVL Tree 642
Exercises for Section 11.2 643

11.3 Red-Black Trees 643
Insertion into a Red-Black Tree 644
Removal from a Red-Black Tree 655
Performance of a Red-Black Tree 655
Exercises for Section 11.3 656

11.4 2-3 Trees 656
Searching a 2-3 Tree 657
Inserting an Item into a 2-3 Tree 658
Analysis of 2-3 Trees and Comparison with Balanced Binary Trees 661
Removal from a 2-3 Tree 661
Exercises for Section 11.4 663

Contents xxv

11.5 2-3-4 and B-Trees 663
2-3-4 Trees 663
Implementation of the Two_Three_Four_Tree Class 666
Relating 2-3-4 Trees to Red-Black Trees 671
B-Trees 672
Exercises for Section 11.5 680

Chapter Review, Exercises, and Programming Projects 681

Chapter 12 Graphs 691

12.1 Graph Terminology 692
Visual Representation of Graphs 692
Directed and Undirected Graphs 693
Paths and Cycles 694
Relationship Between Graphs and Trees 696
Graph Applications 696
Exercises for Section 12.1 697

12.2 The Graph ADT and Edge Class 697
Exercises for Section 12.2 701

12.3 Implementing the Graph ADT 701
Adjacency List 701
Adjacency Matrix 702
Overview of the Hierarchy 703
Class Graph 704
The List_Graph Class 707
The Matrix_Graph Class 713
Comparing Implementations 713
Exercises for Section 12.3 714

12.4 Traversals of Graphs 715
Breadth-First Search 715
Depth-First Search 720
Exercises for Section 12.4 726

12.5 Applications of Graph Traversals 727
Case Study: Shortest Path Through a Maze 727
Case Study: Topological Sort of a Graph 731
Exercises for Section 12.5 733

12.6 Algorithms Using Weighted Graphs 734
Finding the Shortest Path from a Vertex to All Other Vertices 734
Minimum Spanning Trees 738
Exercises for Section 12.6 742

Chapter Review, Exercises, and Programming Projects 743

xxvi Contents

Appendix A Advanced C++ Topics 755

A.1 Source Character Set, Trigraphs, Digraphs, and Alternate Keywords 755
A.2 The Allocator 756
A.3 Traits 757

Basic Structure of a Traits Class 759
The char_traits Class 759

A.4 Virtual Base Classes 759
Refactoring the Employee and Student Classes 759
Virtual Base Classes 763

A.5 Smart Pointers 764
The auto_ptr 765
The shared_ptr 765

Appendix B Overview of UML 769

B.1 The Class Diagram 770
Representing Classes and Interfaces 770
Generalization 773
Inner or Nested Classes 774
Association 774
Composition 775
Generic (or Template) Classes 776

B.2 Sequence Diagrams 776
Time Axis 776
Objects 776
Life Lines 778
Activation Bars 778
Messages 778
Use of Notes 778

Appendix C The CppUnit Test Framework 779

Glossary 783
Index 795

C h a p t e r O b j e c t i v e s

◆ To understand the essentials of object-oriented programming in C++
◆ To understand how to use the control structures of C++
◆ To learn about the primitive data types of C++
◆ To understand how to use functions in C++
◆ To understand how to use pointer variables in C++
◆ To understand how to use arrays in C++
◆ To learn how to use the standard string class
◆ To learn how to perform I/O in C++ using streams

1

A C++ Primer

C h a p t e r P

This chapter reviews object-oriented programming in C++. It assumes the
reader has prior experience programming in C++ or another language and is,
therefore, familiar with control statements for selection and repetition, basic

data types, arrays, and functions. If your first course was in C++, you can skim this
chapter for review or just use it as a reference as needed. However, you should read
it more carefully if your C++ course did not emphasize object-oriented design.

If your first course was not in C++, you should read this chapter carefully. If
your first course followed an object-oriented approach but was in another language,
you should concentrate on the differences between C++ syntax and that of the lan-
guage that you know. If you have programmed only in a language that was not
object-oriented, you will need to concentrate on aspects of object-oriented pro-
gramming and classes as well as C++ syntax.

We begin the chapter with an introduction to the C++ environment and the run-
time system. Control structures and statements are then discussed, followed by a
discussion of functions.

Next we cover the basic data types of C++, called primitive data types. Then we
introduce classes and objects. Because C++ uses pointers to reference objects, we dis-
cuss how to declare and use pointer variables.

The C++ standard library provides a rich collection of classes that simplify pro-
gramming in C++. The first C++ class that we cover is the string class. The string
class provides several functions and an operator + (concatenation) that process
sequences of characters (strings).

We also review arrays in C++. We cover both one- and two-dimensional arrays
and C-strings, which are arrays of characters.

Finally we discuss input/output. We also show how to use streams and the con-
sole for input/output and how to write functions that let us use the stream input/out-
put operations on objects.

2 Chapter P A C++ Primer

A C + + P r i m e r

P.1 The C++ Environment
P.2 Preprocessor Directives and Macros
P.3 C++ Control Statements
P.4 Primitive Data Types and Class Types
P.5 Objects, Pointers, and References
P.6 Functions
P.7 Arrays and C Strings
P.8 The string Class
P.9 Input/Output Using Streams

P.1 The C++ Environment

Before we talk about the C++ language, we will briefly discuss the C++ environment
and how C++ programs are executed. C++ was developed by Bjarne Stroustrup as
an extension to the C programming language by adding object-oriented capabilities.
Since its original development, C++ has undergone significant evolution and refine-
ment. In 1998 the definition of the language was standardized. Like its predecessor
C, C++ has proven to be a popular language for implementing a variety of applica-
tions across different platforms. There are C++ compilers available for most com-
puters. Some of the concepts and features of C++ have been implemented in other
languages, including Java.

An extensive collection of classes and functions is available to a C++ program. This
collection is known as the standard library. We will discuss numerous capabilities
provided by this library in this textbook. Among them are classes and functions to
perform input and output and classes that can serve as containers for values.

Include Files
A C++ program is compiled into a form that is directly executed by the computer.
(This form is called machine language.) A C++ program does not have to be com-
piled all at once. Generally, individual functions, or a set of related functions, or a
class definition are placed in separate source files that are compiled individually.

For a C++ program to reference a function, class, or variable, the compiler must
have seen a declaration of that function, class, or variable. Thus, if you write a func-
tion, class, or variable that you want to be referenced by other C++ functions, you
need to make a declaration of it available. Instead of rewriting all such declarations
in every file that uses those functions, classes, or variables, you would place the dec-
larations in a separate file to be included by any program file that uses them. Such
a file is called an include file. The declarations of classes and functions in the stan-
dard library are also placed in include files.

The Preprocessor
The include files that a program uses are merged into the source file by a part of the
compiler program known as the preprocessor. The preprocessor also performs some
other functions, which are discussed in subsequent paragraphs.

The result of the preprocessing is that when the compiler goes to translate the C++
statements into machine instructions, it sees a modified version of the input source
file. This can occasionally result in some incomprehensible errors. For example, a
missing } in an include file can result in error messages about a subsequent include
file that actually has no errors and may even be part of the standard library.

The C++ Compiler
The C++ compiler translates the source program (in file sourceFile.cpp) into an
intermediate form known as object code. This intermediate form is similar to
machine language except that references to external functions and variables are in a
format that can’t be processed directly by the compiler but must be resolved by the
linker (discussed next).

The Linker
Once all of the source code files associated with a program have been compiled by
the compiler, the object code files need to be linked together along with the object
code files that implement the functions declared in the standard library. This task is
performed by a program known as the linker, which produces a file that can be
loaded into memory by the operating system and executed. The relationship among
the library, preprocessor, compiler, and linker is shown in Figure P.1.

Functions, Classes, and Objects
In C++ the fundamental programming unit is the function. The class is also a pro-
gramming unit. Every program is written as a collection of functions and classes.
Functions may either be stand-alone or belong to a class. In C++, function and class

P.1 The C++ Environment 3

declarations are stored in include files, also known as headers, that have the exten-
sion .h. Function and class definitions are stored in files with the extension .cpp.
(Other conventions are sometimes used: include files may also use the extension
.hpp or .H, and definition files may use the extension .cc or .C.)

A class is a named description for a group of entities called objects, or instances of the
class, that all have the same kinds of information (known as attributes, data fields, or
instance variables) and can participate in the same operations (functions). The attrib-
utes and the functions are members of the class—not to be confused with the instances
or objects in the class. The functions are referred to as member functions.

If you are new to object-oriented design, you may be confused about the differences
between a class, an object or instance, and a member. A class is a general descrip-
tion of a group of entities that all have the same characteristics—that is, they can all
perform or undergo the same kinds of actions, and the same pieces of information
are meaningful for all of them. The individual entities are the objects or instances,
whereas the characteristics are the members. For example, the class House would
describe a collection of entities that each have a number of bedrooms, a number of
bathrooms, a kind of roof, and so on (but not a horsepower rating or mileage); they
can all be built, remodeled, assessed for property tax, and so on (but not have their
transmission fluid changed). The house where you live and the house where your
best friend lives can be represented by two objects, or instances, of class House. The
numbers of bedrooms and bathrooms and the actions of building and assessing the
house would be represented by members of the class House.

Classes extend C++ by providing additional data types. For example, the class
string is a predefined class that enables the programmer to process sequences of
characters easily. We will discuss the string class in detail in Section P.8.

The #include Directive
Next, we show a sample C++ source file (HelloWorld.cpp) that contains an applica-
tion program. Our goal in the rest of this section is to give you an overview of the

4 Chapter P A C++ Primer

F I G U R E P. 1
Compiling and Executing a C++ Program

 C++
Source file Compiler Preprocessor Object file

User-defined
object files

 Library-defined
include files

Library-defined
object files

 Linker Executable
file

 User-defined
include files

process of creating and executing an application program. The statements in this
program will be covered in more detail later in this chapter.

#include <iostream>
#include <string>

using namespace std;

int main()
{
cout << "Enter your name\n";
string name;
getline(cin, name);
cout << "Hello " << name

<< " - welcome to C++\n";
return 0;

}

The C++ source file begins with the directives
#include <iostream>
#include <string>

These tell the C++ preprocessor to include the definitions from the library headers
iostream and string into the program. The header iostream declares objects asso-
ciated with the standard input/output streams such as cin and cout and functions
for processing input/output streams.

The using Statement and namespace std
The line

using namespace std;

tells the compiler to make all the names in the predefined namespace std (for stan-
dard) available to our program. A namespace is a collection of names or identifiers
that are defined together. Because the C++ standard library is defined in the stan-
dard namespace std, a program containing this line will be able to access all func-
tions and identifiers declared in the standard library.

Although this is the easiest way to get access to all names defined in the standard
namespace, as we will discuss further in Chapter 3, including all of the names from
namespace std can lead to problems in larger programs. As an alternative, we can
list each name that we will actually need from a particular namespace in a separate
statement of the form:

using namespace::name;

For the main function in the previous section, the four statements:
using std::cin;
using std::cout;
using std::string;
using std::getline;

tell the compiler to make just the names cin, cout, string, and getline from the
standard namespace available to our program.

P.1 The C++ Environment 5

Even without using statements, you can reference names declared in a namespace
by specifying the actual namespace before each use of a name from that namespace.
For example, we can use std::cout to reference name cout.

Function main
The line

int main()

identifies the start of the definition for function main. This is the place where the
operating system begins the execution of the program. The word int tells the com-
piler that main will return an int value to the operating system. A return value of 0
(through execution of the statement return 0;) indicates that the program exited
normally, and a nonzero value indicates that there was an error. This information
can be used by the operating system to determine whether to execute the next pro-
gram in a script.

The function main contains two statements that invoke the insertion operator (<<)
on the standard output stream cout. The first displays the following prompt mes-
sage (or prompt) to the user:

Enter your name

Next the function getline is called. This function reads a line from the specified
input stream (cin) and places the result into the specified string, name.

Then the insertion operator is invoked on cout to output the strings
Hello
the entered line

and
- welcome to C++

as a single line of output. For example, if the characters John Doe are typed in, the
output would be

Hello John Doe - welcome to C++

Finally the statement
return 0;

is executed, indicating normal completion.

Execution of a C++ Program
You can compile, link, and run HelloWorld using an Integrated Development
Environment (IDE) or a command-line compiler. If you are using an IDE, you may
need to create a project first. Then type this program into the edit window for file
HelloWorld.cpp and select Run. If you are not using an IDE, you must create this
file using an editor program and save it as file HelloWorld.cpp. Then you can use a
command that invokes the compiler and linker/loader. This command depends on
the compiler you are using. For example, if you are using the gcc compiler, the com-
mand to compile and link the program would be

g++ -o HelloWorld HelloWorld.cpp

6 Chapter P A C++ Primer

whereas if you are using the Microsoft C++ compiler, the command to compile and
link the program would be

cl /EHsc HelloWorld.cpp

The /EHsc in the command line sets a compiler switch that enables exception han-
dling (discussed in Chapter 2). The command

HelloWorld

tells the operating system to load and execute the program.

E X E R C I S E S F O R S E C T I O N P. 1

S E L F - C H E C K

1. What is the C++ standard library? How does its role differ from that of the C++
compiler?

2. What is the role of the preprocessor?
3. Explain the relationship between a class and an object. Which is general and

which is specific?

P.2 Preprocessor Directives and Macros

Before your program is processed by the compiler, the preprocessor transforms it
into a form that the compiler can work with. Among the steps performed by the pre-
processor are the following:

• Remove comments and replace them by a single space.
• Split the input file into tokens.
• Carry out preprocessing directives.
• Expand macros.

Removing Comments
There are two forms of comments:

Any characters between the character pairs /* and */ are treated as a comment.
Note that you cannot nest comments. A comment that begins with a /* is termi-
nated by the first */. These comments may extend over more than one line.

Any characters that follow the character pair // until the end of the current line are
treated as a comment. If you have a comment that takes more than one line, you
should either use the /* ... */ form or start each new line with its own //.

Also note that if a /* or */ appears after a //, the slash and asterisk are ignored, and
if a // appears within a /* ... */, the double slash is ignored.

P.2 Preprocessor Directives and Macros 7

Macros
A macro is similar to a function in that a single instruction in the source file results
in multiple instructions being executed by the computer. The macro, however, is
expanded by the preprocessor when the program is compiled rather than being
called by the program at run time, and the macro operates only on tokens, which
are sequences of letters and numbers, or operator symbols. The C programming lan-
guage relies on macros, and because C++ is a superset of the C language, C++
includes them as well. In its simplest form, we use a macro definition to associate a
name with a constant value:

#define PI 3.14159

This macro definition directs the preprocessor to replace every occurrence of the
name PI with the sequence of characters 3.14159.

SYNTAX The define Preprocessor Directive

FORM:
#define macro-name macro-definition
#define macro-name(parameter-list) macro-definition

EXAMPLES:
#define NULL 0
#define MAX(x, y) ((x) > (y) ? (x) : (y))

MEANING:

Subsequent to the definition, whenever the symbol macro-name is encountered,
the preprocessor will replace it with the macro-definition. The macro-definition
begins with the first nonspace character after the macro-name and ends with the
last nonspace character on the same line as the #define directive. If there are
parameters following the macro-name (for example, x and y in MAX(x, y)), they
are replaced in the macro-definition with the corresponding actual arguments.

E X A M P L E P . 1 Assume that NULL is defined as shown in the syntax box. Then, wherever NULL
appears in the program, it is replaced by 0. Thus, when you write

if (ptr == NULL)

the compiler will see
if (ptr == 0)

8 Chapter P A C++ Primer

Macros are used in the C language for functions such as MAX shown in the syntax
example because the function can be applied to different types. Such functions are
known as generic functions. As we will discuss in the text, C++ uses templates to
define generic functions and classes.

There are two cases where macros are useful in C++. One is the use of the # macro
operator, which converts a macro parameter into a string literal, and the other is to
prevent multiple inclusion of include files.

The # Operator
If you place a # before a macro parameter, then the preprocessor replaces it with a
string literal of the corresponding argument. This can be useful for placing debug-
ging information into a program. For example, an assertion macro is used to verify
that a condition that should be true at a certain point in a program is in fact true.
It can be defined as follows:

#define kw_assert(x)\
if (!(x)) {\
std::cerr << "Assertion " << #x << " failed\n";\
std::cerr << "Line " << __LINE__ << " in file " << __FILE__\

<< "\n";\
exit(1);\

}

Macro definitions must appear on a single line. The preprocessor provides a way
around this limitation. Any line that ends with the backslash character (\) is treated
as if the following line were part of the same line.

For example, if we write
kw_assert(length > 5)

the preprocessor will transform this line into
if (!(length > 5)) {\
std::cerr << "Assertion " << "length > 5" << " failed\n";\
std::cerr << "Line " << current line number << " in file "\

<< current file name << "\n";\
exit(1);\

}

If the assertion length > 5 is true, this statement does nothing. If it is false, an error
message is output that gives the assertion and the place in the program where it is
tested, and the program then terminates. The macros __LINE__ and __FILE__ are
predefined to be replaced by the line number and file name of the source file that
the preprocessor is currently processing. The function exit, as its name implies,
exits the program immediately. Its argument is the return value that is passed back
to the operating system; a value of 1 indicates an error.

Conditional Compilation
The preprocessor directives #ifdef, #ifndef, #else, and #endif tell the preprocessor
to include or exclude selected lines of code in the output passed to the compiler.

P.2 Preprocessor Directives and Macros 9

SYNTAX The #ifdef, #ifndef, #else, and #endif Preprocessor Directives

FORM:
#ifdef macro-name
code to be included if macro-name is defined
#else
code to be included if macro-name is not defined
#endif

or
#ifndef macro-name
code to be included if macro-name is not defined
#else
code to be included if macro-name is defined
#endif

The #else is optional, but there must be an #endif to correspond to the #ifdef
or #ifndef.

EXAMPLE:
#ifdef __cplusplus
extern "C" {
...

}
#endif

MEANING:
Indicates what to include if the macro-name is defined or not defined. If the
macro-name is defined, include all the lines of code between the #ifdef and the
#else (if present), or between the #ifdef and the #endif if there is no #else. If
the macro-name is not defined, include all the lines between the #else and the
#endif (if any). The opposite happens if the first line begins with #ifndef.

In the example shown in the syntax display, the macro __cplusplus is defined by
the compiler if it is processing a C++ program. The declaration

extern "C" {
...

}

tells the compiler that all functions declared inside the brackets (not shown, but
indicated by ...) are C functions and not C++ functions. This declaration is used in
header files that are shared by both C and C++.

More on the #include Directive
The #include directive has one of two forms:

#include <header>

and
#include "file-name"

The form
#include <header>

10 Chapter P A C++ Primer

is reserved to include definitions that are defined in the standard library and the form
#include "file-name"

is used to include a user-defined include file.

P.2 Preprocessor Directives and Macros 11

P R O G R A M S T Y L E

Using Preprocessor Directives to Prevent Multiple Inclusion
of an Include File
We use include files to package function and class declarations. It is possible that a
function or class uses other functions or classes that are defined in other include files.
However, it is an error if the same function declaration or class declaration is presented
to the compiler more than once. When you write an include file, you do not know when
it is going to be used or by what programs, so each include file should be guarded
using preprocessor directives to ensure that it is included only one time. The way this is
done is to begin the include file with two directives of the form:
#ifndef unique-name
#define unique-name

where unique-name, as the place holder implies, is a unique name. Generally the file
name is converted to uppercase, the period that separates the name from the extension
is replaced by an underscore, and a trailing underscore is added. Thus the include file
myfile.h would use MYFILE_H_ as the unique name. You may see other conventions.
The last line of the include file is an #endif directive.

The first time the preprocessor sees the #ifndef directive, the unique-name will not be
defined. Thus the lines that follow will be processed by the preprocessor and passed on
to the compiler. The #define directive will define unique-name so that the next time
the preprocessor sees the include file, the #ifndef will be false and the file will be
skipped. Note again that the last line of the file should be #endif.

E X E R C I S E S F O R S E C T I O N P. 2
S E L F - C H E C K

1. What does the preprocessor do with the following:
#define MIN(x,y) \
((x) < (y)) ? (x) : (y)

2. Given the macro definition
#define ECHO(x) #x << ": " << (x)

What does the compiler see after the preprocessor processes the statement
cout << ECHO(a) << ECHO(b) << ECHO(a + b) << '\n';
cout << ECHO(sum) << ECHO(sum << 2) << '\n';

3. What if we omit the second set of parentheses in the definition given in question 2?

P.3 C++ Control Statements

The control statements of a programming language determine the flow of execution
through a program. They fall into three categories: sequence, selection, and repetition.

Sequence and Compound Statements
A group of statements that is executed in sequence is written as a compound state-
ment delimited (enclosed) by braces. The statements execute in the order in which
they are listed.

E X A M P L E P . 2 The following statements constitute a compound statement:
{
double x = 3.45;
double y = 2 * x;
int i = int(y);
i++;

}

Selection and Repetition Control
Table P.1 shows the C++ control statements for selection and repetition. (C++ uses
the same basic syntax for control structures as C and Java do.) We assume that you
are familiar with basic programming control structures from your first course, so we
won’t dwell on them here.

In Table P.1, each condition is a bool expression in parentheses. Type bool expres-
sions often involve comparisons written using equality (==, !=) and relational oper-
ators (<, <=, >, >=). For example, the condition (x + y > x – y) is true if the sum
of the two variables shown is larger than their difference. The logical operators !
(not, or complement), && (and), and || (or) are used to combine bool expressions.
For example, the condition (n >= 0 && n <= 10) is true if n has a value between
zero and 10, inclusive.

C++ uses short-circuit evaluation, which means that evaluation of a bool expression
terminates when its value can be determined. For example, if in the expression bool1
|| bool2, bool1 is true, the expression must be true, so bool2 is not evaluated.
Similarly, in the expression bool3 && bool4, if bool3 is false, the expression must be
false, so bool4 is not evaluated.

E X A M P L E P . 3 In the condition
(num != 0 && sum / num)

if num is 0, the expression following && is not evaluated. This prevents a division by
zero.

12 Chapter P A C++ Primer

E X A M P L E P . 4 Below we use a for statement and a while statement to write loops with the same
behavior. Each loop accumulates the sum of even integers from 1 to MAX_VAL in vari-
able sum (initial value 0) and they store the product of the odd integers in variable
prod (initial value 1). The operator % in the condition (next_int % 2 == 0) gives the
remainder after an integer division, so the condition is true if next_int is an even
number. Generally the for statement implementation will be more efficient because
some compilers will be able to optimize the compiled code.

for (int next_int = 1; int next_int = 1;
next_int <= MAX_VAL; while (next_int <= MAX_VAL) {
next_int++) { if (next_int % 2 == 0) {

if (next_int % 2 == 0) { sum += next_int;
sum += next_int; } else {

} else { prod *= next_int;
prod *= next_int; }

} next_int++;
} }

P.3 C++ Control Statements 13

Control Structure Purpose Syntax

if ... else Used to write a decision with condition that selects if (condition) {
the alternative to be executed. Executes the first ...
(second) alternative if the condition is true (false). } else {

...
}

switch Used to write a decision with scalar values (integers, switch (selector) {
characters) that select the alternative to be executed. case label : statements;
Executes the statements following the label that is break;
the selector value. Execution falls through to the next case label : statements;
case if there is no return or break. Executes the break;
statements following default if the selector value ...
does not match any label. default : statements;

}

while Used to write a loop that specifies the repetition while (condition) {
condition in the loop header. The condition is tested ...
before each iteration of the loop and, if it is true, the }
loop body executes; otherwise, the loop is exited.

do ... while Used to write a loop that executes at least once. The do {
repetition condition is at the end of the loop. The ...
condition is tested after each iteration of the loop, and } while (condition);
if it is true, the loop body executes again; otherwise
the loop is exited.

for Used to write a loop that specifies the initialization, for (initialization;
repetition condition, and update steps in the loop condition;
header. The initialization statements execute before update) {
the loop repetition begins; the condition is tested ...
before each iteration of the loop and, if it is true, the }
loop body executes; otherwise, the loop is exited.
The update statements execute after each iteration.

TA B L E P. 1
C++ Control Statements

Nested if Statements
You can write if statements that select among more than two alternatives by nest-
ing one if statement inside another. Often each inner if statement will follow the
keyword else of its corresponding outer if statement.

E X A M P L E P . 5 The following nested if statement has four alternatives. The conditions are evalu-
ated in sequence until one evaluates to true. The compound statement following the
first true condition then executes.

if (operator == '+') {
result = x + y;
add_op++;

}
else
if (operator == '-') {
result = x - y;
subtract_op++;

}
else
if (operator == '*') {
result = x * y;
multiply_op++;

}
else
if (operator == '/') {
result = x / y;
divide_op++;

}

14 Chapter P A C++ Primer

P R O G R A M S T Y L E

Braces and Indentation in Control Statements
C++ programmers often place the opening brace { on the same line as the control state-
ment header. The closing brace } aligns with the first word in the control statement
header. We will always indent the statements inside a control structure to clarify the
meaning of the control statement.

Although we write the symbols } else { on one line, another popular style convention
is to place the word else under the symbol } and aligned with if:
if (next_int % 2 == 0) {
sum += next_int;

}
else {
prod *= next_int;

}

Some programmers omit the braces when a true task or false task or a loop body consists
of a single statement. Others prefer to include them always, both for clarity and because
having the braces will permit them to insert additional statements later if needed.

The switch Statement
The if statement in Example P.5 could also be written as the following switch state-
ment. Each case label (for example, '+') indicates a possible value of the selector
expression operator. The statements that follow a particular label execute if the
selector has that value. The break statements cause an exit from the switch state-
ment. Without them, execution would continue on to the statements in the next
case. The last case, with label default, executes if the selector value doesn’t match
any case label. (Note that the compound statements for each case are not sur-
rounded by braces.) Using the switch statement (instead of nested ifs) reduces extra
branches and can result in safer code.

switch (operator) {
case '+':
result = x + y;
add_op++;
break;

P.3 C++ Control Statements 15

P R O G R A M S T Y L E

Writing if Statements with Multiple Alternatives
C++ programmers often write nested if statements like those in the preceding example
without indenting each nested if. The following multiple-alternative decision has the
same meaning but is easier to write and read.
if (operator == '+') {
result = x + y;
add_op++;

} else if (operator == '-') {
result = x - y;
subtract_op++;

} else if (operator == '*') {
result = x * y;
multiply_op++;

} else if (operator == '/') {
result = x / y;
divide_op++;

}

P I T F A L L

Omitting Braces Around a Compound Statement
The braces in the preceding example delimit compound statements. Each compound
statement consists of two statements. If you omit a brace, you will get the syntax error
'else' without 'if'.

case '-':
result = x - y;
subtract_op++;
break;

case '*':
result = x * y;
multiply_op++;
break;

case '/':
result = x / y;
divide_op++;
break;

default:
// Do nothing

}

E X E R C I S E S F O R S E C T I O N P. 3
S E L F - C H E C K

1. What is the purpose of the break statement in the preceding switch statement?
List the statements that would execute when operator is '–' with the break state-
ments in place and if they were removed.

2. What is the difference between a while loop and a do . . . while loop? What is the
minimum number of repetitions of the loop body you can have with each kind of
loop?

P R O G R A M M I N G

1. Rewrite the for statement in Example P.4 using a do . . . while loop.

P.4 Primitive Data Types and Class Types

C++ distinguishes between data of many different types. The type of a data item
determines what values it can have and what can be done with it. For example, a
character cannot have the value –2.718, and a floating-point real number cannot be
converted to uppercase. Types may be primitive types (numbers, characters) and
class types. The primitive types are defined by the computer on which the program
is being executed and are built into the language. The class types are defined in
terms of the primitive types. In C++ you can define a class type so that it behaves as
if it were a primitive type. For example, the library class std::string has many of
the characteristics of a primitive data type. You will begin to learn how to define
class types in Chapter 1.

Primitive Data Types
The primitive data types in C++ represent numbers, characters, and Boolean values
(true, false) (see Table P.2). Integers are represented by data types short, int, and

16 Chapter P A C++ Primer

long; integers may be either signed or unsigned. The real numbers are represented
by float, double, and long double. The keyword double is short for “double preci-
sion,” implying that values of this type have a wider range and can be specified to
many more decimal places than the “single-precision” float values. However, the
actual range of values for each data type is implementation defined. That is, they
depend on the compiler and the target computer. We list the ranges for the 32-bit
Intel x86 architecture (such as the Intel Pentium processors and the AMD Athlon
processors) in Table P.2. Observe that the range for int and long are the same. The
only requirements of the standard for integers are that the range of short be less
than or equal to that of int and that the range of int be less than or equal to that
of long. Similarly, the standard requires that the range and precision provided by
float be less than or equal to that provided by double and that the range and pre-
cision provided by double be less than or equal to that provided by long double.

Type size_t is used to represent an unsigned integer, or an integer whose value is
always positive. Some functions in the C++ standard library return results that are
type size_t.

Type char is used in C++ to represent the characters. C++ uses the 7-bit ASCII
(American Standard Code for Information Interchange) characters. The types
unsigned char and signed char are effectively eight-bit integers. Table P.3 shows the
ASCII characters. These include the control characters and the Basic Latin alphabet.

P.4 Primitive Data Types and Class Types 17

Data Type Range of Values for the Intel x86 architecture

short –32,768 through 32,767

unsigned short 0 through 65,535

int –2,147,483,648 through 2,147,483,647

unsigned int, size_t 0 through 4,294,967,295

long –2,147,483,648 through 2,147,483,647

unsigned long 0 through 4,294,967,295

float Approximately ±10–38 through ±1038 and 0 with 7 digits precision

double Approximately ±10–308 through ±10308 and 0 with 15 digits precision

long double Approximately ±10–4932 through ±104932 and 0 with 18 digits precision

char The 7-bit ASCII characters

signed char –128 through 127

unsigned char 0 through 255

wchar_t The Unicode characters

bool true, false

TA B L E P. 2
C++ Primitive Data Types in Increasing Order of Range

The code for each character, expressed as a hexadecimal number, consists of the
single-digit column number (0 through 7) followed by the row number (0 through
F). For example, the code for the letter Q is 51, and the code for the letter q is 71.
The characters in the first two columns of Table P.3 and the code character 7F
(delete) are control characters. The hexadecimal digits A through F are equivalent
to the decimal values 10 through 15. The hexadecimal number 7F is equivalent to
the decimal number 7 � 16 � 15.

The type wchar_t is defined to support the larger international character set known
as Unicode. When first published, the Unicode character set required a 16-bit rep-
resentation. However, this has proven inadequate to represent all of the possible
characters and symbols defined by the standard, so some implementations now use
a 32-bit value for wchar_t. The first 128 characters in the Unicode character set cor-
respond to the ASCII characters.

C++ uses type bool to represent logical data. The bool data type has only two val-
ues: true and false. C++ performs automatic conversion between bool and integral
types. The bool value true is converted to 1 and false is converted to 0. Converting
the other way, a zero is converted to false, and a nonzero value is converted to
true.

TA B L E P. 3
The Seven-Bit ASCII Characters

18 Chapter P A C++ Primer

0 1 2 3 4 5 6 7

0 Null Space 0 @ P ` p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 Bell ' 7 G W g w

8 Backspace (8 H X h x

9 Tab) 9 I Y I y

A Line feed * : J Z j z

B Escape + ; K [k {

C Form feed , < L \ l |

D Return - = M] m }

E . > N ^ n ~

F / ? O _ o delete

TA B L E P. 4
Functions Defined in numeric_limits<type-name>

P.4 Primitive Data Types and Class Types 19

Function Result

min() The minimum value

max() The maximum value

epsilon() The difference between 1.0 and the next larger value; defined only for floating-point
types.

infinity() The representation for infinity, defined only for floating-point types.

Numeric Limits
You can obtain the data shown in Table P.2 from the template class numeric_lim-
its, which is defined in the header file <limits>. This class defines several static
functions, some of which are shown in Table P.4. Versions of these functions are
defined for each of the primitive types listed in Table P.2. Thus, to obtain informa-
tion about a given type type-name, you reference the class numeric_limits<type-
name>. For example, to obtain the maximum value of an int, you make the
function call

numeric_limits<int>::max()

Primitive-Type Variables
C++ uses declaration statements to declare and initialize primitive-type variables.

int count_items;
double sum = 0.0;
char star = '*';
boolean more_data;

The second and third of these statements initialize variables sum and star to the val-
ues after the operator =. As shown, you can use primitive-type values (such as 0.0
and '*') as literals in C++ statements. A literal is a constant value that appears
directly in a statement.

Identifiers, such as variable names in C++, must consist of some combination of let-
ters, digits, and the underscore character, beginning with a letter. Identifiers cannot
begin with a digit. Although identifiers can begin with an underscore, these identi-
fiers are reserved for use by the standard library, and they should not be used in pro-
grams you write.

Operators
Table P.5 shows the C++ operators in decreasing precedence. We will not use any of
the bitwise operators, shifting operators, or conditional operator. The arithmetic
operators (*, /, +, -) and the increment (++) and decrement (--) operators can be
used with any of the primitive numeric types or type char. The remainder operator
(%) is only defined for integer types including char. All operators with the same rank
have the same associativity.

TA B L E P. 5
Operator Precedence

20 Chapter P A C++ Primer

Rank Operator Operation Associativity

1 [] Array subscript Left

() Function call

. Member access

-> Member access

2 ++ Pre- or postfix increment Right

-- Pre- or postfix decrement

+ - Unary plus or minus

! Complement

~ Bitwise complement

new Object creation

3 *, /, % Multiply, divide, remainder Left

4 + Addition or string concatenation Left

- Subtraction

5 << Signed bit shift left Left

>> Signed bit shift right

6 <, <= Less than, less than or equal Left

>, >= Greater than, greater than or equal

7 == Equal to Left

!= Not equal to

8 & Bitwise and Left

9 ^ Bitwise exclusive or Left

10 | Bitwise or Left

11 && Logical and Left

12 || Logical or Left

13 ?: Conditional Left

14 = Assignment Right

*=, /=, %=, Compound assignment
+=, -=, <<=,
>>=, >>=,
&=, |=

Postfix and Prefix Increment
In C++ you can write statements such as

i = i + 1;

using the increment operator:
i++;

This form is the postfix increment. You can also use the prefix increment
++i;

but the postfix increment (or decrement) is more common.

When the postfix form is used in an expression (for example, x * i++), the variable
i is evaluated and then incremented. When the prefix form is used in an expression
(for example, x * ++i), the variable i is incremented before it is evaluated.

E X A M P L E P . 6 In the assignment
z = i++;

i is incremented, but z gets the value i had before it was incremented. So if i is 3
before the assignment statement, z would be 3 and i would be 4 after the assign-
ment. In the assignment statement

z = ++i;

i is incremented and z gets its new value, so if i is 3 before the assignment, z and i
would both be 4 after the assignment statement.

P.4 Primitive Data Types and Class Types 21

P R O G R A M S T Y L E

C++ Convention for Identifiers
Many C++ programmers use lowercase words or phrases for variable names. Words are
separated using the underscore character. For classes it is common to use a word or
words that begin with an initial uppercase letter. However, the C++ standard uses lower-
case for both variable and class names. Identifiers that are in all uppercase are used for
macros.

Another convention that is becoming popular is “camel notation” for variable names.
All letters are in lowercase except for identifiers that are made up of more than one
word. The first letter of each word, starting with the second word, is in uppercase (for
example, thisLongIdentifier). Camel notation gets its name from the appearance of
the identifier, with the uppercase letters in the interior forming “humps.”

Type Compatibility and Conversion
In operations involving mixed-type operands, the numeric type of the smaller range
is converted to the numeric type of the larger range. This means that if an operation
involves a type int and a type double operand, the type int operand is automati-
cally converted to type double. This is called a widening conversion.

In an assignment operation, a numeric type of a smaller range can be assigned to a
numeric type of a larger range; for example, a type int expression can be assigned to
a type float or double variable. C++ performs the widening conversion automatically.

int item = 25;
double real_item = item; // Valid – automatic widening

The converse is also true, but the compiler will probably issue a warning message.
double y = -6.375;
int x = y; // May cause a warning message

This statement is valid, but it attempts to store a real value in an integer variable. It
could cause display of a warning message such as initialization to 'int' from
'double'. This means that a type int expression is required for the assignment. You
can use explicit type conversion operations to perform such a narrowing conversion
and ensure that the assignment statement will be valid. In the following statement,
the expression int(y) instructs the compiler to convert the value of y to type int
before assigning the integer value to x.

int x = int(y); // Convert to int before assignment

You can also convert back and forth between an unsigned integer (type unsigned
int) and an int. You will get a warning if you attempt to compare a signed and
unsigned value.

The Conditional Operator
The conditional operator takes three operands. Its form is

boolean-expression ? value1 : value2

If the boolean-expression is evaluated to be true, then the result is value1, otherwise
the result is value2. In most cases the same effect can be achieved using the if state-
ment (discussed in Section P.3).

22 Chapter P A C++ Primer

P I T F A L L

Using Increment and Decrement in Expressions with Other Operators
In the preceding example, the increment operator is used with the assignment operator in
the same statement. Similarly, the expression x * i++ uses the multiplication and postfix
increment operators. In this expression, the variable i is evaluated and then incremented.
When the prefix form is used in an expression (for example, x * ++i), the variable i is
incremented before it is evaluated. However, you should avoid writing expressions like
these, which could easily be interpreted incorrectly by the human reader.

E X E R C I S E S F O R S E C T I O N P. 4

S E L F - C H E C K

1. For the following assignment statement, assume that x, y are type double and m,
n are type int. List the order in which the operations would be performed.
Include any widening and narrowing conversions that would occur.
m = (int) (x * y + m / n / y * (m + x));

2. What is the value assigned to m in Exercise 1 when m is 5, n is 3, x is 2.5, and y
is 2.0?

P.5 Objects, Pointers, and References

In this section we describe objects and how they are referenced. In C++ an object is
fundamentally an area of the computer’s memory containing data of some kind.
What kind of data is indicated by the object’s type, which may be either a built-in
type, as described in Section P.4, or a class type. In this respect C++ is different from
other programming languages such as Java, where an object is always an instance
of a class and primitive-type values are not considered objects. Objects may be con-
tained inside other objects. This is especially true of the class-type objects, which are
composed of other class-type objects or primitive-type objects.

Object Lifetimes
Objects are created when they are declared. The declaration may optionally include
an initialization expression. When an object declaration is executed, space is allo-
cated for the object, and it is (optionally) initialized to a specified value.

SYNTAX Object Declaration

FORM:
type-name name;
type-name name = initial-value;
type-name name(parameter-list);

EXAMPLE:
int i;
string s = "hello";
double x = 5.5;
double y(6.7);
point p(x, y);

P.5 Objects, Pointers, and References 23

MEANING:

The specified name is declared to reference an object of the specified type-name.
Memory for this object is allocated and initialized to the specified value. In the
first example, the name i refers to an int object, with an unspecified initial
value. In the third and fourth examples the names x and y refer to double objects
with the initial values 5.5 and 6.7, respectively. Note that the two forms used to
initialize x and y are equivalent. In the final example p refers to an object of type
point (a class type) with the initial value (x, y).

Object declarations may be either inside or outside the scope of a function or class.
Objects that are declared outside the scope of a function or class are called global
objects. Global objects are created before the function main is called and are
destroyed after the function main is exited. Generally, declaring global objects is not
a good practice and should be avoided.

Objects declared within a function are created when the declaration is executed and
are destroyed when the block in which they are declared is exited. Objects declared
in a class are created when the object (the class instance) containing them is created;
they are destroyed when the object containing them is destroyed.

Pointers
A pointer is an object that refers to another object. A pointer object contains
the memory address of the object it points to. For example, if x is an object of type
double, then the declaration:

double* px;

will declare an object, px, of type double*—that is, type pointer-to-double. The
statements

double x = 5.1234;
px = &x;

declare and initialize a type-double variable x (value is 5.1234) and set pointer vari-
able px to reference x (or point to x). The prefix operator & is known as the address-
of operator, and it gives the memory location (address) of the object that follows it.

In this book we will frequently use diagrams to illustrate objects and the relation-
ships between them. In these diagrams we will represent a pointer as a box with an
arrow pointing to the referenced object.

The prefix operator * is the dereferencing operator. When it is applied to a pointer
value, it converts that value to a reference to the object that is pointed to. Using the
foregoing example the expression *px gives a reference to the object pointed to by
px, which is the object x. Therefore, the statement

*px = 1.2345;

changes the value of the object referenced by px (the variable x) to 1.2345.

px x

5.1234

24 Chapter P A C++ Primer

Note that the values of pointers can be changed. Thus, after the statement
px = &y;

executes, the value stored in pointer px is the address of object y, so pointer px now
points to the object y.

SYNTAX Pointer Declaration

FORM:
type-name* pointer-variable;
type-name* pointer-variable = &object;

EXAMPLE:
int* k;
int* k = &count;

MEANING:

The value of the pointer-variable will be a memory address. If the initial value
begins with the prefix &, as in &object, the pointer-variable is initialized to the
memory address of object.

SYNTAX Address-Of Operator &

FORM:
&object

EXAMPLE:
&k;

MEANING:

Gives the address (memory location) of object.

px x

1.2345

y

px x

1.2345

P.5 Objects, Pointers, and References 25

SYNTAX Dereferencing Operator *

FORM:

*pointer-variable

EXAMPLE:
*px;

MEANING:

Gives the object referenced by pointer px. The data associated with this object
value can be accessed or changed. For example, if px is type double*, the
statement

*px = 25.0;

stores 25.0 in the object referenced by px. The statement
*px = *px + 2.5;

changes the value of this object to 27.5.

E X A M P L E P . 7 Consider the following sequence of statements:
double x = 5.5;
double* px = &x;
cout << *px << '\n'; // Outputs 5.5
*px = 10.0; // Stores 10.0 in x
cout << x << '\n'; // Outputs 10.0

The first two statements declare the variables x and px and initialize x to the value
5.5 and px to the address of x. The value of *px is the same as the value of x, which
is 5.5. If we assign 10.0 to *px, we are assigning 10.0 to x. Thus, the last statement
will result in an output of 10.0.

26 Chapter P A C++ Primer

P R O G R A M S T Y L E

Use of T* v versus T *v to Declare a Pointer Variable
Programmers generally use one of the following statements to declare a pointer variable.
double* px;
double *px;

The argument in favor of the first form is that it clearly states that px is of type double*
(that is, a pointer to double). The second form states that the expression *px is of type
double (and therefore px is of type pointer to double). The second form is technically
more correct, since this is how the compiler interprets it. Which one you use is a matter
of personal taste as long as you declare each variable individually.

The Null Pointer
There is a special pointer value that does not point to any object. This is called the
null pointer. In most implementations the value 0 is used to represent the null pointer,
but this is not required. The header <cstddef> contains a macro definition for NULL
that can be used as a null pointer constant. It is defined with the following pre-
processor directive:

#define NULL 0

P.5 Objects, Pointers, and References 27

P I T F A L L

Declaring Multiple Pointer Variables in One Declaration
You may also declare multiple variables of the same type in one declaration statement.
In that case you must remember that the compiler binds the * to the variable and not
the type. Thus the declaration
double* px, py;

declares that px is a pointer to double, but that py is a double! To declare both px and
py to be pointers we need to use the declaration

double *px, *py;

P R O G R A M S T Y L E

Use of NULL versus 0
The choice of using NULL or 0 to represent the null pointer is the subject of much discus-
sion among C++ programmers. The C++ standards committee is currently working on a
revision to the C++ standard. One of the proposed changes is to define a true null pointer
constant as a new reserved word in the language.

Dynamically Created Objects
In C++ programs we generally do not initialize pointers using the address-of opera-
tor. Instead, pointers are used to refer to dynamically created objects. A dynamically
created object is created using the new operator and is destroyed using the delete
operator. For example, the first of the following statements,

double* px = new double;
*px = 5.1234;

allocates a new unnamed object of type double and initializes px to point to it.
px

The second statement stores the indicated value in the object pointed to by px.

The statement
delete px;

destroys the object pointed to by px and returns the memory to the free memory area.

SYNTAX The new Operator

FORM:
new type-name
new type-name(initial-value)
new class-name(parameters)

EXAMPLE:
new double;
new double(1.23456);
new std::string(line, 5, 10)

MEANING:

Memory is allocated for an object of type type-name. If an initial-value or list of
parameters is provided, those values are placed in the new object. (In the case of
an object of class type, these actions are carried out by a call to the constructor
for the class that takes these parameters. Constructors will be discussed in
Chapter 1.) A pointer to the created object is returned. The first of the foregoing
examples creates a double object and returns a pointer to it. The second example
creates a double object, initializes its value to 1.23456, and returns a pointer to it.
The third example creates a new string object and initializes it to the substring of
the string line that begins at the fifth character and has a length of 10 characters.

SYNTAX The delete Operator

FORM:
delete pointer-variable;

EXAMPLE:
delete px;

MEANING:

The memory occupied by the object pointed to by px is returned to the free
memory pool. (If the object is of class type, the destructor function for the class
is called first; destructors will be discussed in Chapter 1.) Note that the pointer
variable must point to an object that was created via the new operator.

px

5.1234

28 Chapter P A C++ Primer

References
In C++ the term reference is the subject of some potential confusion. A reference
variable is used to give a name to an object. For example, the declaration

double& rx = x;

declares rx to be a reference variable that refers to the same object as x. Note that
rx itself is not an object. For example, if you apply the address-of operator & to rx,
you will obtain the same value (an address) as if you applied it to x.

Also, once it is declared, a reference variable cannot be changed to reference a dif-
ferent object. The statement

rx = y

will change the value of x to be the same as y. In other words, rx will still reference
x, but now x must store the same value as y. The same effect is achieved by the state-
ment

x = y;

Where references get confused with pointers is in their use as function parameters.
We discuss reference parameters in the next section.

E X E R C I S E S F O R S E C T I O N P. 5

S E L F - C H E C K

1. What is the value of the variables after each statement is executed?
string welcome = "hello";
string greeting("ciao");
point p(1.5, 3.7);
double x = 5.5;
double y = 10.2;
double z;
double *px = &x;
double& ry = y;
*px = 3.14;
z = ry;
double &r = *px;
r = 99.44;
px = &z;
ry = *px;

P.6 Functions

C++ programmers can use functions to define a group of statements that perform a
particular operation. The C++ function min_char that follows returns the character
with the smaller value. The statements beginning with keyword return cause an exit
from the function; the expression following return is the function result.

P.6 Functions 29

char min_char(char ch1, char ch2) {
if (ch1 <= ch2)
return ch1;

else
return ch2;

}

The identifiers ch1 and ch2 are the parameters of function min_char. Whenever
min_char is called, the calling program must supply values for these parameters:

lesser_char = min_char('p', 's');

These supplied values, known as arguments, may be literals, identifiers, or
expressions.

Function Declarations
In order for the compiler to compile a function call, it must first see a declaration of
that function. The declaration of a function specifies the name, return type, and
parameter types of a function. The declaration of the function min_char defined pre-
viously would have the form:

char min_char(char, char);

Observe that only the parameter types are given, not parameter names, and that
there is a trailing semicolon instead of the function body. Parameter names may be
included in a function declaration, but they are ignored. Function declarations nor-
mally appear before the main function in a program, but they can also be placed in
include files.

Call by Value Versus Call by Reference
In C++, function parameters are either call-by-value or call-by-reference. Call by
value means that the argument’s value—that is, a copy of the object named by the
argument—is passed to the function, so that even if the function modifies the
parameter value, the modification will not remain after the return from the function.
This is true whether the argument is a primitive type or a class type. You declare
that an argument is to be passed by value by merely declaring the type of the argu-
ment. The arguments of function min_char just shown are passed by value.

With call by reference, a reference to the argument object is passed to the function.
If the function modifies the parameter value, this modification is made to the origi-
nal object named by the argument. You declare that a parameter is to be passed by
reference by declaring the parameter to be a reference type. For example, the func-
tion swap is defined as follows:

void swap(int& x, int& y) {
int temp = x;
x = y;
y = temp;

}

The function swap would have the declaration
void swap(int&, int&);

30 Chapter P A C++ Primer

When this function is called with the statement
swap(i, j);

the value of i is changed to the value of j and the value of j is changed to the value
of i. If the parameters were given as type int (instead of type int&), local copies of
parameters x and y would be exchanged by the function execution, but i and j
would retain their original value after the function call.

Call by Constant Reference
As we will see later, objects of class types can occupy several locations in memory.
For example, a string object occupies the storage necessary to hold the several char-
acters that are included in the string. When they are passed by value, a copy of the
object is made. It is more efficient, therefore, to pass class objects by reference.
However, the caller may not want the value of the argument to be changed. As the
author of a function we can guarantee that the argument will not change by declar-
ing the parameter to be a constant reference, as shown in the following example.

E X A M P L E P . 8 The function count_occurrences takes a string and a char argument and returns the
number of times the char argument occurs in the string. The char argument is
passed by value, but the string argument is passed as a constant reference. The
function count_occurrences cannot modify the string parameter (any attempt
causes a syntax error), and any modifications to the char parameter will not change
the original.

int count_occurrences(char c, const string& s) {
int count = 0;
for (int i = 0; i < s.size(); i++) {
if (c == s[i])
count++;

}
return count;

}

Operator Functions
C++ allows us to define class types so that they behave as if they were primitive
types. Thus you can define the operators such as +, -, *, and / to operate on objects
of class types. For example, if s1 and s2 are strings, then s1 + s2 is the string con-
sisting of the characters of s1 followed by the characters of s2.

Operators are functions. In C++ the name of the function that corresponds to the
operator designated by the symbol (say, @) is operator@. For example, operator+
represents the + function that performs addition, and operator- represents the func-
tion that performs subtraction. Note that at least one parameter of these functions
must be a class type. You cannot redefine the operators that operate on the built-in
types. All of the operators, with a few exceptions, that are listed in Table P.5 can be
defined to operate on a class type. The exceptions are the member access operator
(.), the scope resolution operator (::), and the conditional operator (?...:).

P.6 Functions 31

The string operator+ is declared as follows:
string operator+(const string&, const string&);

Class Member Functions and Implicit Parameters
When a function is declared as a member function of a class, it can be applied to an
object of that class by writing the identifier for the object, followed by the member
access operator (.), followed by the name of the function. A pointer to that object
is passed to the function as an implicit parameter. We use the term implicit param-
eter because it is not declared in the parameter list; it does not have to be, because
its type is already known—a pointer to the class to which the function belongs. The
implicit parameter is passed as a pointer so that the function can make permanent
changes to the object.

For example, as will be shown in Section P.8, the string class contains a member
function length, which returns the length of the implicit parameter. If first_name is
a string object containing "Elliot", then

first_name.length()

returns 6. This notation for applying a member function to an object is called dot
notation. Writing these functions is discussed further in Chapter 1.

E X E R C I S E S F O R S E C T I O N P. 6

S E L F - C H E C K

1. Explain the difference between call by value, call by reference, and call by con-
stant reference.

2. For each of the following, indicate the kind of parameter you would declare:
a. a value that is going to be used in a computation by the function
b. a parameter that is going to return a value computed in the function
c. an object that is going to be modified by a function
d. an object with information that will be used by the function but should not be

modified

P R O G R A M M I N G

1. Show the declarations and the definition for a function named get_min that
returns the smaller of its three int arguments.

2. Show the declarations and the definition for a function named rotate that has
three parameters and returns the first parameter through its second parameter, its
second parameter through its third parameter, and its third parameter through its
first parameter. For example, if x is 10, y is 5, and z is 8, after rotate(x, y, z),
x will be 8, y will be 10, and z will be 5.

32 Chapter P A C++ Primer

P.7 Arrays and C Strings

In C++, an array is also an object. The elements of an array are indexed and are ref-
erenced using a subscripted variable of the form:

array-name[subscript]

Next, we show some different ways to declare arrays and allocate storage for arrays.

E X A M P L E P . 9 The following statement declares a variable scores that references a new array
object that can store five type int values (subscripts 0 through 4) as shown. The
contents are undefined.

int scores[5]; // An array with 5 type int values

E X A M P L E P . 1 0 The first of the following statements declares a variable names that references a new
array object that can store four type string objects. The values stored are specified
in the initializer list enclosed in braces. The for statement displays each element of
array names on a separate line.

string names[] = {"Sally", "Jill", "Hal", "Rick"};
for (int i = 0; i < 4; i++)
cout << names[i] << endl;

names

[0]
[1]
[2]
[3]

Sally
Jill
Hal
Rick

scores

[0]
[1]
[2]
[3]
[4]

P.7 Arrays and C Strings 33

P I T F A L L

Out-of-Bounds Subscripts
C++ allows you to use an array subscript that is outside of the array bounds. For exam-
ple, if you attempt to reference scores[5], a C or C++ compiler would access the first
memory cell following the array scores. This is considered an error, but it is not
detected by the run-time system and will probably lead to another error that will be
detected further down the road (before it does too much damage, you hope).

E X A M P L E P . 1 1 The following statements declare an array students for storing N (a constant) type
string objects. Storage is allocated for the array object and for the string objects.
Each array element can contain a type string object, but initially each element has
the value of the default string.

// Defines N as a constant.
const int N = 10;
// Declare students as an array of strings.
string students[N];

We can create some string objects and store them in the array. The following state-
ments store two string objects in array students.

students[0] = "Tom Jones";
students[1] = "Sally Smith";

Array-Pointer Equivalence
C++ performs an automatic conversion from an array type to a pointer type. The
resulting pointer is a pointer to the first element of the array. Therefore, you can use
either

students[0]

or
*students

to reference the first element of array students.

Array indexing is related to pointer dereferencing by the following equivalence:
a[i] is equivalent to *(a + i)

and
&a[i] is equivalent to (a + i)

For this reason, pointer variables can be used like arrays. However, caution must be
used when doing this. The expression

*(p + i)

where p is a pointer and i is an int, is meaningful only if p points to an element of
an array and p + i is within the size of the array. That is, if a is an array of size n
and p = &a[j], then *(p + i) is within the array bounds only if j + i < n.

Dynamically Allocated Arrays
The new operator can be used to allocate an array of objects. The expression

new T[n]

allocates an array of objects of type T of size n and returns a pointer to the first ele-
ment of the array. This value can then be stored in a pointer variable. The pointer
variable can be used like an array name. Dynamic allocation of arrays enables the
program user to specify the array size at run time.

34 Chapter P A C++ Primer

E X A M P L E P . 1 2 The following sequence allocates an array of size num_students of type string,
where num_students is entered by the user.

cout << "Enter the number of students: ";
cin >> num_students;
string* students = new string[num_students];

The elements of array students can be referenced using subscript notation in the
normal way.

All dynamically allocated objects must be deleted when the program no longer needs
them. This is important to avoid running out of dynamic storage. To delete a
dynamically allocated array, use the statement:

delete[] pointer;

where pointer is a pointer to the first element of a dynamically allocated array.

After the program has finished processing students, or before a new array of string
objects is allocated, the current array should be deleted using the statement

delete[] students;

SYNTAX The new[] Operator

FORM:
new type-name[expression]

EXAMPLE:
new string[n]

MEANING:

Space is allocated for an array of type-name objects of length expression. A
pointer to the first element of this array is returned.

SYNTAX The delete[] Operator

FORM:
delete[] pointer;

EXAMPLE:
delete[] students;

MEANING:

The dynamically allocated array whose first element is pointed to by pointer is
deleted and returned to the free storage pool. Note that the array must have been
allocated using the new[] operator.

P.7 Arrays and C Strings 35

Array Arguments
When an array is passed as an argument to a function, it is passed as a pointer to
its first element. Array parameters can be declared either as pointers or as arrays.
For example, the following two function declarations are equivalent:

int find(int x[], int n, int target);
int find(int* x, int n, int target);

You can call this function by passing either an array or a pointer to an element of
an array. Suppose that scores is an array of size 10. Then the following are valid
calls to the function find with 50 passed to target.

int loc = find(scores, 10, 50);
int loc = find(scores + 5, 5, 50);

The first call asks find to search the whole array scores. The second call asks find
to search the sub-array scores[5] . . . scores[9].

String Literals and C Strings
The C programming language uses an array of characters to represent a string. The
end of the string is indicated by a null character, which has a code value of zero in
seven-bit ASCII (written '\0' in C++, not to be confused with a printable zero char-
acter, '0'). Since C++ is (almost) a superset of C, C++ uses this convention for string
literals as well. A string literal is stored internally as an array of constant characters.
This array is one longer than the number of characters in the literal (not counting
the enclosing quotes). The last position is occupied by the null character. Although
C++ programmers can use character arrays for strings, C++ provides the string
class, which is easier to use and less error prone. The string class provides functions
for converting from character arrays into string objects, so using the string class
with string literals is transparent. Since the operating system interface is defined to
work with C, it is occasionally necessary to convert from a string back into a zero-
terminated array of characters. The string class provides a function to do this. We
discuss the string class in Section P.8.

Multidimensional Arrays
You can also declare arrays with multiple dimensions in C++. For example, the
statement

int[2][4] my_stuff = {{1, 5, 3, 9},
{2, 8, 22, 8}};

declares a two-dimensional array with two rows and four columns. The optional
initializer list initializes the first row to an array of odd numbers and initializes the
second row to an array of even numbers. You reference the element in row i, col-
umn j using the expression my_stuff[i][j]. In the following diagram, element
my_stuff[1][3] is highlighted.

1 5 3 9

2 8 22 8

column

[0] [1] [2] [3]

[0]

[1]

r
o
w

my_stuff

36 Chapter P A C++ Primer

When you use a multidimensional array as a function parameter, the size of each
dimension, except the first, must be specified in the parameter declaration. In the
following function sum_each_row, the first parameter is a two-dimensional array
(with 4 columns in each row) and the second parameter is the number of rows. This
function returns a one-dimensional array; each element stores the sum of values in
that row of the array argument. For example, result[0] stores the sum of the ele-
ments in row 0 of the argument array.

/* Returns an array that contains the sum of elements in each row of a
two-dimensional array with four columns and num_rows rows.

*/
int* sum_each_row(int x[][4], int num_rows) {
// Allocate storage for the array of sums.
int* result = new int[num_rows];
for (int r = 0; r < num_rows; r++) {
result[r] = 0;
// Add the value in each column of row r to result[r]
for (int c = 0; c < 4; c++) {
result[r] += x[r][c];

}
}
return result;

}

The statement
int* result = new int[num_rows];

dynamically allocates storage for a one-dimensional array of the required size
(num_rows). The statement

result[r] += x[r][c];

adds the element at row r, column c to the sum for row r.

You can use the statement
int* sums = sum_each_row(my_stuff, 2);

to determine the row sums for array my_stuff. Array sums will reference the array
returned by this function. The array elements are sums[0] (value will be 18) and
sums[1] (value will be 40).

E X E R C I S E S F O R S E C T I O N P. 7

S E L F - C H E C K

1. What is the output of the following sample code fragment?
int* x;
int* y;
int* z;
x = new int[20];
x[10] = 0;
y = x;
x[10] = 5;
cout << x[10] << ", " << y[10] << endl;

P.7 Arrays and C Strings 37

x[10] = 15;
z = new int[10];
for (int i = 0, i < 10; i++)
z[i] = x[i];

x[10] = 25;
cout << x[10] << ", " << y[10] << ", " << z[10] << endl;

P R O G R A M M I N G

1. Write code for a function
bool same_elements(int a[], int b[], int n)

that checks whether two arrays have the same elements with the same multiplic-
ities. For example, two arrays
121 144 19 161 19 144 19 11

and
11 121 144 19 161 19 144 19

would be considered to have the same elements because 19 appears 3 times in
each array, 144 appears twice in each array, and all other elements appear once
in each array.

P.8 The string Class

The string class defines a data type that is used to store a sequence of characters.
In this section we describe the C++ string class. This class is easier to use and less
error-prone than using arrays of characters. The string class is intended to be used
like a primitive type, where appropriate operator functions are defined.

You have already encountered strings and string operators. The following state-
ments use the concatenation operator (+) with string variables last_name and
first_name, the assignment operator (=), and then the insertion operator (<<).

string whole_name = last_name + ", " + first_name;
cout << whole_name;

Table P.6 describes some string class member functions. The first column shows the
result type for each function followed by its signature. For example, for the function
at, the first column shows that the function returns a type char& (a reference to a
char) result and has a type size_t argument. The second column describes what the
function does. The phrase “this string” means the implicit parameter; that is, the
string to which the function is applied by the dot notation. Where there are func-
tions that have similar behavior, they are grouped so that there are multiple signa-
ture forms with one description.

Some of the function parameters are described using the form type-name parameter
= default. This means that the parameter is optional. If it is not provided, its value
will be the specified default. For example, size_t pos = 0 means that the pos
parameter is optional and 0 will be used if it is omitted. If a function signature ends
with const, it means that the function can’t modify the string object.

38 Chapter P A C++ Primer

TA B L E P. 6
Functions in string

P.8 The string Class 39

Function Behavior

Constructors/Destructor

string() Constructs a default, empty string.

string(const string& str); Makes a copy of a string. The second form makes a
string(const string& str, size_t pos, size_t n) copy of a substring of the parameter starting at posi-

tion pos and n characters long.

string(const char*) Constructs a string from a null-terminated array of
characters.

~string() Destroys a string.

Assignment Operators

string& operator=(const string& str); Assigns one string to another;
string& operator=(const char*); assigns a C string to a string;
string& operator=(const char) assigns a single character to a string.

Query Operators

size_t size(); Returns the current size of this string.
size_t length()

Element Access

char& operator[](size_t index); Returns a reference to a character at the specified
const char& operator[](size_t index) const; index of this string. The function operator[] allows
char& at(size_t index); the use of a string as if it was an array. The function
const char& at(size_t index) const at validates the index and indicates an error if it is out

of range. The forms ending with const are automati-
cally called when the expression is on the right-hand
side of an assignment, and the other form is automati-
cally called when the expression is on the left-hand
side of an assignment.

Concatenation

string& operator+=(const string&); Appends the argument string to this string.
string& operator+=(const char*);
string& operator+=(const char)

string operator+(const string&, const& string); Creates a new string that is the concatenation of two
string operator+(const string&, const char*); strings. One of the operands must be a string object,
string operator+(const string&, const char); but the other one can be a null-terminated character
string operator+(const char*, const string&); array or a single character.
string operator+(const char, const string&)

40 Chapter P A C++ Primer

TA B L E P. 6 (cont.)

Function Behavior

Search

size_t find(const string& str, size_t pos) const; Returns the index of where the target first occurs in
size_t find(const char* s, size_t pos) const; this string, starting the search at pos. If the target is
size_t find(const char c, size_t pos) const not found the value string::npos is returned.

size_t rfind(const string& str, size_t pos) Returns the index of where the target last occurs in
const; this string, starting the search at pos. If the target is

size_t rfind(const char* s, size_t pos) const; not found, the value string::npos is returned.
size_t rfind(const char, size_t pos) const

size_t find_first_of(const string& str, Returns the index of where any character in the target
size_t pos = 0) const; first occurs in this string, starting the search at pos. If

size_t find_first_of(const char* s, such a character is not found, the value string::npos
size_t pos = 0) const; is returned. If the parameter pos is not specified, 0 is

size_t find_first_of(const char* s, the default. The parameter n indicates the length of
size_t pos, size_t n) const; the character array pointed to by s. If it is omitted, the

size_t find_first_of(char c, size_t pos) const character array s is null terminated.

size_t find_first_not_of(const string& str, Returns the index of where any character that is not in
size_t pos = 0) const; the target first occurs in this string, starting the search

size_t find_first_not_of(const char* s, at pos. If such a character is not found, the value
size_t pos = 0); string::npos is returned. If the parameter pos is not

size_t find_first_not_of(const char* s, specified, 0 is the default. The parameter n indicates
size_t pos, size_t n) const; the length of the character array pointed to by s. If it

find first_not_of(char c, size_t pos = 0) const is omitted, the character array s is null terminated.

Substring

string substr(size_t pos, size_t n = Returns a copy of the substring of this string starting
string::npos) const at pos that is n characters long. If the parameter n is

omitted, the characters starting at pos through the end
of the string are used.

Comparisons

size_t compare(const string& other) Returns 0 if other is equal to this string, –1 if this
string is less than the other string, and +1 if this string
is greater than the other string.

bool operator==(const string&, const string&); All of the infix comparisons are defined.
bool operator!=(const string&, const string&);
bool operator<(const string&, const string&);
bool operator<=(const string&, const string&);
bool operator>=(const string&, const string&);
bool operator>(const string&, const string&)

Conversion to C String

const char* c_str() Returns a pointer to a null-terminated array of charac-
ters that contain the same data as this string.

const char* data() Returns a pointer to an array of characters that con-
tain the data contained in this string. This array is at
least size() characters long and is not necessarily
null-terminated.

The Value string::npos
As described in Table P.6, the search functions return the value string::npos to indi-
cate that a target was not found. What is this, and why is it necessary? The func-
tions cannot use zero for this purpose, because zero is a valid string position in C++.
They cannot use a negative value such as –1 either, because the value returned is of
type size_t, which is unsigned. Therefore the maximum value for a size_t is spec-
ified as string::npos. You may happen to know what that number is (for your
intended target computer, anyway), but it is good practice to use the symbolically
defined value rather than a “magic number” such as 4294967295 in writing your pro-
grams. A future revision of the standard could change this definition.

E X A M P L E P . 1 3 Assume that keyboard (type string) contains "qwerty". We evaluate several expressions:

• keyboard.at(0) is 'q'.
• keyboard.length() is 6.
• keyboard.find('o') is string::npos.
• keyboard.find('y') is 5.

Finally, the expression
keyboard.at(keyboard.length() – 1)

applies two member functions to keyboard. The inner call, to function length,
returns the value 6; the outer call, to function at, returns y, the last character in the
string (at position 5).

The function substr returns a new string containing a portion of the string object
to which it is applied. The first argument is the start position, and the second is the
number of characters in the substring. If the number of characters requested is larger
than the number available, the remainder of the string starting at pos is returned. If
the second parameter is omitted, the contents of the returned string will be all char-
acters from pos to the end.

E X A M P L E P . 1 4 The expression
keyboard.substr(0, keyboard.size() – 1)

returns a new string "qwert" consisting of all characters except for the last charac-
ter in the string referenced by keyboard. The contents of keyboard are unchanged.

The function find searches for a character or a substring within a string. Using our
same example, the expression

keyboard.find("er")

would return 2, the index of the substring "er" within "qwerty".

The function find_first_of is different from find. It searches the string for the first
occurrence of any character that is contained in the string parameter. Although the

P.8 The string Class 41

parameter is a string itself, it serves in this function as a set of target characters. The
function find_first_not_of searches for the first character that is not contained in
the parameter string.

E X A M P L E P . 1 5 Assume that we define a word to be a sequence of letters. Spaces and the punctua-
tion characters (, . ! ?) are not part of a word. Assume that the string line con-
tains the following:

Look! Look!

The statement
int start = line.find_first_not_of(".,!? ");

will set start to 0, the index of the first character that is not a space or a punctua-
tion mark. The statement

int end = line.find_first_of(".,!? ", start);

will set end to 4, the index of the first !

Splitting a String into Tokens
Often we want to process individual pieces, or tokens, in a string. For example, in
the string "Doe, John 5/15/65", we are likely to be interested in one or more of the
particular pieces "Doe", "John", "5", "15", and "65". These pieces would have to be
extracted from the string as tokens. Beginnings and ends of tokens are marked by
characters, referred to as delimiters, that cannot be part of the tokens they separate.
In this example, slashes make good delimiters for the date components because they
are not parts of numbers. You can divide a string into tokens in C++ using
the find_first_of and find_first_not_of functions combined with the substr
function.

E X A M P L E P . 1 6 Assume that the string the_source contains a set of tokens, and the string the_delim
contains the delimiters. Our goal is to set int variable start to the position of the
first character in each token and to set int variable end to the position of the delim-
iter for that token. We initially set end to 0. The beginning of a token is found using
the statement

start = the_source.find_first_not_of(the_delim, end);

This will search the string the_source starting at end looking for a character that is
not in the string the_delim. We save this value in start. Then the end of the token
is found by the statement

end = the_source.find_first_of(the_delim, start);

42 Chapter P A C++ Primer

This searches for a character that is in the string the_delim starting at the beginning
of the token just found. Then the statement

string token = the_source.substr(start, end - start);

will extract the token from the_source. The start of the next token can then be
found by repeating the statement

start = the_source.find_first_not_of(the_delim, end);

E X A M P L E P . 1 7 In Section P.7 we said that it is sometimes convenient to convert a C++ string into a
C-style string. You can use function c_str to do this. This will enable you to use C-
string functions that may not have counterparts in the C++ string class. For exam-
ple, if year_string contains a string of digit characters only, the statement

int year = atoi(year_string.c_str());

will store the numeric value of year_string in year. The function atoi is defined in
the header <cstdlib>, and it returns the int equivalent of its C-string argument (a
string of digit characters).

Strings Are Really Templates
Table P.6 is not the way the string class is defined in the standard. Instead the
string class is defined as:

typedef basic_string<char, char_traits<char>, allocator<char> > string;

Normally, you would not need to worry about this. However, if you make a syntax
error in your program and misuse the string class, you will get an error message that
complains about std::basic_string<char, std::char_traits<char>, std::alloca-

tor<char> > instead of complaining about string. In Chapter 4 we will introduce you
to templates and to the vector and list classes. We will also revisit the string class as
a template and explain a bit more about what this means.

P.8 The string Class 43

P R O G R A M S T Y L E

Use of at Versus the Subscript Operators
If names is a string, you can reference the character at position index using either
names.at(index) or names[index]. The use of at has the advantage that if the index is
not valid, the program is aborted as a result of an exception being thrown. (Exceptions
are discussed in Chapter 2.) However, despite this advantage, C++ programmers gener-
ally prefer to use the latter form because it is simpler.

E X E R C I S E S F O R S E C T I O N P. 8

S E L F - C H E C K

1. Evaluate each of these expressions.
string happy = "Happy birthday to you";
happy == "Happy birthday to you ";
"Happy birthday to you" == happy;
string un_happy == happy[0] + string("Happy birthday to you").substr(1);
"happy" < "Happy"
"happy" < happy
int p1 = happy.find_first_of(" ,.!", 1);
int p2 = happy. find_first_of(" ,.!", p1 + 1);
string what = happy.substr(p1 + 1, p2 – p1 -1);

P R O G R A M M I N G

1. Write statements to extract the individual tokens in a string of the form "Doe,
John 5/15/65". Use the find_first_of and find_first_not_of functions to find
the space, comma, and the symbol / and use the substr member function to
extract the substrings between these delimiters.

P.9 Input/Output Using Streams

In this section we will show you the basics of using streams for I/O in C++. An input
stream is a sequence of characters representing data to be used by the program. An
output stream is a sequence of characters representing program output. There is a
stream associated with the console, cin. When the user types data characters at the
console keyboard, they are appended to cin. The console window is associated with
cout, the standard output stream. We have used the insertion operator (<<) to write
information to this stream.

Besides using the console for I/O, you can create a text file (using a word processor
or editor), save it to disk, and then use it as an input stream for a program. Similarly,
a program can write characters to an output stream and save it as a disk file.

Console Input/Output
To use the standard input and output streams you need to include the header
<iostream>. This header declares the input stream (istream) object cin and the out-
put stream (ostream) objects cout and cerr. By default, cin is associated with con-
sole input, and cout and cerr are associated with console output. Normally, error
messages are sent to stream cerr.

Console input/output is generally buffered. This means that characters are collected
in a memory area (the buffer), and all the characters in the buffer are transferred as

44 Chapter P A C++ Primer

a unit from/to the keyboard/screen, rather than each individual character being
transferred as it is typed at the keyboard or displayed on the screen. Thus, when you
request input from cin and cin is empty, your program stops execution temporar-
ily, all of the characters typed (up to a newline character) are transferred from the
input buffer for cin, and your program then resumes. If there is more input than
that requested by the call to the extraction operator (>>), the next call to the extrac-
tion operator will use the remaining input.

E X A M P L E P . 1 8 Assume that your program has the following sequence of statements:
cout << "Enter your favorite pet ";
cin >> first_choice;
cout << "Enter your second favorite pet ";
cin >> second_choice;

Now assume that when the first call to cin >> is executed, you type
cat dog

The string "cat" is stored in first_choice. Then, when the second call to cin >> is
executed, the computer will not pause but immediately set second_choice to "dog".

Input Streams
An input stream is a sequence of characters. These can be characters typed on the
input console, read from an input file, or read from a network socket. The istream
class works the same regardless of the input source. The class istream defines the
extraction operator (>>) for the primitive types. This operator breaks the input into
groups of characters separated by spaces. If the current group can be converted to
the primitive type of the operand, it is converted, and the value is stored in that
operand. Otherwise an error flag is set, and the stream freezes.

The processing for each type is shown in Table P.7.

TA B L E P. 7
Extraction Operator Processing of Primitive Types and Strings

P.9 Input/Output Using Streams 45

Type of Operand Processing

char The first nonspace character is read.

string Starting with the first nonspace character, characters are read up to the next space.

int If the first nonspace character is a digit, characters are read until a nondigit is encoun-
short tered. The sequence of digits is then converted to an integer value of the specified type.
long

float If the first nonspace character is a digit, characters are read as long as they match the
double syntax of a floating-point literal. The sequence of digits is then converted to a floating-
long double point value of the specified type.

E X A M P L E P . 1 9 Assume that the input buffer for cin contains the following:
cat dog 123 1.4 1e4x

Assume that c1 and c2 are char variables, s1 and s2 are string variables, i is an int
variable, and d1 and d2 are double variables. Then the statement

cin >> c1;

will skip the spaces before "cat" and read the character c into c1.

Next the statement
cin >> s1;

will read the characters up to the next space and place them into s1. The result is
that s1 is "at".

Next the statement
cin >> s2;

will read "dog" into s2;

Then
cin >> i;

will read the value 123 into i, and
cin >> d1;

will read the value 1.4 into d1. Then the statement
cin >> d2;

will read 1e4 as a valid double literal and store the value 10000.0 into d2.

Finally the statement
cin >> c2;

will read the x into c2. You could, of course, get the same effect by placing multiple
extraction operators in a statement:

cin >> c1 >> s1 >> s2;
cin >> i >> d1 >> d2 >> c2;

Reading a Whole Line
When the extraction operator is used to read strings, it breaks the input into
sequences of characters separated by spaces. (Spaces include the newline and tab
characters in addition to the space character.) But what if you want to read a whole
line, spaces included? The function getline can be used for this. The function get-
line is defined in the header <string> and has the following declaration:

istream& getline(istream&, string&, char delim = '\n');

This extracts characters from the istream and appends them to the string until the
delim character is reached or until the end of file is reached. The delimiter charac-
ter is extracted but not appended to the string. The newline character is the default
delimiter.

46 Chapter P A C++ Primer

The function getline is defined in the <string> header and is described in Table P.8.
The function ignore is a member of the istream class and is described in Table P.9.
The function numeric_limits<int>::max returns the largest int value (see Table P.4).

Detecting Errors on Input
Input errors are fairly common. Fortunately, C++ provides several member func-
tions that can be used to determine whether there are errors on an input stream (see
Table P.10).

TA B L E P. 8
The Function getline

P.9 Input/Output Using Streams 47

P I T F A L L

If you extract the last value on a data line using the extraction operator >> and then use
getline, you will get a surprising result. There will still be an unprocessed \n character
at the end of the data line, so the function call
getline(cin, name, '\n');

would extract just the '\n' character, and an empty string would be stored in name.
Consequently, you must first skip over the '\n' character (using function ignore)
before calling getline to read the characters typed in on the next line.
// Skip all characters through the first '\n'
cin.ignore(numeric_limits<int>::max(), '\n');
getline(cin, name, '\n');

Function Behavior

istream& ignore(int n, int delim); Characters are skipped from the input stream until n
istream& ignore(int n) characters are read or until the delim character is read or until

end-of-file is reached. If n is equal to numeric_limits<int>::
max(), there is no limit on the number of characters skipped. If
the delim parameter is omitted, then n characters are skipped
unless end-of-file is reached first.

Function Behavior

istream& getline(istream& is, Reads characters from is and appends them to the string str.
string& str, char delim); Reading stops when the character delim is encountered or when

istream& getline(istream& is, end-of-file is reached. The delim character is extracted from the
string& str) stream, but it is not appended to the string. If the delim parameter

is omitted, it is assumed to be a newline character, '\n'.

TA B L E P. 9
The Function ignore

TA B L E P. 1 0
Error-Reporting Member Functions

48 Chapter P A C++ Primer

Member Function Behavior

bool eof() const Returns true if there is no more input data available on this input stream and
there was an attempt to read past the end.

bool fail() const Returns true if the input data on this input stream did not match the expected
format or if there is an unrecoverable error.

bool bad() const Returns true if there is an unrecoverable error on this input stream.

bool operator!() const Returns fail(). This function allows the use of an istream variable as a logical
variable. By applying the logical operator ! to cin, you get the result of
cin.fail()

operator void*() const Returns a null pointer if fail() returns true, otherwise returns a non-null
pointer. This function allows the use of an istream variable as a logical variable.

Under most circumstances you should rely on the result of the fail function to indi-
cate whether input was successful. Function eof indicates whether the end of the
input file was reached during the last extraction operation. If fail is true and eof is
also true, then the extraction operation failed because all the input data was read (a
good situation). If fail is true and eof is false, then an error occurred before the last
item was read (a bad situation). If fail is true and bad is true, an unrecoverable
error occurred.

The last two function operators listed in the table make it easy to test the result of
fail by allowing you to treat the istream variable as a logical variable. For exam-
ple, the expression cin >> i returns a reference to istream variable cin. If the last
extraction operation was successful, fail will be false and (cin >> i) will be true.
If the extraction operation failed, fail will be true and (cin >> i) will be false. This
is illustrated in the following example.

E X A M P L E P . 2 0 The following loop will read a sequence of numbers from cin into variable i. The
loop terminates when cin enters the fail state (that is, no data was read into i).

int n = 0;
int sum = 0;
int i;
while (cin >> i) {
n++;
sum += i;

}

By using the expression cin >> i as the while-loop condition we are effectively test-
ing the result of the fail function after each input operation. If the fail function
returns false, the condition (cin >> i) is true, and the while loop repeats. Loop
exit occurs when fail returns true, making the repetition condition false. The func-
tion fail can return true under three conditions: an end of file is reached, there is
an unrecoverable I/O error, or a non-number was entered. The end of file is the

expected terminating condition, but the others are errors. We can distinguish them
by placing the following if statement after the loop.

if (cin.eof()) {
cout << "End of file reached\n";
cout << "You entered " << n << " numbers\n";
cout << "Their sum is " << sum << endl;

} else if (cin.bad()) {
cout << "Unrecoverable i/o error on cin\n";
return 1;

} else {
cout << "The last entry was not a valid number\n";
return 1;

}

Output Streams
An output stream is a sequence of characters. These characters can be displayed on
the console, written to an output file, or written to a network socket. The ostream
class works the same regardless of the output destination. The class ostream defines
the insertion operator (<<) for the primitive types. This operator converts the data
to a sequence of characters and inserts them into the stream.

The processing for each type is shown in Table P.11.

TA B L E P. 1 1
Insertion Operator Processing of Primitive Types and Strings

P.9 Input/Output Using Streams 49

Type of Operand Processing

char The character is output.

string The sequence of characters in the string is output.

int The integer value is converted to decimal and the characters are output. Leading zeros are
short not output unless the value is zero, in which case a single zero is output. If the value is
long negative, the output is preceded by a minus sign.

float The floating-point value is converted to a decimal representation and output. By default a
double maximum of six digits is output. If the absolute value of the number is between 10–4 and
long double 106, the output is in fixed format, otherwise it is in scientific format.

E X A M P L E P . 2 1 The following sequence of code:
char c = 'A';
string s = "Hello";
int i = 12345;
float f = 123.45;
float b = 10e6;
float d = 1.234e-6;
cout << "c = " << c << endl;
cout << "s = " << s << endl;
cout << "i = " << i << endl;
cout << "f = " << f << endl;

cout << "b = " << b << endl;
cout << "d = " << d << endl;

will produce the following output:
c = A
s = Hello
i = 12345
f = 123.45
b = 1e+007
d = 1.234e-006

Formatting Output Using I/O Manipulators
I/O manipulators are special objects that are used to set the formatting and other
flags that control the input and output streams. To use an I/O manipulator you
insert it into the output stream or extract into it from an input stream. Some I/O
manipulators are simple identifiers. These are defined in the header <iostream> or
in headers automatically included by it. Table P.12 lists the I/O manipulators defined
by including <iostream>. The default settings are indicated in the second column.

Other I/O manipulators are functions that take parameters. These I/O manipulators
are defined in the header <iomanip>. Table P.13 lists the I/O manipulators defined by
including <iomanip>.

TA B L E P. 1 2
I/O Manipulators Defined by <iostream>

50 Chapter P A C++ Primer

I/O Manipulator Default Behavior

noshowpoint yes Suppresses the decimal point. If a floating-point value is a whole number, the
decimal point is not shown. However, it is shown for other floating-point values.

showpoint no Shows the decimal point. The decimal point is always shown for floating-point
output.

skipws yes Sets the format flag so that on input, white space (space, newline, tab) charac-
ters are skipped.

noskipws no Clears the format flag so that on input, white space characters are not skipped.

right yes On output, the value is right-justified.

left no On output, the value is left-justified.

dec yes The input/output base is set to decimal.

hex no The input/output base is set to hexadecimal.

fixed no Floating-point output is in fixed format.

scientific no Floating-point output is in scientific format.

ws no On input, white space is skipped. This is a one-time action; it does not clear the
flag that is cleared by noskipws.

endl no On output, a newline character is output and the output buffer is flushed.

TA B L E P. 1 3
I/O Manipulators Defined by <iomanip>

P.9 Input/Output Using Streams 51

I/O Manipulator Behavior

setw(int) Sets the minimum width of the next output.

setprecision(int) Sets the precision. Depending on the output format, the precision is
the total number of digits or the number of fraction digits.

setfill(char) Sets the fill character. The default fill character is the space.

resetiosflags(ios_base::fmtflags) Clears the format flags set in the parameter.

setiosflags(ios_base::fmtflags) Sets the format flags set in the parameter.

E X A M P L E P . 2 2 The following program illustrates the effect of some of these manipulators.
/* Program to demonstrate the effect of some I/O manipulators. */

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
// showpoint
cout << "Using showpoint the number 12345.0 "

<< " is output as " << showpoint << 12345.0
<< "\nand using noshowpoint it is output as "
<< noshowpoint << 12345.0 << endl;

// setw
cout << "Using setw(10) the number 12345 appears as "

<< setw(10) << 12345 << endl;

// setfill and setw
cout << "Using setfill('0') and setw(10) 12345 appears as "

<< setfill('0') << setw(10) << 12345 << endl;
// Reset to blank fill (the default)
cout << setfill(' ');

// left, setfill and setw
cout << "Using left, setfill('*') and setw(10) 12345 appears as "

<< left << setfill('*') << setw(10) << 12345 << endl;
// Reset to right justification and blank fill (the defaults)
cout << right << setfill(' ');

}

This program produces the following output:

TA B L E P. 1 4
The Effect of Different Formats

52 Chapter P A C++ Primer

Format Example Description

Fixed 123.456789 Output is of the form ddd.ffffff where the number of digits follow-
ing the decimal point is controlled by the value of precision.

Scientific 1.234568e+002 Output is of the form d.ffffff+ennn where the number of digits fol-
lowing the decimal point is controlled by the value of precision. (On
some systems, only two digits for the exponent are displayed.)

General 1.23457e+006 A combination of fixed and scientific. If the absolute value is between
123457 10–4 and 106, output is in fixed format; otherwise it is in scientific
123.457 format. The number of significant digits is controlled by the value of
1.23457e-005 precision.

Floating-Point Formats and Precision
There are three floating-point formats: general, fixed, and scientific. These formats are
described in Table P.14. The general format is the default. To get the fixed format, you
can use the manipulator fixed or the manipulator setiosflags(ios_base::fixed). To
get the scientific format you can use either the manipulator scientific or the manip-
ulator setiosflags(ios_base::scientific). To get the general format after setting
the fixed or scientific, you must turn off both flags using the manipulator
resetiosflags(ios_base::fixed | ios_base::scientific).

E X A M P L E P . 2 3 The following program illustrates the different floating-point output formats.
/* Program to demonstrate different floating-point output formats */

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
double d = 1234567890.0;
// Display the column headers
cout << setw(18) << "general" << setw(18) << "fixed"

<< setw(18) << "scientific\n";
for (int i = 0; i < 20; i++) {
// Set the format to general
cout << resetiosflags(ios_base::fixed | ios_base::scientific);
cout << setw(18) << d;
// Set the format to fixed
cout << fixed << setw(18) << d;
// Set the format to scientific
cout << scientific << setw(18) << d << endl;
d /= 10;

}
}

This program produces the following output.

As shown in the previous example, the default precision is 6. The next example
shows the effect of precision.

E X A M P L E P . 2 4 The following program shows the effect of precision on the different floating-point
formats.

/* Program to demonstrate the effect of precision on different
floating-point output formats. */

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
double d = 12345.6789;
// Display the column headers
cout << setw(10) << "precision" << setw(18) << "general" << setw(18)

<< "fixed" << setw(18) << "scientific\n";
for (int i = 10; i >= 0; i--) {
// Set the precision
cout << setprecision(i);
cout << setw(10) << i;
// Set the format to general
cout << resetiosflags(ios_base::fixed | ios_base::scientific);
cout << setw(18) << d;
// Set the format to fixed
cout << fixed << setw(18) << d;
// Set the format to scientific
cout << scientific << setw(18) << d << endl;

}
}

P.9 Input/Output Using Streams 53

This program produces the following output.

File Streams
The header <fstream> defines the classes ifstream, ofstream, and fstream. These
classes extend the istream, ostream and iostream classes. The class iostream is a
combination of the classes istream and ostream that supports both input and out-
put. We will discuss the concept of one class extending another in Chapter 3. Simply
put, the classes ifstream and ofstream have all of the member functions of the
classes istream and ostream and also have member functions that support input and
output using files.

Associating a File with a Stream
Just as for console input/output, you use the extraction operator (>>) to read from
a file and the insertion operator (<<) to write to a file. However, to read from or
write to a file you first must associate it with an ifstream or ofstream. There are
two ways to do this: through the constructor or via the open member function. The
form for these is described in Table P.15. If the open function fails, then the fail
function will return true. Note that the file name is a C string and not a string. If
you want to open a file whose name is contained in a string object, you must use
the c_str member function to convert it to a C string.

openmode
When a file stream is associated with a file, you have the option of setting the open-
mode flags. By default, ifstreams have the in flag set, ofstreams have the out flag set,
and fstreams have both in and out set. These flags are described in Table P.16.

E X A M P L E P . 2 5 The following creates an ofstream out, to append data to the existing file whose
name is in the string file_name.

ofstream out(file_name.c_str(), ios_base::out | ios_base::app);

A Complete File-Processing Application
We put all these pieces together in the next example. In Listing P.1, the main func-
tion creates an ifstream and an ofstream associated with the input and output file

54 Chapter P A C++ Primer

names specified on the command line. These names are stored in the array argument
argv in index positions 1 and 2. The value of argv[0] is the name of the file con-
taining the executable program. Note that the main function heading

int main(int argc, char* argv[])

indicates that parameter argv represents an array of C-style strings; the parameter
argc is the number of elements in this array.

The while loop invokes the extraction operator to read strings from stream ins,
storing the information read in the string object first. By using the call to the
extraction operator as a while condition, we implicitly are checking the results of

P.9 Input/Output Using Streams 55

Function Behavior

ifstream() Constructs an ifstream that is not associated with a file.

ifstream(const char* file_name, Constructs an ifstream and associate it with the named
ios_base::openmode mode = ios_base::in) file. By default, the file is opened for input.

ofstream() Constructs an ofstream that is not associated with a file.

ofstream(const char* file_name, Constructs an ofstream and associate it with the named
ios_base::openmode mode = ios_base::out) file. By default, the file is opened for output.

fstream() Constructs an fstream that is not associated with a file

fstream(const char* file_name, Constructs an fstream that is associated with the named
ios_base::openmode mode = file. By default, the file is opened for both input and
ios_base::in | ios_base::out) output.

void open(const char* file_name, Associates an ifstream or ofstream with the named file.
ios_base::openmode) When opening an ifstream the default openmode is

input (ios_base::in), and when opening an ofstream
the default openmode is output (ios_base::out).

TA B L E P. 1 5
Constructors and open Member Function

TA B L E P. 1 6
Definition of openmode Flags (in <ios_base>)

openmode Meaning

in The file is open for input.

out The file is open for output.

binary No translation is made between internal and external character representation.

trunc The existing file is discarded and a new file is written. This is the default, and applies
only to output.

app Data is appended to the existing file. Applies only to output.

the fail function each time data is extracted. If the extraction does not fail (the nor-
mal situation when data is read), the user sees a console prompt asking for more
data. The data entered by the user is read into the string object second.

cout << "Type a word to follow " << first << ": ";
cin >> second;

Next, the contents of second are appended to first, and the new string is written
to the output file.

outs << first << ", " << second << endl;

This process continues until the end of the data file is reached, loop exit occurs, and
the files are closed.

L I S T I N G P. 1
File_Test.cpp

/* File_Test is an application that illustrates stream operations. */

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

/* Reads a line from an input file and a line from the console.
Concatenates the two lines and writes them to an output file.
Does this until all input lines have been read.
For the array pointed to by argv, argv[1] is the input file name
and argv[2] is the output file name. argc is the number of
elements in this array.

*/
int main(int argc, char* argv[]) {

// Validate the number of arguments
if (argc < 3) {
cerr << "Usage file_test <input file> <output file>\n";
return 1;

}

// Define the input file stream
ifstream ins(argv[1]);
if (!ins) {
cerr << "Failed to open " << argv[1] << " for input\n";
return 1;

}

// Define the output file stream
ofstream outs(argv[2]);
if (!outs) {
cerr << "Failed to open " << argv[2] << " for output\n";
return 1;

}

56 Chapter P A C++ Primer

// Reads words and writes them to the output file until done.
string first;
string second;
while (ins >> first) {
cout << "Type a word to follow " << first << ": ";
cin >> second;
outs << first << ", " << second << endl;

}

// Close files
ins.close();
outs.close();
return 0;

}

Figure P.2 shows a sample run. The input file contains the three lines
apple
cat
John

and the output file contains three lines consisting of a word read from the data file,
a comma, and a word typed in at the console.

apple, butter
cat, dog
John, Doe

String Streams
The header <sstream> defines the classes istringstream and ostringstream. These
classes extend istream and ostream to extract from or insert into a string. You can
use the istringstream to convert a string that represents a number into the equiva-
lent integer or floating-point value. You can use the ostringstream to format an
integer or floating-point value as a string. Table P.17 shows the constructors and
member functions for these classes.

We illustrate the use of the istringstream and ostringstream in the following examples.

P.9 Input/Output Using Streams 57

F I G U R E P. 2
Sample Run of Program
File_Test

TA B L E P. 1 7
The Classes istringstream and ostringstream

Constructors Behavior

explicit istringstream(const string&) Construct an istringstream to extract from the given string.

explicit ostringstream(string&) Construct an ostringstream to insert into the given string.

ostringstream() Construct an ostringstream to insert into an internal string.

Member Function Result

string str() const Returns a copy of the string that is the source or destination of
the istringstream or ostringstream.

E X A M P L E P . 2 6 Given the string person_data that contains the following:
"Doe, John 5/15/65"

we can use the extraction operator to remove the individual tokens ("Doe", "John",
and so on). First, associate this string with an istringstream using the declaration

istringstream in(person_data);

Next we can read the family_name and given_name using the following statement:
in >> family_name >> given_name;

This will set family_name to "Doe," and given_name to "John". Note that the comma
is included in the family name because the extraction stops at the first space char-
acter. Next we can read the month, day, and year as int values using the following
sequence of statements. The first two extractions stop at the character '/'.

in >> month; // Read the month as an int
in >> c; // Read the '/' character
in >> day; // Read the day as an int
in >> c; // Read the '/' character
in >> year; // Read the year as an int

E X A M P L E P . 2 7 We can use an ostringstream to create a person_data string from the individual data
items family_name, given_name, month, day, and year as follows:

ostringstream out;
out << family_name << ", " << given_name << ' ' << month << '/'

<< day << '/' << year;
string person_data3 = out.str();

E X E R C I S E S F O R S E C T I O N P. 9

S E L F - C H E C K

1. What would happen if the output file name matched the name of a file already
saved on disk?

2. What lines are displayed by the following fragment?
double d = 53.12345;
cout << setprecision(3);
cout << general << setw(15) << d;
cout << fixed << setw(12) << d;
cout << scientific << setw(15) << d;

P R O G R A M M I N G

1. Write a main function that reads a set of lines each containing three int values
from an input file and writes the three numbers and their sum to an output file.
If a line does not contain exactly three integers, write the message "**** invalid
data line, line number " followed by the number of the data line to the file. At

58 Chapter P A C++ Primer

the end, write the message "Number of lines processed is " followed by the
count of lines, and write the message "Number of invalid lines is " followed
by the count of invalid data lines.

2. Write a main function that reads all the data for a collection of books from an
input stream. Each line of the input stream has the year of publication, the price,
the title, and author’s name. There is a slash character between the title and
author’s name. Write each line to an output file that has the form: author’s name,
title, year and price, with three asterisks between items.

C h a p t e r R e v i e w

◆ C++ defines a set of primitive data types that are used to represent numbers (int,
double, float, and so on), characters (char), and Boolean data (bool). Characters
are represented using ASCII. Variables can be used to store either primitive types
or class types.

◆ The control structures of C++ are similar to those found in other languages:
sequence (a compound statement), selection (if and switch), and repetition
(while, for, do ... while).

◆ Pointer variables are used to reference or point to objects and are declared using
a statement of the form:

type-name* pointer-variable;

To refer to the object that is pointed to by a pointer-variable, use the expression
*pointer-variable, where the symbol * is called the dereferencing operator.

◆ Parameters for a C++ function may be call by value, call by reference, or call by
constant reference. A parameter declared as type-name parameter-name is call-by-
value. When the function is called, a copy of the argument is made and is passed
to the function. An actual argument that corresponds to a call-by-value parame-
ter remains unchanged even if the function changes the parameter.

◆ A parameter declared as type-name& parameter-name is call by reference. When
the function is called, the address of the actual argument is passed to the param-
eter and the actual argument is processed by the function. Therefore, the actual
argument retains any new value computed for it by the function.

◆ A parameter declared as const type-name& parameter-name is call by constant ref-
erence. When the function is called, the address of the actual argument is passed
to the parameter, but the actual argument value cannot be changed by the func-
tion. Any attempt to do this will cause a syntax error. This kind of parameter com-
bines the safety of call by value (it can’t be changed) with the efficiency of call by
reference (the actual argument is not copied).

Chapter P Review 59

◆ Elements of an array can be referenced using normal subscript notation (array-
name[subscript]) or through a pointer *(array-name + offset). You can reference
the first element of array x as x[0] or *x and the last element of an array with N
items as x[N – 1] or *(x + N – 1).

◆ Arrays can be dynamically allocated. A dynamically allocated array is allocated
using a statement of the form

type-name* pointer = new type-name[size];

where size is an int expression. You can reference the elements of this array using
either subscript notation or pointer dereferencing. When you are finished with this
array, you must deallocate storage for it using the statement

delete[] pointer;

◆ Strings can be represented using either C++ strings (defined in header <string>)
or C-style strings, which are arrays of characters. The C++ string class has oper-
ators for referencing individual characters (the indexing operator []), string
assignment (=), concatenation (+), and string comparison (==, !=, <, <=, >, >=). The
stream classes have operators for inserting strings in an output stream (<<) and for
extracting strings from an input stream (>>). Included in the member functions of
the string class are operators for referencing substrings and for converting to a
C-style string.

◆ The console is represented by input stream cin and output stream cout. You can
declare your own input (output) streams as type ifstream (ofstream) objects.
These streams must be associated with a disk file whose name is specified as the
first argument (a C-style string) in an open function. Output files can be format-
ted using I/O manipulators.

Quick-Check Exercises
1. List the operations performed by the C++ preprocessor.
2. What is the effect of the following fragment?

double *px;
px = new double(2.5);
*px = 2 * (*px);
cout << *px << endl;

3. What kind of parameter would you use for each of the following? Show the parameter
declaration.
a. A parameter array_size that indicates the number of elements in the array.
b. A parameter small that will return the smallest int after function execution.
c. A parameter that references a string. The first token in this string is returned as the

function result. The string argument is unchanged.
d. A parameter that references a string whose first token is removed from the string

argument as a result of function execution.
4. Does the following function swap swap the values of the array elements that are selected

by its second and third parameters if they are in bounds, or do they retain their values?
What if the second parameter is out of bounds?

60 Chapter P A C++ Primer

void swap(int x[], int a, int b) {
int temp = x[a];
x[a] = x[b];
x[b] = temp;

}

5. Does your answer to Question 4 change if the array is declared as int* x? What if the
array is declared as const int x[]?

6. If a two-dimensional array is used as a function parameter, do you need to specify the
number of rows or the number of columns in the array parameter declaration?

7. Write a function that counts the number of occurrences of target (int) in a two-
dimensional array of integers with six columns.

8. What is displayed by the following:
cout << setw(10) << left << "Jane Doe" << right << setw(8) << fixed

<< setprecision(2) << 123.45678;

9. Answer Question 8 if fixed is replaced by scientific and left by right.

Answers to Quick-Check Exercises
1. Remove comments and replace them by a single space; split the input file into tokens;

carry out preprocessing directives; expand macros.
2. It doubles the value in the memory cell referenced by pointer variable px and displays 5.
3. a. call by value, int array_size

b. call by reference, int& min_value
c. call by constant reference, const string& str
d. call by reference, string& str

4. Yes, the values are swapped. If the second parameter is out of bounds, the array element
selected by the third parameter would be swapped with a value outside the array and an
execution error could occur.

5. The result is the same if the array is declared as int* x. However, if it is declared as
const int x[], there would be a syntax error at the statement x[a] = x[b]; .

6. You need to specify the number of columns in each row.
7. int count(int x[][6], int target, int rows) {

int result = 0;
for (int r = 0; r < rows ; r++)
for (int c = 0; c < 6; c++)
if (x[r][c] == target)
result++;

return result;
}

8. Jane Doe****123.46 (the *’s indicate spaces)
9. **JaneDoe1.23e+02 (the *’s indicate spaces)

Review Questions
1. Discuss how a C++ source file is processed prior to execution.
2. Draw diagrams that illustrate the effect of each of the following statements.

string s1 = "woops";
string* s2 = new string(s1);
string s3 = s1;
s1 = "Oops!";

What are the values of s1 == s2, s1 == s3, and s2 == s3?

Chapter P Review 61

3. Write a main function that reads two string objects. Concatenate them and display the
result. Also, display each substring of the result, starting with the one that begins at
position 1 and goes to the end, then the one that begins at position 2 and goes to the
end, and so on.

4. Answer Review Question 3 assuming the two strings are stored in data file
twostrings.txt. Write the output to file substrings.txt.

5. Write a function that returns the sum of all elements on the major diagonal of a square
matrix. The major diagonal has the elements at [0][0] and at [size-1][size-1] as its
endpoints.

6. Write a function that determines the sum of all elements on the minor diagonal of a
square matrix. The minor diagonal has the elements at [0][size-1] and at
[size-1][0] as its endpoints.

7. Write a function that returns the sum of all elements below the major diagonal.
8. Write a function that returns the sum of all elements above the major diagonal.

Programming Projects
1. Write a main function together with a collection of functions that operates on a two-

dimensional matrix (a global variable) with ROW_SIZE rows and COL_SIZE columns. The
main function should provide calls to each of the functions and display the results. The
functions should have the following declarations:
void set_row(int row, double[] row_vals); // Stores the array of

// row_vals in row
double* get_row(int row); // Returns the specified row
void set_element(int row, int col, int val); // Sets the specified

// element
double get_element(int row, int col); // Returns the specified element

double sum(); // Returns sum of the values in the array
double find_max(); // Returns the largest value in the array
double find_min(); // Returns the smallest value in the array
string to_string(); // Returns a string representing the matrix

2. Write a program that stores a collection of exam scores in an array. Provide functions to
find the average score, to assign a letter grade based on a standard scale, to sort the
scores so they are in increasing order, and to display the scores. Test these functions.

3. Write a program that reads the following from each data line of an input file: a person’s
name, the number of exam scores, followed by all the exam scores. Write the following
functions to process this data.
• Read each data line from a text file.
• Write all information stored to an output file.
• Write each student’s data, average exam score, and letter grade to an output line.

4. Modify Programming Project 3 so that all students have the same number of exam
scores. The number of students and number of scores should be data items. Store the
exam scores in a two-dimensional array. The row subscript should be the student num-
ber and the column subscript should be the exam number. Calculate and write the aver-
age score for all students on each exam to the output file. Write each student’s name to
the output file followed by the student’s score and grade on each exam. Use the average
score for each exam to calculate and display the student’s grade for that exam. If the
student’s score is within + or – 5 points of the average, give a grade of C. If the grade is
more than 5 points above (below) the average, give a grade of B (D). If the grade is
more than 15 points above (below) the average give a grade of A (F).

62 Chapter P A C++ Primer

C h a p t e r O b j e c t i v e s

◆ To become familiar with the software challenge and the software life cycle
◆ To understand what activities take place in each phase of the software life cycle
◆ To learn how to use top-down design and object-oriented design
◆ To learn to use data abstraction, procedural abstraction, and information hiding to

manage complexity
◆ To learn how to design your own classes
◆ To learn how to draw class diagrams, which document the interaction between classes
◆ To learn the role of abstract data types in building models of computer systems and

how to implement them using classes and interfaces
◆ To become familiar with use cases as a tool to document a system’s interaction with

the user
◆ To understand the software design process by following the design and implementation

of an array-based telephone directory
◆ To become familiar with sequence diagrams as a tool for documenting the interaction

between multiple classes used in a program

63

Introduction to
Software Design

C h a p t e r 1

This chapter discusses software design and introduces tools and techniques used
by professional programmers to facilitate the design and maintenance
(upkeep) of large-scale programs. You will see how software designers use

abstraction to create models of computer systems and how they use abstract data
types to encapsulate data elements and operators. You will learn how to specify the
behavior of an abstract data type (ADT) using an interface and how to implement
it using classes. The use of interfaces enables programmers to develop systems with
a high degree of flexibility and also enables a programmer to code program systems
that have interchangeable parts.

You will see how interfaces, preconditions, and postconditions serve as con-
tracts between system designers and programmers. They also serve as a contract
between application programmers who use an API (Application Programming
Interface) to develop applications software and those who design and implement the
classes that are part of the API.

Through examination of a large case study, you will learn how to follow a five-
step software development process to design and implement new software applica-
tions. These steps include problem specification, analysis, design, implementation,
and testing. You will see how to employ use cases to specify the interaction between
the system and its users during problem specification and analysis. You will see how
to use sequence diagrams and procedural abstraction to develop the algorithms for
the class member functions during the design phase. Carefully following the soft-
ware development process will lead to more efficient implementations with fewer
errors, making it easier to test and debug the completed system.

64 Chapter 1 Introduction to Software Design

I n t r o d u c t i o n t o S o f t w a r e D e s i g n

1.1 The Software Life Cycle
1.2 Using Abstraction to Manage Complexity
1.3 Designing C++ Classes
1.4 Abstract Data Types, Interfaces, and Pre- and Postconditions
1.5 Requirements Analysis, Use Cases, and Sequence Diagrams

Case Study: Designing a Telephone Directory Program
1.6 Design of an Array-Based Phone Directory

Case Study: Designing a Telephone Directory Program, continued
1.7 Implementing and Testing the Array-Based Phone Directory

Case Study: Designing a Telephone Directory Program, continued
1.8 Completing the Phone Directory Application

Case Study: Designing a Console Based User Interface for the Phone Directory

1.1 The Software Life Cycle

The goal of a college programming assignment is to give you some experience with
a particular concept, thus reinforcing your mastery of it. The resulting program is
used briefly to demonstrate to the instructor that you have mastered the assignment.
The only users of the program are you (its author) and perhaps the instructor.

In industry, on the other hand, a software product is expected to be used for an
extended period of time by someone who did not write the program and who is not
intimately familiar with its internal design. The impetus for a software project
comes from users of an existing software product or potential users of a new soft-
ware product. The users see a need for improving the operation of an existing prod-

uct or for computerizing an operation that is currently done without the use of com-
puters. This need is communicated to the individual(s) responsible for developing
new software products in the organization (normally called system analysts). A team
of system analysts and programmers are responsible for guiding the development of
a new software system from its inception to its completion. We discuss this process
next.

A software product goes through several stages as it matures from an initial concept
to a finished product in regular use. This series of stages could be compared to the
stages that an insect goes through as it develops from egg, to larva, to pupa, to adult.
This sequence of stages is known as the life cycle; thus, we speak of a software life
cycle.

Software products can require years to develop and require the efforts of many indi-
viduals. A successful software product will be used for many years after it is first
released. During the term of its use, new or updated versions may be released that
contain changes to fit new situations or that fix errors that were previously unde-
tected. For this reason, it is important to design and document software in an organ-
ized way so that it can be easily understood and maintained after its initial release.
This is especially important because the person who maintains the software may not
have been involved in its original design.

Software Life Cycle Models
Many different views of the software life cycle have been proposed over the years
and are in use today. There are also many different ways of organizing the activities
that transform the software from one stage to another. The simplest version is the
waterfall model, in which the activities are performed in sequence and the result of
one flows into the next (indicated by downward-pointing arrows in Figure 1.1),
much like water flowing down a cascading waterfall.

Table 1.1 describes the activities that are performed in each of the five phases of the
waterfall model. We will provide more details later in this section.

TA B L E 1 . 1
Waterfall Model of the Software Life Cycle

1.1 The Software Life Cycle 65

1. Requirements The requirements for the software system are determined.

2. Analysis The requirements are studied and clarified, and the overall architecture of the solution is
determined. Each major subsystem is analyzed, and its component classes are determined.
Also, any interaction between components is determined.

3. Design Functions and data fields are defined for classes. Detailed algorithms for the functions are
defined.

4. Implementation The individual classes and functions are coded in the target programming language.

5. Testing The functions of each class are tested in isolation and as a class (unit testing). The func-
tions and classes are tested together (integration testing) to verify that they work together
and meet the requirements.

F I G U R E 1 . 1
The Waterfall Software
Life Cycle Model

66 Chapter 1 Introduction to Software Design

 Requirements

 Analysis

 Design

 Implementation

 Testing

Although simple in concept, the waterfall model has proved to be unworkable in
practice. The fundamental flaw in this model is the assumption that each stage can
and must be completed before the next one starts. That is rarely the case in actual
practice. For example, system designers may identify incomplete or inconsistent
requirements during the design process, or programmers may find during the imple-
mentation phase that there are areas of the design that are incomplete or inconsis-
tent. Sometimes it is not until the product is finished and the user first sees it that
the user’s requirements are “specified” in the form of the complaint, “That’s not
what I meant!”

Various alternatives have been proposed. The common theme is to develop a soft-
ware product in stages or cycles. Each cycle is a mini-version of the waterfall, with
varying amounts of emphasis on the different activities for the particular cycles. At
the end of each cycle there is a review with the users to obtain feedback, which will
be taken into account in the next cycle.

One example of such a model is the Unified Model, shown in Figure 1.2. The cycles,
called phases and iterations, are shown along the horizontal axis, and the activities,
called workflows, are shown down the vertical axis. The four phases are inception,
elaboration, construction, and transition (switching over to the new system). Time
moves across the horizontal axis from iteration 1 to iteration n, and each iteration
is a mini-waterfall. The five activities are the same as in the simple waterfall model.
The shaded areas under the curves next to each activity are intended to show the
relative amount of effort spent on that activity during each iteration. For example,
during the inception phase (iterations 1 and 2), most effort is spent on specifying
requirements. In fact, requirements specification is the only activity performed dur-
ing iteration 1. During iteration 2, some effort is also spent on analysis, with a tiny
amount on design and implementation. As the software developers move into the

elaboration phase, they continue to work on requirements and analysis but also
start to spend more time on design and implementation, particularly toward the end
of the elaboration phase. In the construction phase, the requirements specification
and analysis activities are completed, and most effort is spent on design and imple-
mentation. The diagram also shows that some time is spent on testing during all
phases after inception, but more time is spent on testing during the construction and
transition phases. We will discuss testing in more detail in Chapter 2.

Software Life Cycle Activities
Independently of how they are organized, there is general consensus that the activ-
ities shown in Table 1.2 are essential for the development of a software product. We
will consider activities 1 through 5 in the rest of this chapter; activities 6 through 8
will be the subject of the next chapter.

Because our case studies are relatively small compared to a commercial software
project, we generally follow the simple waterfall model. However, we do revisit
some case study solutions in later chapters and iterate through the five activities,
much as in the Unified Model.

1.1 The Software Life Cycle 67

F I G U R E 1 . 2
The Unified Software
Life Cycle Model

Requirements

Analysis

Design

Implementation

Testing

Core Workflows Phases
Inception Elaboration

Iter
1

Iter
2

 Iter
n–1

Iter
n

Construction Transition

Source: Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Software
Development Process (Addison Wesley, 1999)

TA B L E 1 . 2
Software Life Cycle Activities

68 Chapter 1 Introduction to Software Design

Requirements Specification
Because the potential users of a new system are often naïve as to what can be accom-
plished, the initial specification for a software product may be incomplete or
ambiguous. The specification is clarified through extensive interaction between the
users of the software and the system analyst. Through this interaction, the system
analyst determines precisely what the users want the proposed software to do, and
the users learn what to expect from the software product. This way there are no sur-
prises in the end.

Although it may seem like common sense to proceed in this way, very often a soft-
ware product does not perform as its users expected. The reason is usually a com-
munication gap between those responsible for the product’s design and its eventual
users; generally, both parties are at fault when the software fails to meet expecta-
tions. To avoid this possibility, it is imperative that a complete, written description
of the requirements—a requirements specification—for a new software product be
generated at the beginning of the project and that both users and designers review
and approve the document.

The system analyst works with the software users to clarify the detailed system
requirements. Some of the questions that need to be answered deal with the format
of the input data, the desired form of any output screens or printed forms, and the
need for data validation. You often need to mimic this process by interrogating your

1. Requirements specification The requirements for the software product are determined and documented.

2. Architectural design The architecture of the solution is determined. This breaks the solution into
different components, which are allocated to one or more processing
resources.

3. Component design For each component, classes are identified, with specified roles and
responsibilities.

4. Detailed design Functions and data fields are defined for classes. Detailed algorithms for the
functions are defined.

5. Implementation The individual functions are coded in the target programming language.

6. Unit test Each class and its functions are tested individually.

7. Integration test Groups of classes are tested together to verify that they work together and
meet the requirements.

8. Acceptance test The product as a whole is tested against its requirements to demonstrate that
the product meets its requirements.

9. Installation The product is installed in its end-use (production) environment.

10. Maintenance Based upon experience with the software, enhancements and corrections are
made to the product.

instructor or teaching assistant to determine the precise details of a programming
assignment.

For example, assume that your instructor has given you the following incomplete
specification of a programming assignment.

Problem: Write an interactive telephone directory program that will contain a
collection of names and telephone numbers. You should be able to insert new
entries in the directory, retrieve an entry in the directory, or change a directory
entry.

Some of the questions that come to mind and might require clarification are the fol-
lowing:

• Is there an initial list of names and numbers to be stored in the directory before-
hand, or are all entries inserted at the same time?

• If there is an initial list, is it stored in a file, or should it be entered interactively?
• If the initial directory is stored in a file, is the file a text file (file of characters)

or a binary file (file of binary values)?
• If the file is a text file, are there any formatting conventions (for example, the

name starts in column 1 and the phone number starts in column 20). Are the
name and number on the same data line or on separate lines? How are the
names stored (for example, last, first or first last)?

• Is it possible for there to be more than one telephone number associated with
a particular name? If so, should the first number be retrieved, the last number,
or all numbers?

• Is it possible to change a person’s name as well as the person’s phone number?
• When a number is retrieved, should both the person’s name and number be dis-

played or just the number? What form should this display take?
• What action should be taken if a “new” entry has the same name as a person

already in the directory? Should this be flagged as an error?

As you can see, there are plenty of questions left unanswered by the initial problem
statement. To complete the requirements specification, you should answer these
questions and more. Many of the questions deal with details of input data, handling
of potential errors in input data, and formats of input data and output lists.

Analysis
Once the system requirements are specified, the analysis stage begins. Before you
can embark on the design of a program solution, you should make sure that you
completely understand the problem. If the requirements specification has been care-
fully done, this will be easy. If there are any questions remaining, they should be
cleared up at this time.

The next step is to evaluate different approaches to the program design. In industry,
the system analyst and users may consider whether there are commercial software
packages that can be purchased to satisfy their requirements (as an alternative to
developing the software in-house). They must also determine the impact of the new
software product on existing computer systems and what new hardware or software

1.1 The Software Life Cycle 69

will be needed to develop and run the new system. They determine the feasibility of
each approach by estimating its cost and anticipated benefits. The analysis stage cul-
minates with the selection of what appears to be the best design approach.

In your coursework, you do not have this flexibility. You must design and imple-
ment each program. During the analysis, your goal is to carefully determine the
input/output requirements for the system and its interaction with the user. You will
also find it helpful to break your system up into a set of small and manageable com-
ponents, which you can then design and code separately. To do so, you need to iden-
tify the modules or components that will constitute the system and specify the
interactions between them. You complete this process in the design phase, which we
discuss next.

Design
Once you understand the problem and have selected the overall approach, it is time
to develop a high-level design of the system. Professional software engineers make
use of several design approaches in their work. The top-down approach, in which a
system is broken into a set of smaller subsystems, each of those subsystems is bro-
ken into smaller components, and so forth until components are small and simple
enough to be coded easily, has been used successfully for many years. More recently,
the object-oriented approach, in which the developer identifies a set of objects and
specifies their interaction, has been increasingly used. In this text we will utilize both
the top-down and object-oriented approaches to software design.

Top-Down Design
The top-down approach to software design (also called stepwise refinement)
instructs you to start at the top level (the original problem) and divide it into sub-
problems. For each subproblem, identify a subsystem with the responsibility of solv-
ing that subproblem. You can use a structure chart to indicate the relationship
between the subproblems (and subsystems). For example, a structure chart for the
telephone directory problem is shown in Figure 1.3.

Figure 1.3 shows the two top levels of the structure chart, which include the origi-
nal problem and its major subproblems. Each of these subproblems may be further
refined and divided into still smaller subproblems. Figure 1.4 shows that to solve the
subproblem “Read the initial directory” you must be able to “Read an entry from
file” and “Store an entry in the directory”. Figure 1.5 shows that to solve the sub-
problem “Retrieve and display an entry” you must be able to “read a name”, “find

70 Chapter 1 Introduction to Software Design

 Level 1

 Level 0
 The telephone

directory program

 Read the initial
directory

 Insert a new
entry

 Retrieve and
display an entry

 Edit an
entry

F I G U R E 1 . 3
Structure Chart for
Telephone Directory
Problem

a name in the directory”, “get the entry information from the directory”, and “dis-
play an entry”.

Figure 1.3 indicates that you can solve the original problem (level 0) by providing
solutions to four level 1 subproblems. Figures 1.4 and 1.5 represent the solutions to
two level 1 subproblems in terms of six level 2 subproblems.

Object-Oriented Design
Top-down design is process-oriented in that it focuses on the actions that are needed
rather than the data structures. In contrast, object-oriented design (OOD) focuses
on the data elements that are needed and operations to be performed on those data
elements. In OOD, you first identify the objects that participate in your problem,
and then you identify how they interact to form a solution. The common charac-
teristics of a collection of similar objects define a class, and the interactions are iden-
tified as messages that one object sends to another. For an object to receive a
message, its class must provide an operator (usually a function) to process that mes-
sage. Looking at the nouns in the problem statement can help you identify objects,
and looking at the verbs can point to the operators. We will discuss how to write
C++ classes later in this chapter.

In looking at the phone directory problem statement, we have ascertained that there
is a directory and that the directory contains entries. An entry consists of a name
and a number. There is also a user, and there is a data file that contains entries. The
user is external to the program and is called an actor in object-oriented terminology.
The user selects the operations that will be performed on the directory and data file.

Object-oriented design incorporates some of the elements of top-down design. It
also incorporates some of the elements of bottom-up design, which focuses on the
design of individual system components. So OOD is a combination of both of these
earlier techniques.

1.1 The Software Life Cycle 71

 Level 2

 Level 1
 Retrieve and

display an entry

 Read a name
from a user

 Find a name
in the directory

 Display an
entry to a user

 Get the entry
information from

the directory

 Level 2

 Level 1
Read the initial

directory

Store an entry
in the directory

Read an entry
from file

F I G U R E 1 . 4
Refinement of “Read
the Initial Directory”

F I G U R E 1 . 5
Refinement of
“Retrieve and Display
an Entry”

UML as a Design Tool
In this textbook we will use Unified Modeling Language™ (UML) diagrams as a
design tool to illustrate the interaction between classes and between classes and
external entities (users). We will introduce several features of UML in this textbook
on an as-needed basis. Appendix B provides a summary of UML diagrams.

Figure 1.6 is a UML class diagram for the telephone directory program, showing the
classes that are used and their interaction and relationships. The classes (Directory,
Entry, and File) are identified by rectangles, whereas lines show the interaction and
relationships. The lines ending with an arrow indicate an interaction between
classes. For example, the class Directory has functions that read or write informa-
tion from class File. External entities, called actors, are represented by small fig-
ures. This seems to imply that the external entity is a person, but that is not
necessarily the case. So far, our class diagrams have no detail, because we have not
yet identified their data elements and functions; we are focusing here on the inter-
action between classes.

UML diagrams are a standard means of documenting class relationships that is
widely used in industry. We recommend that you use UML diagrams to describe the
classes that you develop in solving your programming assignments.

E X E R C I S E S F O R S E C T I O N 1 . 1

S E L F - C H E C K

1. What are the advantages of the Unified Model over the waterfall model of the
software life cycle?

2. What are the five activities in the software development life cycle followed in this
book?

3. Name the four phases of the Unified Model. Name the five activities in the
Unified Model.

4. Draw a structure chart showing the refinement of the subproblem “Insert a new
entry”.

5. Draw a structure chart showing the refinement of the subproblem “Edit an
entry”.

72 Chapter 1 Introduction to Software Design

sends command contains

contains

reads from
writes to

User

EntryDirectory

File

F I G U R E 1 . 6
Initial Class Diagram
for Phone Directory
Program

1.2 Using Abstraction to Manage Complexity

Abstraction is a powerful technique that helps programmers (or problem solvers)
deal with complex issues in a piecemeal fashion. An abstraction is a model of a
physical entity or activity. In this book, we use abstraction to develop models of
entities (objects and classes) and also of the operations performed on these objects.
One example of abstraction is the use of a program variable (for example, name or
number) to denote a storage location in memory for a data value. You need not be
concerned with the details of the physical structure of memory or the actual bits
(binary digits) that are used to represent the value of a variable; you don’t need to
know those things to use variables in programming. This is analogous to driving a
car. You need to know how to use a key to start the engine, how to use the acceler-
ator and brake pedals to control speed, and how to use the steering wheel to con-
trol direction. However, you don’t need to know details of the car’s electrical system,
drive train, braking system, or steering mechanism.

Procedural Abstraction
Procedural abstraction is the philosophy that procedure development should sepa-
rate the concern of what is to be achieved by a procedure (a C++ function) from the
details of how it is to be achieved. In other words, you can specify what you expect
a function to do, then use that function in the design of a problem solution before
you know how to implement the function. As an example of procedural abstraction,
suppose you have functions available to perform all the Level 2 steps in Figure 1.5.
You can then write the following C++ fragment to retrieve an entry from the direc-
tory using these functions.

name = read_name(); // Reads a name
number = directory.get(name); // Gets number associated with name
if (number != "")
// Display name and number.
cout << "Phone number for " << name

<< " is " << number << endl;
else
// Display message that name is not in directory.
cout << name << " is not in directory\n";

Data Abstraction
In this course we will also use another type of abstraction: data abstraction. The
idea of data abstraction is to specify the data objects for a problem and the opera-
tions to be performed on these data objects without being overly concerned with
how they (the data objects) will be represented and stored in memory. You can
describe what information is stored in the data object without being specific as to
how the information is organized and represented. This is the logical view of the
data object, as opposed to the physical view, its actual internal representation in
memory. Once you understand the logical view, you can use the data object and its
operators in your programs; however, you (or someone else) will eventually have to
implement the data object and its operators before you can run any program that

1.2 Using Abstraction to Manage Complexity 73

uses them. In C++, the operators are called member functions, so we will use these
terms interchangeably.

As an example, you have already practiced data abstraction in that you have used
the string data type to represent sequences of characters without knowing how a
character sequence is actually stored in memory. The C++ string is an abstraction
for a sequence of characters. You can use string objects and their operators (length,
at, and so on) without knowing the details of their implementation.

Information Hiding
One advantage of procedural abstraction and data abstraction is that they enable
the designer to make implementation decisions in a piecemeal fashion. The designer
can postpone making decisions regarding the actual internal representation of the
data objects and the implementation of its operators. At the top levels of the design
the designer focuses on how to use a data object and its operators; at the lower lev-
els of design the designer (or perhaps a different designer or programmer on the
team) works out the implementation details. In this way, the designer can control or
reduce the overall complexity of the problem.

If the details of a data object’s implementation are not known when the higher-level
module (a C++ class) is designed, the higher-level class can access the data object
only through its member functions. From a software design viewpoint, this is an
advantage rather than a limitation. It allows the designer of each class to make
changes at a later date, such as to accommodate new government regulations or to
implement a function in a more efficient way. If the higher-level classes reference a
data object only through its functions, the higher-level class will not have to be
rewritten. The process of “hiding” the details of a class’s implementation from users
of the class is called information hiding.

As an example of how information hiding works, let’s see how you might access the
name part of a new entry (called my_entry) for the phone directory. If you assume
that my_entry is an object with a field called name, you could use the qualified
identifier

my_entry.name

As implementation proceeds, you might change your mind and decide to use an
array data to hold each entry’s name and telephone number instead of separate data
fields. In this case, you would have to go back and change the preceding reference
(and all similar references) to

my_entry.data[0]

It is much cleaner to hide the structure of an entry and instead use a function to
retrieve the name string. If get_name is a function that extracts the name string from
an Entry object, the statement

a_name = my_entry.get_name();

will return the name string stored in my_entry and assign it to a_name regardless of
the internal representation chosen for an entry. If you decide to change the internal
representation, you only have to change the body of function get_name. You will not
need to change any of the higher-level modules that call get_name.

74 Chapter 1 Introduction to Software Design

The rest of this chapter assumes that you are familiar with array processing and I/O
fundamentals in C++. If you are not, you can learn about them in the first chapter,
A C++ Primer. We next discuss C++ classes and show you how to define your own
classes.

E X E R C I S E S F O R S E C T I O N 1 . 2
S E L F - C H E C K

1. How is information hiding related to data abstraction?
2. How does information hiding relate to procedural abstraction?
3. How does the logical view of a data object differ from its physical view?
4. Explain why type int is an abstraction for integers in mathematics.

1.3 Defining C++ Classes

A C++ program is a collection of functions and classes; consequently, when you
write a C++ program, you will develop one or more classes. We will show you how
to write a C++ class next.

A class represents a set of objects that have common properties. A class can be
thought of as a template for specifying or creating objects. A class also represents a
type. As discussed in A C++ Primer, a type determines what set of values an item of
data can have and the operations that can be performed on it. In C++ there are two
kinds of types: the primitive or built-in types and the user-defined or class types.

To define a class completely, we must provide two things: a class definition and a
class implementation. The class definition describes the class to its users—the names
of the operations and the internal data contents. The class implementation provides
the implementation of the operations.

Class Definition
A class consists of members (not to be confused with the objects, or instances, of the
class). Members can be either data members (also called data fields or attributes) or
member functions (also called operators, functions, or methods). Data members are
sometimes called instance variables because each class instance (object) has its own
storage for them. The data members may be either primitive types or class types. As
we discussed earlier, we want the operations to be visible to the users of the class,
but we want to keep the implementation details hidden. Therefore, we specify that
the member functions are public and the data members are private. Before getting
into the formal syntax of a class definition, let us examine a simple example.

1.3 Defining C++ Classes 75

TA B L E 1 . 3
The Clock Member Functions

76 Chapter 1 Introduction to Software Design

Function Behavior

void set_clock(int hr, int min, int sec) Sets the clock to the specified values.

int get_hours() Gets the number of hours since midnight or noon.

int get_minutes() Gets the number of minutes in the current hour.

int get_seconds() Gets the number of seconds in the current minute.

void tick() Advances the clock by one second.

E X A M P L E 1 . 1 The class Clock describes a group of objects, each of which represents the time using
a 12-hour clock. Operations that we want to perform on Clock objects are setting
the time, determining the value of hours, minutes, and seconds, and advancing the
clock by one second. These operations are described in Table 1.3.

So that a class can be used by other classes or functions, which become the class’s
clients, we place the class definition into a header file. Listing 1.1 shows the header
file Clock.h for the class Clock.

L I S T I N G 1 . 1
Clock.h

#ifndef CLOCK_H_
#define CLOCK_H_

/** The class Clock represents the time of day. */
class Clock {

public:
// The interface is defined here
/** Set the clock. */
void set_clock(int hr, int min, int sec);

/** Get the current hour. */
int get_hours() const;

/** Get the current minute. */
int get_minutes() const;

/** Get the current second. */
int get_seconds() const;

/** Advance the clock by one second. */
void tick();

private:
// The implementation details are defined here

};

#endif

This header file consists of only the member function declarations (the name and
parameters). The implementation of these functions is provided separately—part of
the hidden information. Notice that the definition for class Clock is enclosed in
braces ({, }) and there is a semicolon after the closing brace.

Notice that the comments above each function declaration are introduced by /**
rather than simply /* as described in the C++ Primer. The reason is discussed at the
end of this section.

Preprocessor Directives in Clock.h
The preprocessor directives #ifndef, #define, and #endif are used to prevent mul-
tiple definitions of the identifiers in file Clock.h, which could happen if it were
included more than once (as when it is included in two different files that are both
included by a third file). The first directive,

#ifndef CLOCK_H_

tests to see whether the identifier CLOCK_H_ is not defined. If it is defined, the pre-
processor skips the lines in the source file through the directive

#endif

If CLOCK_H_ is not defined, the preprocessor reads the second directive,
#define CLOCK_H_

and it defines the identifier CLOCK_H_, giving it the value of the empty string.
Consequently, this directive and the lines that constitute the definition for class
Clock will be processed just one time, so the identifiers declared in this class cannot
be multiply defined.

The identifier, CLOCK_H_, used in these directives was chosen arbitrarily; any identi-
fier can be used. However, it is a common convention to use the file name in upper-
case, replacing the period with an underscore and appending a trailing underscore.

The public and private Parts
The keywords public and private are known as access specifiers. Members
declared in the public part of the class definition can be accessed by any other class.
Members declared in the private part can be accessed directly only within class
Clock. So far, our class definition is incomplete, because we have shown only the
public part. Although the implementation details are hidden within the private part
of the class definition, we still must provide them. Thus, when we talk about infor-
mation hiding, we do not mean that the client programmer (that is, the programmer
who uses this class) cannot see this information; we mean that the client program-
mer cannot take advantage of this information, because this data is not directly
accessible in the client program.

1.3 Defining C++ Classes 77

In our Clock class we have at least two choices for how to store the time. We can
provide data fields for the hours, minutes, and seconds separately, or we can pro-
vide a data field that contains the number of seconds since midnight. We will choose
the former because it simplifies the implementation of the member functions, except
for tick. Thus, after the keyword private in Listing 1.1, we would have the
following:

/** The hours since midnight or noon. */
int hours;
/** The minutes within the current hour. */
int minutes;
/** The seconds within the current minute. */
int seconds;

SYNTAX Class Definition

FORM:
class name {
public:

member declarations
private:

member declarations
};

EXAMPLE:

See Listing 1.1.

MEANING:

The class name is defined to have the members listed. Members may be either
data members (also called data fields), member functions (also called functions),
or nested classes. Members that are declared following the access specifier
public: are accessible by functions outside of the class, while those following the
access specifier private: are accessible only by functions that are members of the
class or are declared to be friends of the class. There may be multiple public and
private regions, but generally all public members are declared together, followed
by all private members. Also, declarations that precede the first access specifier
are considered to be private.

Private Data Fields, Public Functions
The access specifier private sets the visibility of each declaration that follows it to
private visibility. This means that whatever is declared after private: can be
accessed only within the class definition. All the data members for the Clock class
are private. Ordinarily, only class members with public visibility can be accessed
outside of the class. The access specifier public sets the visibility of each declaration
that follows it to public. In Listing 1.1, all the members declared after public: and
before private: are member functions.

78 Chapter 1 Introduction to Software Design

The reason for having private visibility for data fields is to control access to an
object’s data and to prevent improper use and processing of an object’s data. If a
data field is private, it can be processed outside of the class only by invoking one of
the public member functions that are part of the class. Therefore, the programmer
who writes the public member functions controls how the data field is processed.
Also, the details of how the private data is represented and stored can be changed
at a later time by the programmer who implements the class; the other programs
that use the class (called the class’s clients) will not need to be changed.

Constant Member Functions
The declarations for the functions get_hours, get_minutes, and get_seconds in
Listing 1.1 each have the keyword const immediately preceding the semicolon. This
tells the users and the compiler that these functions will not modify the object on
which they operate. This serves three purposes: First, it documents for the user that
calling this function will not change its value, and second, it permits the compiler to
incorporate certain optimizations when it generates the machine language code.
Also, if you declare a member function to be const, the compiler will enforce this
intention by flagging as an error any operation that could potentially modify the
object. Therefore, you should declare as constant a member function that is not sup-
posed to modify an object.

Class Implementation
Member function definitions are the same as regular function definitions except that
the class name is placed in front of the function name, separated from the name by a
pair of colons. Thus, we can implement the get_hours function in our clock class as

int Clock::get_hours() const {
return hours;

}

SYNTAX Member Function Definition

FORM:
return-type class-name::function-name(parameter list) constopt { body }

EXAMPLE:
int Clock::get_hours() const { return hours; }

MEANING:
The function function-name that is a member of the class class-name is defined
by the sequence of statements provided in the body. The declaration portion of
the definition must be the same as that given in the class definition with respect
to the return type, function name, types of parameters, and const specifier. The
subscript opt following the const specifier indicates that it is optional. However,
if it is present in the function declaration, it must also be present in the corre-
sponding function definition. If these do not match, the compiler will report an
error such as “function-name is not a member of class-name.”

1.3 Defining C++ Classes 79

Usually all of the member function definitions for a class are grouped into a single
source (.cpp) file. Listing 1.2 shows the implementation for the Clock class. The
source file must begin with the line

#include "Clock.h"

which includes the header file for class Clock, thereby defining the class members.
Notice that the header file name is surrounded by quotes, not angle brackets (<>).
Angle brackets are used only with system-defined classes.

L I S T I N G 1 . 2
Clock.cpp

// Implementation of the Clock class.
#include "Clock.h"

/** Set the clock. */
void Clock::set_clock(int hr, int min, int sec) {
hours = hr;
minutes = min;
seconds = sec;

}

/** Get the current hour. */
int Clock::get_hours() const {
return hours;

}

/** Get the current minute. */
int Clock::get_minutes() const {
return minutes;

}

/** Get the current second. */
int Clock::get_seconds() const {
return seconds;

}

/** Advance the clock by one second. */
void Clock::tick() {
seconds++;
if (seconds >= 60) {
minutes++;
seconds -= 60;

}
if (minutes >= 60) {
hours++;
minutes -= 60;

}
if (hours > 12) {
hours -= 12;

}
}

80 Chapter 1 Introduction to Software Design

Using Class Clock
Let’s consider how class Clock might be used. The program in Listing 1.3 first
includes the header file for class Clock. The main function begins by declaring an
object c of type Clock. The remaining statements use dot notation to apply one of
the Clock member functions to object c. First, the clock is set to 12:59:58 (12 hours,
59 minutes, and 58 seconds). Next, the clock is advanced by four seconds, and the
updated time is displayed. The output line displayed should be

The new time is 01:00:02

L I S T I N G 1 . 3
Test_Clock.cpp

/** Program to test the Clock class. */
#include "Clock.h"
#include <iostream>
#include <iomanip>
using namespace std;

int main() {
Clock c;
c.set_clock(12, 59, 58);
c.tick();
c.tick();
c.tick();
c.tick();
cout << setfill('0');
cout << "The new time is "

<< setw(2) << c.get_hours() << ':'
<< setw(2) << c.get_minutes() << ':'
<< setw(2) << c.get_seconds() << '\n';

return 0;
}

The Class Person
We now consider a more complicated example of a class definition and implemen-
tation. A class Person might describe a group of objects, each of which is a particu-
lar human being. For example, instances of class Person would be yourself, your
mother, and your father. A Person object could store the following data:

• Given name
• Family name
• ID number
• Year of birth

The following are a few of the operations that can be performed on a Person object:

• Calculate the person’s age
• Test whether two Person objects refer to the same person
• Determine whether the person is old enough to vote

1.3 Defining C++ Classes 81

• Determine whether the person is a senior citizen
• Get one or more of the data fields for the Person object
• Set one or more of the data fields for the Person object

Figure 1.7 shows a diagram of class Person. This figure uses the Unified Modeling
Language (UML) to represent the class. UML diagrams are a standard way of doc-
umenting class relationships that is widely used in industry. The class is represented
by a box. The top compartment of the box contains the class name. The data fields
(data members or instance variables) are shown in the middle compartment, and
some of the functions are shown in the bottom compartment. We discuss UML fur-
ther in Appendix B.

Figure 1.8 shows how two objects or instances of the class Person (author1 and
author2) are represented in UML. Each object is represented by a box in which the
top compartment contains the class name (Person), underlined, followed by the
object name (author1 or author2), also underlined, and the bottom compartment
contains the data fields and their values.

Listing 1.4 shows class Person and the member functions for this class.

We declare four data fields and two constants (all uppercase letters) after the func-
tions (although some C++ programmers prefer to declare member functions after
data fields). In the constant declarations, the modifier const indicates that the con-
stant value may not be changed. The modifier static indicates that the constant is
being defined for the class and does not have to be replicated in each instance. In
other words, storage for the constant VOTE_AGE is allocated once, regardless of how
many instances of Person are created.

The file Person.h contains the class declaration. As with the Clock class, the mem-
ber functions are declared in this file, but, in several cases, they are also imple-
mented. We discuss the reason for this next.

82 Chapter 1 Introduction to Software Design

F I G U R E 1 . 7
Class Diagram for
Person

F I G U R E 1 . 8
Object Diagram of Two
Instances of Person

Person

string given_name
string family_name
string ID_number
int birth_year

int age()
bool can_vote()
bool is_senior()

Person author1

"Elliot"
"Koffman"
"010-55-0123"
1942

given_name =
family_name =

ID_number =
birth_year =

Person author2

""
""
""
1900

given_name =
family_name =

ID_number =
birth_year =

L I S T I N G 1 . 4
Person.h

#ifndef PERSON_H_
#define PERSON_H_
#include <string>
#include <iostream>

/** Person is a class that represents a human being. */
class Person {
public:
// Constructors
/** Construct a person with given values.

@param first The given name
@param family The family name
@param ID The ID number
@param birth The birth year

*/
Person(std::string first, std::string family,

std::string ID, int birth) :
given_name(first), family_name(family), ID_number(ID),
birth_year(birth) { }

/** Construct a default person. */
Person() : given_name(""), family_name(""), ID_number(""),
birth_year(1900) { }

// Modifier Functions
/** Sets the given_name field.

@param given The given name
*/
void set_given_name(std::string given) {
given_name = given;

}

/** Sets the family_name field.
@param family The family name

*/
void set_family_name(std::string family) {
family_name = family;

}

/** Sets the birth_year field.
@param birth The year of birth

*/
void set_birth_year(int birth) {
birth_year = birth;

}

// Accessor Functions
/** Gets the person's given name.

@return the given name as a string
*/
std::string get_given_name() const { return given_name; }

1.3 Defining C++ Classes 83

/** Gets the person's family name.
@return the family name as a string

*/
std::string get_family_name() const { return family_name; }

/** Gets the person's ID number.
@return the ID number as a string

*/
std::string get_ID_number() const { return ID_number; }

/** Gets the person's year of birth.
@return the year of birth as an int value

*/
int get_birth_year() const { return birth_year; }

// Other Functions
/** Calculates a person's age at this year's birthday.

@param year The current year
@return the year minus the birth year

*/
int age(int year) const;

/** Determines whether a person can vote.
@param year The current year
@return true if the person's age is greater than or

equal to the voting age
*/
bool can_vote(int year) const;

/** Determines whether a person is a senior citizen.
@param year the current year
@return true if person's age is greater than or

equal to the age at which a person is
considered to be a senior citizen

*/
bool is_senior(int year) const;

/** Compares two Person objects for equality.
@param per The second Person object
@return true if the Person objects have the same

ID number; false if they don't
*/
bool operator==(const Person& per) const;

/** Compares two Person objects for inequality.
@param per The second Person object
@return the negation of the equals operator

*/
bool operator!=(const Person& per) const;

/** Declaration of the stream insertion operator for Person.
@param os The target ostream
@param per The Person object being output
@return The updated output stream

*/
friend std::ostream& operator<<(std::ostream& os, const Person& per);

84 Chapter 1 Introduction to Software Design

private:
// Data Fields
/** The given name. */
std::string given_name;
/** The family name. */
std::string family_name;
/** The ID number. */
std::string ID_number;
/** The birth year. */
int birth_year;

// Constants
/** The age at which a person can vote. */
static const int VOTE_AGE = 18;
/** The age at which a person is considered a senior citizen. */
static const int SENIOR_AGE = 65;

};

#endif

1.3 Defining C++ Classes 85

P R O G R A M S T Y L E

Explicit Namespace Qualification in Include Files
You will notice that the include file included the standard headers <string> and
<iostream>, but it did not contain a using directive such as
using namespace std;

Instead we specifically qualified the classes string and ostream with the prefix std::.
This is because we do not know whether the client program will include the using direc-
tive. In Chapter 3 we will see reasons why this may not be desirable. It is considered
good program style to always use explicit namespace qualification in header files.

Constructors
In Listing 1.4, there are two constructors that begin with Person. Exactly one of
these is invoked automatically when a new class instance is created. The construc-
tor with four parameters is called if the values of all data fields are known before
the object is created. For example, the statement

Person author1("Elliot", "Koffman", "010-55-0123", 1942);

creates the first object shown in Figure 1.8, initializing its data fields to the values
passed as arguments. Note that a constructor differs from a member function in that
it has no return type.

86 Chapter 1 Introduction to Software Design

P R O G R A M S T Y L E

Use of Initialization Expressions in Constructors
It is preferable to use initialization expressions to initialize data fields rather than using
assignment statements in the body. Initialization expressions have the form

data-member(initial-value-expression)

An initialization expression such as

given_name(first)

is evaluated as the object is being constructed. If there is no initialization expression for
a class data field, it may be initialized to a default value. The body is executed after the
object is constructed. Thus, if you initialize a class data field in the body using an
assignment statement

given_name = first;

you are effectively initializing it twice. While this does not matter for the built-in types
because they have no default initialization, it is significant for class types, which may
have several data fields of their own to initialize.

SYNTAX Constructor Definition

FORM:
class-name(parameters) : initialization-expressions { body }

EXAMPLES:
Person(std::string first, std::string family, std::string ID, int birth) :
given_name(first), family_name(family), ID_number(ID),
birth_year(birth) { }

Person() : given_name(""), family_name(""), ID_number(""),
birth_year(1900) { }

MEANING:

A constructor has the same name as its class and has no return type. A construc-
tor is called automatically when an object is created. Its purpose is to initialize
the memory allocated to the object to initial values. Constructors may have
parameters, and constructors having different parameter lists may be defined.
The initialization-expressions are of the form data-field-name(initial-value). As
the object is constructed, the named data fields are set to the given initial values.
After the object is constructed, the body of the constructor is then executed.

The second constructor, the no-parameter constructor, is called when the data field
values are not known at the time the object is created.

Person author2;

In this case, the data fields are initialized to the default values given (for example,
1900 for birth_year). The three string data fields are initialized to the empty
string. You can use modifier functions (discussed next) at a later time to set or mod-
ify the values of the data fields.

The no-parameter constructor is sometimes called the default constructor because
C++ automatically defines this constructor for a class that has no constructor defini-
tions. Therefore, the following constructor was automatically defined for class Clock.

/** Default constructor for class Clock. */
public Clock::clock() { }

However, if you define one or more constructors for a class, you must also explic-
itly define the no-parameter constructor, or it will be undefined for that class.

Modifier and Accessor Member Functions
Because the data fields have private visibility, we need to provide public member
functions to access them. Normally, we want to be able to get or retrieve the value
of a data field, so each data field in class Person has an accessor member function
(also called a getter) that begins with the word get and ends with the name of the
data field (for example, get_family_name). If we want to allow a class user to update
or modify the value of a data field, we provide a modifier function (also called a
mutator or setter) beginning with the word set and ending with the name of the
data field (for example, set_given_name). Currently, there is an accessor for each
data field in this example. However, there is no set_ID_number member function
because it would not be a good practice to allow a user program to modify a per-
son’s ID number. It might also be a good practice to have get_ID_number return just
a portion of the value stored in data field ID_number (say, the last four digits) rather
than the whole string.

The modifier member functions are type void because they are executed for their
effect (to update a data field), not to return a value. In the member function
set_birth_year,

void set_birth_year(int birth) {
birth_year = birth;

}

the assignment statement stores the integer value passed as an argument in data field
birth_year.

The accessor function for data field given_name,
std::string get_given_name() const { return given_name; }

is type std::string because it returns a copy of the string object given_name. The
const in the function declaration indicates that this function will not change the
value of the object on which it is called.

1.3 Defining C++ Classes 87

Operators
In addition to the functions defined in class Person, we declare the operators == and !=.

bool operator==(const Person& per) const;
bool operator!=(const Person& per) const;

Declaring and defining these operators in class Person enables us to use them with
operands of type Person. For example, we can write the Boolean expressions
author1 == author2 and author1 != author2 to compare two Person objects. The
word operator precedes the operator symbol being defined. The left-hand operand
is the current object; the right-hand operand is declared in parentheses following the
operator symbol. We say that C++ permits us to overload these operators so that
they can be used with operands other than the primitive types.

SYNTAX Operator Declaration

FORM:
return-type operator operator-symbol(parameter) const;

EXAMPLES:
bool operator==(const Person& per) const;
bool operator!=(const Person& per) const;

MEANING:
The operator specified by operator-symbol is defined for this class. The left-hand
operand is the current object; the right-hand operand is specified by parameter in
the same way as a function parameter. If the word const appears at the end of
the declaration, the left-hand operand is not changed by the operator.

88 Chapter 1 Introduction to Software Design

P R O G R A M S T Y L E

Inline Definition of Constructors, Accessors, and Modifiers
It is a good programming practice to separate the declarations of the member functions
from their definitions. The public portion of a class definition is its interface. This is how
clients view the class. If the function definition is included in the class definition, the
client programs include the function definition into their own code. Then, if we want to
change a function’s implementation, we force the client programs to change. There are
two reasons for making an exception for constructors, accessors, and modifiers. First of all,
if a function definition is included in a class definition, the compiler treats this function as
an inline function. That is, the compiler replaces a call to that function with the code con-
tained in the function body. Such code executes faster. Second, constructors, accessors,
and modifiers generally are very simple and are unlikely to change. Constructors generally
consist only of initialization expressions; accessors generally consist of a return state-
ment, and modifiers generally consist of a single assignment statement. Although we did
not insert the accessor function definitions for class Clock in the public part of file
Clock.h; it would have been permissible, and even desirable, to do this.

Friends
The insertion operator that you have been using to output data to an ostream, such
as cout, is really an overloading of the left shift operator. The class ostream contains
several overloaded member functions named operator<< that each take a primitive
type as the parameter. Each operator<< function formats its primitive type and out-
puts the resulting string to the ostream. To output a class type, we must define this
operator for that class. Class Person has the following declaration:

friend std::ostream& operator<<(std::ostream&, const Person&);

This function is not a member of either the class ostream or the class Person. It is a
stand-alone function that takes as its left-hand operand an object of type ostream
and as its right-hand operand an object of type Person (for example, cout <<

author1). It returns a reference to the output stream that has been modified. This
declaration appears within the class definition prefixed with the keyword friend.
Declaring it a friend gives it the same rights as member functions, so it can access
the private members of the class.

Implementing the Person Class
The implementation file for the Person class (file Person.cpp) is given in Listing 1.5.
We define all the functions that were declared in Listing 1.4 but were not written as
inline functions.

L I S T I N G 1 . 5
Person.cpp

/** Implementation file for the class Person. */
#include "Person.h"
#include <ostream>
using std::ostream;

/** Calculates a person's age at this year's birthday.
@param year The current year
@return the year minus the birth year

*/
int Person::age(int year) const {
return year - birth_year;

}

/** Determines whether a person can vote.
@param year The current year
@return true if the person's age is greater than or

equal to the voting age
*/
bool Person::can_vote(int year) const {
int the_age = age(year);
return the_age >= VOTE_AGE;

}

/** Determines whether a person is a senior citizen.
@param year the current year
@return true if person's age is greater than or

equal to the age at which a person is
considered to be a senior citizen

1.3 Defining C++ Classes 89

*/
bool Person::is_senior(int year) const {
return age(year) >= SENIOR_AGE;

}

/** Compares two Person objects for equality.
@param per The second Person object
@return true if the Person objects have same

ID number; false if they don't
*/
bool Person::operator==(const Person& per) const {
return ID_number == per.ID_number;

}

/** Compares two Person objects for inequality.
@param per The second Person object
@return The opposite of the equality operator

*/
bool Person::operator!=(const Person& per) const {
return !(*this == per);

}

/** Retrieves the information in a Person object
and formats it for output. The result is
then inserted into the target ostream.
@param os The target ostream
@param per The source Person
@return The modified ostream after the data has

been inserted
*/
ostream& operator<<(ostream& os, const Person& per) {
os << "Given name: " << per.given_name << '\n'

<< "Family name: " << per.family_name << '\n'
<< "ID number: " << per.ID_number << '\n'
<< "Year of birth: " << per.birth_year << '\n';

return os;
}

Declaring Local Variables in Class Person
Functions age, can_vote, and is_senior are all passed the current year as an argu-
ment. Function can_vote calls member function age to determine the person’s age.
The result is stored in local variable the_age. The result of calling function can_vote
is the value of the Boolean expression following the keyword return.

bool Person::can_vote(int year) const {
int the_age = age(year);
return the_age >= VOTE_AGE;

}

It really was not necessary to introduce local variable the_age; the call to member
function age could have been placed directly in the return statement (as it is in func-
tion is_senior). We wanted, however, to show you how to declare local variables
in a C++ function. The scope of the local variable the_age and the parameter year
is the body of member function can_vote.

Implementing the Operators
We will assume that two Persons are the same if they have the same ID number. This
leads to the following definition for operator ==.

90 Chapter 1 Introduction to Software Design

bool Person::operator==(const Person& per) const {
return ID_number == per.ID_number;

}

Notice that we can look at parameter per’s private ID_number because per references
an object of this class (type Person). Because ID_number is type string, the equality
operator of class string is invoked with the ID_number of the second object as an
argument. If the two ID_number data fields have the same contents, the string oper-

ator== function will return true; otherwise, it will return false. The Person opera-

tor== member function returns the result of the string operator== function.

Because we want operator!= to return the opposite of what operator== returns, we
define it as follows:

bool Person::operator!=(const Person& per) const {
return !(*this == per);

}

The this Parameter
Each member function has an implicit parameter named this whose value is a
pointer to the object for which the member function was called. Normally in writ-
ing a member function you do not need to use the this parameter, because refer-
ences to members are implicitly understood to be to the object for which the
member function was called. However, in the case of operator!= we want to apply
the == operator between the object on which the function was called and the other
object, per. Since this is a pointer to the object we are interested in, the expression
*this is a reference to that object. Thus the expression *this == per does what we
want. We could also have written operator!= this way:

bool Person::operator!=(const Person& per) const {
return !(operator==(per));

}

1.3 Defining C++ Classes 91

P R O G R A M S T Y L E

Returning a Boolean Value
Some programmers unnecessarily write if statements to return a Boolean value. For
example, instead of writing

return ID_number == per.ID_number;

they write

if (ID_number == per.ID_number)
return true;

else
return false;

Resist this temptation. The return statement by itself returns the value of the if state-
ment condition, which must be true or false. It does this in a clear and succinct man-
ner using one line instead of four.

Defining the Extraction Operator
In the following definition for operator<<, the function body outputs data field val-
ues to output stream os. It then returns a reference to its output stream parameter.

ostream& operator<<(ostream& os, const Person& per) {
os << "Given name: " << per.given_name << '\n'

<< "Family name: " << per.family_name << '\n'
<< "ID number: " << per.ID_number << '\n'
<< "Year of birth: " << per.birth_year << '\n';

return os;
}

If author1 is the first type Person object in Fig. 1.8, the statement
cout << author1;

would display the following.
Given name: Elliot
Family name: Koffman
ID number: 010-55-0123
Year of birth: 1942

An Application That Uses Class Person
To test class Person we need to write a C++ application program that consists of a
main function. The main function should create one or more instances of class Person
and display the results of applying the class functions. Listing 1.6 shows the pro-
gram Test_Person that does this. To execute the main function, you must compile
Test_Person.cpp and Person.cpp and link them. Figure 1.9 shows a sample run.

A main function that is written primarily to test another class is often called a driver
program. A test that demonstrates that certain requirements of a particular class are
met is called a unit test. We will have more to say about testing in Chapter 2.

92 Chapter 1 Introduction to Software Design

P I T F A L L

Referencing a Data Field or Parameter Hidden by a Local Declaration
If you happen to declare a local variable (or parameter) with the same name as a data
field, the local declaration hides the data field declaration, so the C++ compiler will
translate the use of that name as meaning the local variable (or parameter), not the data
field. So, if birth_year was also declared locally in class Person, the statement
birth_year++;

would increment the local variable, but the data field value would not change.

L I S T I N G 1 . 6
Test_Person.cpp

/** Test_Person is an application that tests class Person. */
#include <iostream>
#include "Person.h"
using std::cout;
using std::endl;

int main() {
Person p1("Sam", "Jones", "1234", 1930);
cout << "p1: " << p1 << endl;
Person p2("Jane", "Jones", "5678", 1990);
cout << "p2: " << p2 << endl;

cout << "Age of " << p1.get_given_name()
<< " is " << p1.age(2004) << endl;

if (p1.is_senior(2004))
cout << p1.get_given_name() << " can ride the subway for free\n";

else
cout << p1.get_given_name() << " must pay to ride the subway\n";

if (p2.can_vote(2004))
cout << p2.get_given_name() << " can vote\n";

else
cout << p2.get_given_name() << " can't vote\n";

// Make Sam younger
p1.set_birth_year(1950);
// Now see whether he has to pay to ride the subway.
cout << "Age of " << p1.get_given_name()

<< " is " << p1.age(2004) << endl;
if (p1.is_senior(2004))
cout << p1.get_given_name() << " can ride the subway for free\n";

else
cout << p1.get_given_name() << " must pay to ride the subway\n";

}

F I G U R E 1 . 9
Sample Run of Class Test_Person

1.3 Defining C++ Classes 93

Classes as Components of Other Classes
Class Person has three data fields that are type string, so string objects are com-
ponents of a Person object. In Figure 1.10 this component relationship is indicated
by the solid diamond symbol at the end of the lines drawn from the box represent-
ing class string to the box representing class Person. The names given_name, fam-
ily_name, and ID_number above the lines and near the box representing the string
class correspond to the data member names within the Person class. Figure 1.10 is
a UML diagram, this one showing the relationships between classes. We will follow
UML’s set of conventions for documenting class relationships in this book.

Array Data Fields
It is very common in C++ to encapsulate an array, together with the functions that
process it, within a class. Rather than allocate storage for a fixed-size array, we
would like the client to be able to specify the array size when an object is created.
Therefore, we should define a constructor with the array size as a parameter and
have the constructor allocate storage for the array. Class Company in Listing 1.7 has
a data field employees that references an array of Person objects. Both constructors
allocate storage for a new array when a Company object is created. The client of this
class can specify the size of the array by passing a type int value to the constructor
parameter size. If no argument is passed, the no-parameter constructor sets the
array size to DEFAULT_SIZE.

L I S T I N G 1 . 7
Company.h

#ifndef COMPANY_H_
#define COMPANY_H_

#include "Person.h" // Definition of the Person class
#include <iostream> // Declaration of I/O classes

/** Company is a class that represents a company.
The data field employees provides storage for
an array of Person objects.

*/
class Company {
public:
// Constructors
/** Creates a new array of Person objects.

@param size The size of array employees
*/
Company(int size) :
num_employees(size), employees(new Person[size]) {}

94 Chapter 1 Introduction to Software Design

F I G U R E 1 . 1 0
UML Diagram Showing
That string Objects
Are Components of
Class Person

Person string
ID_number

family_name

given_name

Company() :
num_employees(DEFAULT_SIZE), employees(new Person[DEFAULT_SIZE]) {}

// Functions

/** Sets an element of employees.
@param index The position of the employee
@param emp The employee

*/
void set_employee(int index, Person emp);

/** Gets an employee.
@param index The position of the employee
@return the employee object or if not defined

a default Person object
*/
Person get_employee(int index);

/** Builds and outputs a string consisting of all employees'
data, with newline characters between employees.
@param os The destination ostream
@param company The company object to be output
@return The updated ostream object

*/
friend std::ostream& operator<<(std::ostream& os,

const Company& company);

private:
// Data Fields
/** The number of employees. */
int num_employees;
/** The array of employees. */
Person* employees;

/** The default size of the array. */
static const int DEFAULT_SIZE = 100;

};

#endif

L I S T I N G 1 . 8
Company.cpp

#include "Company.h"
#include <ostream>
using std::ostream;
using std::endl;

/** Sets an element of employees.
@param index The position of the employee
@param emp The employee

*/
void Company::set_employee(int index, Person emp) {
if (index >= 0 && index < num_employees)
employees[index] = emp;

}

1.3 Defining C++ Classes 95

/** Gets an employee.
@param index The position of the employee
@return The employee object or if not defined

return a default Person object
*/
Person Company::get_employee(int index) {
if (index >= 0 && index < num_employees)
return employees[index];

else
return Person();

}

/** Builds and inserts a string consisting of all employees'
data, with newline characters between employees.
@param os The destination ostream
@param company The Company object to be output
@return The updated ostream

*/
ostream& operator<<(ostream& os, const Company& company) {
for (int i = 0; i < company.num_employees; i++)
os << company.employees[i] << endl;

return os;
}

There are modifier and accessor functions that process individual elements of array
Company (set_employee and get_employee). Function get_employee returns the type
Person object at position index, or a default Person object if the value of index is
out of bounds.

The ostream insertion operator << creates a string representing the contents of array
employees. The for loop calls the ostream insertion operator for each Person object
in the array.

The following main function illustrates the use of class Company and displays the state
of object comp. It stores two Person objects in the array and then displays the con-
tents of the array.

#include "Company.h"
#include <iostream>
using std::cout;

int main() {
Company comp(2);
comp.set_employee(0, Person("Elliot", "K", "123", 1942));
comp.set_employee(1, Person("Paul", "W", "234", 1945));
cout << comp;
return 0;

}

Documentation Style for Classes and Functions
In this book we write documentation comments for classes, member functions, and
data members in a standard format that was originally developed for the Java lan-
guage. The Java software developer’s kit contains a program called Javadoc that reads
a Java program file and writes neatly formatted HTML documentation pages if the
program contains documentation comments in the standard form. Using Javadoc

96 Chapter 1 Introduction to Software Design

forces the programmer to describe the function in an orderly manner. As a result, that
format has gained popularity for documenting programs in other languages, such as
C++, as well. You can run a variety of programs on your C++ files to generate a set
of HTML pages describing each class and its data fields and functions as Javadoc does
for Java. Two such programs that are freely available are DOC++ and Doxygen.

These programs focus on text that is enclosed within the delimiters /** and */. The
introductory comment that describes the class is displayed on the HTML page
exactly as it is written, so you should write that carefully. The lines that begin with
the symbol @ are tags. They are described in Table 1.4. We will use one @param tag
for each function parameter. We will not use a @return tag for void functions. The
first line of the comment for each function appears in the function summary part of
the HTML page. The information provided in the tags will appear in the function
detail part. Figure 1.11 shows part of the documentation generated by running
Doxygen for class Person.

F I G U R E 1 . 1 1
Generated Documentation for Class Person

1.3 Defining C++ Classes 97

TA B L E 1 . 4
Documentation Comment Tags

Tag and Example of Use Purpose

@param given The given name Identifies a function parameter

@return The person's age Identifies a function return value

E X E R C I S E S F O R S E C T I O N 1 . 3
S E L F - C H E C K

1. Explain why member functions have public visibility but data fields have private
visibility.

2. Trace the execution of the following statements.
Person p1("Adam", "Jones", "wxyz", 0);
p1.set_birth_year(1990);
Person p2;
p2.set_given_name("Eve");
p2.set_family_name(p1.get_family_name());
p2.set_birth_year(p1.get_birth_year() + 10);
if (p1 == p2)
cout << p1 << " is the same person as " << p2 << endl;

else
cout << p1 << " is not the same person as " << p2 << endl;

P R O G R A M M I N G

1. Overload the ostream insertion operator for the Clock class to output the time in
the form hh:mm:ss.

2. Write a member function get_initials that returns a string representing a Person
object’s initials. There should be a period after each initial. Write documentation
comments for the function.

3. Add a data field mother_maiden_name to Person. Write an accessor and a modifier
function for this data field. Modify the ostream insertion operator and the equal-
ity operator to include this data field. Assume two Person objects are equal if they
have the same ID number and mother’s maiden name.

4. Write the member functions operator<, operator>, operator<=, and operator>=
that compare two Person objects and return an appropriate result based on a
comparison of the ID numbers. For operator<, if the ID number of the object that
the operator is applied to is less than the ID number of the argument object, the
result should be true. Write documentation comments for the member functions.

5. Write a member function switch_names that exchanges a Person object’s given
and family names. Write documentation comments for the member function.

1.4 Abstract Data Types, Interfaces, and Pre- and Postconditions

One of the goals of object-oriented programming is to write reusable code, which is
code that can be reused in many different applications, preferably without having to
be recompiled. One way to make code reusable is to encapsulate or combine a group
of data elements representing an object together with its operations (functions and
operators) in a separate program module (a class). As we discussed in the previous
section, a new program can use the functions to manipulate the data without being

98 Chapter 1 Introduction to Software Design

concerned about details of the data representation and the implementation of its
operations. In this way, the class can be used as a building block to construct new
application programs. The combination of data together with its operations is called
an abstract data type (ADT).

Figure 1.12 shows a diagram of an abstract data type. The data values stored in the
ADT are hidden inside the circular wall. The bricks around this wall are used to
indicate that these data values cannot be accessed except by going through the
ADT’s operations.

A class provides one way to implement an ADT in C++. If the data fields are private,
they can be accessed only through public functions. Therefore, the functions control
access to the data and determine the manner in which the data is manipulated.

A primary goal of this text is to show you how to write and use ADTs in program-
ming. As you progress through this book, you will create a large collection of ADT
implementations (classes) in your own program library. Because each ADT imple-
mentation in your library will already have been coded, debugged, and tested, using
them would make it much easier for you to design and implement new application
programs.

Also, the C++ Standard Library provides a rich collection of ADT implementations.
You will be introduced to many of these ADTs and their implementations as you
progress through this book. Many of the classes you study will implement these
ADTs in whole or in part.

Abstract Data Types (ADTs) and Interfaces
The public part of a class definition is a way to specify (but not implement) an ADT.
The public part of a class definition specifies the names, parameters, and return val-
ues of the ADT operations without specifying how the operations are performed
and without specifying how the data is internally represented. The public part of a
class definition defines the interface for that class. (If you are familiar with the Java
programming language, take note that C++ does not have Java’s syntactic element
called an interface).

The classes that declare the data fields and code member functions that perform the
operations are said to implement the ADT. There may be more than one way to
implement the operations; hence, there may be more than one class that implements
the ADT. Therefore, an ADT describes a set of classes that perform the operations
and define the internal data.

Each class that implements an ADT must provide the complete definition (imple-
mentation) of all operations declared in the ADT. In addition, it may declare data
fields and define other member functions.

An ADT for a Telephone Directory Class
There are many different ways to represent a telephone directory. One of our goals
in this course is to show you several ways to do this task and to compare their per-
formance. Consequently, rather than provide a single class of type Phone_Directory,
we will define an ADT that specifies the operations required of all classes that are

1.4 Abstract Data Types, Interfaces, and Pre- and Postconditions 99

F I G U R E 1 . 1 2
Diagram of an ADT

 ADT
operations

 ADT
data

intended to implement this ADT. This will enable other programmers (including
ourselves) to invoke the telephone directory operations without knowing exactly
how the directory is represented or how its operations are implemented. We describe
this ADT in Table 1.5.

Contracts and ADTs
An ADT is a contract between the ADT designer and the programmer who codes a
class that implements the ADT. This programmer must code functions that perform
the operations specified in the ADT. Therefore, any programmer who uses a class
that implements the ADT knows exactly what functions are available in that class
and what operations they will perform. This allows that programmer to proceed to
write application programs without needing to coordinate with the person who is
coding classes that implement the ADT. Similarly, the programmer who is coding a
class that implements the ADT can proceed independently of what the application
programmers are doing.

There may be several classes that implement the ADT, and each class can code the
data and the functions in a different way. One class may be more efficient than
another class at performing certain kinds of operations. For example, one class may
be more efficient at retrieving information from a directory, so that class will be used
if retrieval operations are more likely in a particular application.

100 Chapter 1 Introduction to Software Design

TA B L E 1 . 5
Specification of the Phone_Directory ADT

Function Behavior

void load_data(const string& source_name) Load the data file containing the directory, or establish a
connection with the data source.

string lookup_entry(const string& name) Look up an entry in the directory. If there is no such entry,
return an empty string.

string add_or_change_entry(const string& Changes the number associated with the given name to the
name, const string& number) new value. Returns the previous value or an empty string if

this is a new entry.

string remove_entry(const string& name) Removes the entry with the specified name from the direc-
tory. Returns the name or an empty string if the name was
not in the directory.

void save() Writes the directory to the data file.

Preconditions and Postconditions
At a lower level, we communicate the intent of an operation through its precondi-
tions and postconditions, which are part of the behavior description provided in the
specification. A precondition is a statement of any assumptions or constraints on the
operation’s data (input parameters) that are expected to apply before the operation
is performed. A postcondition is a statement that describes the result of performing

an operation. An operation’s preconditions and postconditions serve as a contract
between a function caller (who requires the operation to be performed) and the
function programmer (who implements the operation); if a caller satisfies the pre-
condition, the function result will satisfy the postcondition. If the precondition is
not satisfied, there is no guarantee that the function will do what is expected, and it
may even fail. We discuss this further in Chapter 2. The preconditions and post-
conditions allow a function user and function implementor both to proceed without
further coordination. When implementing an ADT, we document the preconditions
and postconditions in the multiline documentation comments associated with the
class and each function.

Although some programmers write preconditions and postconditions for every
function that they write, we will use them only when they provide additional infor-
mation that is not readily apparent. If an operation has specific requirements for its
arguments (for example, an argument must be positive), we will express these
requirements through a precondition. We will use postconditions to describe the
change in object state caused by executing a mutator operation. As a general rule,
you should write a postcondition comment for operations that change an object’s
state. (In C++ these operations are generally implemented by functions that have a
void return type.) If an operation returns a value, you do not usually need a post-
condition because the @return tag describes the effect of performing the operation.

E X A M P L E 1 . 2 A class Bank_Account might define the following function process_deposit. The pre-
condition (after pre:) shows that the deposit amount must be positive. The postcon-
dition (after post:) shows that data field balance is increased by the value of amount.
The words pre: and post: are not part of the language recognized by Javadoc or
Doxygen, so these comments are not processed by the comment-processing
program.

/** Processes a deposit in a bank account.
pre: amount is positive.
post: Adds the specified amount to balance.

*/
public void process_deposit(double amount) {
balance = balance + amount;

}

E X E R C I S E S F O R S E C T I O N 1 . 4

S E L F - C H E C K

1. What are the two parts of an ADT? Which part is accessible to a user and which
is not? Explain the relationships between an ADT and a class.

2. What are two different uses of the term interface in programming?

1.4 Abstract Data Types, Interfaces, and Pre- and Postconditions 101

102 Chapter 1 Introduction to Software Design

P R O G R A M M I N G

1. Write a documentation comment for the following member function of a class
Person. Assume that class Person has two string data fields last_name and
first_name with the obvious meanings. Provide preconditions and postcondi-
tions if needed.
bool operator<(const Person& per) {
if (last_name == per.last_name)
return first_name < per.last_name;

else
return last_name < per.last_name;

}

2. Write a documentation comment for the following member function of a class
Person. Provide preconditions and postconditions if needed.
void change_last_name(bool just_married, string new_last) {
if (just_married)
last_name = new_last;

}

1.5 Requirements Analysis, Use Cases, and Sequence Diagrams

In this section, we will illustrate how to solve a programming problem similar to the
telephone directory assignment introduced earlier. The solution will have multiple
classes and interfaces. Our goal in this case study is to show you the process that
would be followed in the software design and implementation. Don’t be concerned
at this point if you do not understand all the details of the final program. In this sec-
tion, we show the requirements specification and analysis and introduce two new
tools: the use case and sequence diagram.

CASE STUDY Designing a Telephone Directory Program

Problem You have a client who wants to store a simple telephone directory in her computer
that she can use for storage and retrieval of names and numbers. She has a data file
that contains the names and numbers of her friends. She wants to be able to insert
new names and numbers, change the number for an entry, and retrieve selected tele-
phone numbers. She also wants to save any changes in her data file.

Input/Output Requirements
Earlier we discussed some questions that would have to be answered in order to
complete the specification of the requirements for the phone directory problem.
Most of the questions dealt with input and output considerations. We will list some
answers to these questions next.

1.5 Requirements Analysis, Use Cases, and Sequence Diagrams 103

INPUTS

Initial phone directory Each name and number will be read from separate
lines of a text file. The entries will be read in
sequence until all entries are read.

Additional entries Each entry is typed by the user at the keyboard
when requested.

OUTPUTS

Names and phone numbers The name and number of each person selected by
the program user are displayed on separate output
lines.

Updated phone directory Each name and number will be written to separate
lines of a text file. The entries will be written in
sequence until all entries are written.

Analysis The first step in the analysis is to study the problem input and output requirements
carefully to make sure that they are understood and make sense. You can use a tool
called a use case to help you refine the system requirements.

Use Cases
A use case is a list of the user actions and system responses for a particular sub-
problem in the order that they are likely to occur.

The following four subproblems were identified for the telephone directory program:

• Read the initial directory from an existing file
• Insert a new entry
• Edit an existing entry
• Retrieve and display an entry

TA B L E 1 . 6
Use Case for Reading the Initial Directory

The use case (Table 1.6) for the first subproblem (“Read the initial directory”)
shows that the user issues a single command and the system responds either by read-
ing a directory from a file or by creating an empty directory if there is no file. The
second use case (Table 1.7) is for the subproblems “Insert a new entry” and “Edit

Step User’s Action System’s Response

1. User issues a command to the operating system
to load and run the Phone Directory program,
specifying the name of the file that contains
the directory.

2. The Phone Directory program is started, and the
directory contents initialized from the data file. If
the data file does not exist, an initially empty
directory is created.

104 Chapter 1 Introduction to Software Design

an existing entry”. Because the names in the directory must be unique, inserting a
new entry and editing an existing entry require a search to determine whether the
name is already present. Thus, from the user’s point of view, the insert and edit
processes are the same. The last use case (Table 1.8) shows the user interaction for
the last subproblem (“Retrieve and display an entry”).

The steps shown in each use case flesh out the user interaction with the program.
The use cases should be reviewed by the client to make sure that your intentions are
the same as hers. For most of the problems we study in this book, the user interac-
tion is straightforward enough that use cases will not be required.

TA B L E 1 . 7
Use Case for Inserting a New Entry or Editing an Existing Entry

Step User’s Action System’s Response

1. User issues the command to
insert or change an entry.

2. System prompts for the name.

3. User enters name. If user cancels entry of name, process terminates.

4. System prompts for the number.

5. User enters number. If user cancels entry of number, process terminates.

6. The directory is updated to contain the new name and number. If
the name was not already in the directory, the user is notified that a
new name was entered. If the name already exists, the user is noti-
fied that the number was changed and is shown both the old and
new numbers.

Step User’s Action System’s Response

1. User issues the command to
retrieve and display an entry.

2. System prompts for the name.

3. User enters name. If user cancels entry of name, process terminates.

4. The system retrieves the entry from the directory. If found, the name
and number are displayed; otherwise, a message is displayed indicat-
ing that the name is not in the directory.

TA B L E 1 . 8
Use Case for Retrieving and Displaying an Entry

Refinement of Initial Class Diagram
Earlier we used the top-down design approach to identify the subproblems to be
solved (see Figures 1.3 through 1.5) and came up with the list of level 1 subprob-
lems shown in the previous section. As discussed, you can combine the second and

1.5 Requirements Analysis, Use Cases, and Sequence Diagrams 105

third subproblems (“Insert a new entry”, “Edit an existing entry”) and add a sub-
problem to save the directory. The modified list follows:

• Read the initial directory from an existing file.
• Insert a new entry or edit an existing entry.
• Retrieve and display an entry.
• Save the modified directory back to the file.

The directory should be saved whenever the program is exited. The phone directory
has limited usefulness if updates to the directory cannot be saved from one run to
the next.

There is another way to split this problem into subproblems. Overall, we want a
phone directory application that combines a user interface as the front end and a
persistent (permanent) storage of data as the back end. Thus, Figure 1.6 can be
refined as shown in Figure 1.13. The black diamond in Figure 1.13 indicates that a
PD_Application object has an object of type Phone_Directory as its component and
that it is created by the PD_Application object. The arrowhead shows that
PD_Application updates the Phone_Directory object.

We have identified the abstract data type: the Phone_Directory. It is shown in the
class diagram as an interface. (UML does not have a notation for ADTs, but its
notation for interface is equivalent.) In Section 1.6 a class that implements this ADT
will be designed. By splitting the design between the user interface (PD_Application)
and the directory, we can work on them independently. As long as the requirements
defined by the interfaces are met, the front-end user interface does not care which
back end it is dealing with, and the back-end directory does not care which front
end it is dealing with.

Design Overview of Classes and Their Interaction
Next, we identify all classes that will be part of the problem solution and describe
their interaction. Besides the class that implements the interface shown in Figure
1.13, classes from the C++ standard library will be used to perform input/output.

Note that the PD_Application class is artificial. In C++ the main function is a stand-
alone function—that is, it is not a member function of any class—and all programs
must have a main function. UML, however, does not have a notation for stand-alone
functions. Thus, we show the main function encapsulated in a class that represents
the program PD_Application. Table 1.9 shows a summary of some of the classes and
interfaces that will be used in our solution.

F I G U R E 1 . 1 3
Phone Directory Application Class Diagram: Revision 1

sends command

User

main()

 PD_Application

load_data()
add_or_change_entry()
lookup_entry()
remove_entry()
save()

‹‹interface››
Phone_Directory

updates

106 Chapter 1 Introduction to Software Design

TA B L E 1 . 9
Summary of Classes and Objects Used in Phone Directory Solution

Class/Interface Description

PD_Application Contains the main function that provides the user interface.

Directory_Entry Contains a name-number pair.

Phone_Directory Class that implements the Phone_Directory ADT.

ifstream A class in the C++ standard library that breaks a stream of input characters from a file
into lines or data values.

istream cin An object in the C++ standard library that breaks a stream of input characters from the
console into lines or data values.

ofstream A class in the C++ standard library that formats objects for output to a file.

ostream cout An object in the C++ standard library that formats objects for output to the console.

From the use case in Table 1.6, we know that this function must create the
Phone_Directory object and read in the initial directory. It then reads and executes
the user’s commands.

The following algorithm for the main function is written in pseudocode, a combina-
tion of English and C++ language constructs.

Algorithm for main Function
1. Send the Phone_Directory a message to read the initial directory data from a

file.
2. Read a command from the user.
3. do

4. Prompt the user for a command
5. Read the command
6. Send the appropriate message to the Phone_Directory to execute the

command
7. Report the result to the user
8. while the command is not exit.

Next we show the UML sequence diagram for the main function. A sequence dia-
gram (see Appendix B) is an OOD tool that documents the interaction between the
objects in a program. Sequence diagrams are used to show the flow of information
through the program and to identify the messages that are passed from one object
to another.

Sequence Diagram for main Function
The sequence diagram for the main function is shown in Figure 1.14. The first (and
only) parameter for main will be the name of the file containing the directory data.
We show this event in the sequence diagram as the user issuing the message

1.5 Requirements Analysis, Use Cases, and Sequence Diagrams 107

main(source_name) to the PD_Application class. This corresponds to the user typing
the command

PD_Application source_name

on the command line.

The sequence diagram shows all the objects involved in this use case across the hor-
izontal axis, with each object’s type underlined. Time is shown along the vertical
axis. There is a dashed line coming down from each object that represents the
object’s life line. When a function of this object is called, the dashed line becomes a
solid line indicating that the function is executing. All interaction with an object is
indicated by a horizontal line that terminates at the object’s life line.

For purposes of the diagram, we show the PD_Application object as being created
when the application begins execution. Tracing down its life line, you can see that
the main function first sends the Phone_Directory message to a class that implements
the Phone_Directory ADT. This corresponds to the declaration statement

Phone_Directory the_directory;

that creates a new Phone_Directory object. Next, main sends that object the load_data
message. Looking at the life line for this Phone_Directory object, you see that func-
tion load_data creates a new ifstream object and sends it two getline messages.
Next, load_data sends the add message to the Phone_Directory object. (Note that add
is a new function that was not identified earlier.) This is the same object as the one
that received the load_data message, so this add message is known as a message to self.
Although the sequence diagram cannot show looping, the process of reading lines and
adding entries continues until there are no remaining entries.

F I G U R E 1 . 1 4
Sequence Diagram for
main Function

User

main(source_name)

PD_Application

Phone_Directory

ifstream

Phone_Directory

load_data(source_name)

close()

process_commands(the_directory)

ifstream(source_name)

getline(name)

add(name, number)

getline(number)

108 Chapter 1 Introduction to Software Design

The sequence diagram (Figure 1.14) shows that member function load_data of the
Phone_Directory object performs most of the work for the “Read initial directory
data” use case. Member function load_data calls all the functions shown after it on
the life line for the Phone_Directory object.

Upon return from the load_data function, the main function calls the process_commands
function. This is a stand-alone function that is included in the PD_Application.cpp
source file, so we show it on the UML diagram as a member of the PD_Application
class. Design and implementation of the process_commands function is discussed in
Section 1.8.

E X E R C I S E S F O R S E C T I O N 1 . 5

S E L F - C H E C K

1. Provide a use case for saving the directory to a file.
2. Draw a sequence diagram for “Insert or change an entry”.
3. Draw a sequence diagram for “Write the directory back to the file”.

1.6 Design of an Array-Based Phone Directory

The case study continues with the design, implementation, and testing of class
Directory_Entry and a class that implements the Phone_Directory ADT. We will
identify data fields for these classes and provide algorithms for their member func-
tions. As we design the member functions of each class, we will identify new func-
tions needed for that class. The design, implementation, and testing of these classes
are discussed in the remaining sections of this chapter.

CASE STUDY Designing a Telephone Directory Program (cont.)

Design Design of Data Structures for the Phone Directory
Next, we consider the actual data elements that will be involved in the telephone
directory problem. We will define a class Directory_Entry, which will contain the
name-number pairs, and a class Array_Based_PD, which implements the
Phone_Directory ADT. This class will contain an array of Directory_Entrys. In later
chapters we will show alternative designs that use classes that are part of the C++
standard library (for example, class vector).

Our new class diagram is shown in Figure 1.15. The line from Array_Based_PD to
Directory_Entry indicates that Directory_Entry objects are components of

1.6 Design of an Array-Based Phone Directory 109

Directory_Entry

sends command

User

main()
process_commands()

- string name
- string number

+ Directory_Entry(string name, string number)
+ string get_name()
+ string get_number()
+ void set_number(string new_number)

Array_Based_PD

 PD_Application

load_data()
add_or_change_entry()
lookup_entry()
remove_entry()
save()

+ load_data()
+ add_or_change_entry()
+ lookup_entry()
+ remove_entry()
+ save()

‹‹interface››
Phone_Directory

updates

Array_Based_PD objects, but they can also be associated with other objects (for
example, the data file). For class Directory_Entry, we show data fields (attributes)
in the light-color screen and member functions in the darker-color screen. Next, we
discuss the two actual classes shown in this diagram: Directory_Entry and
Array_Based_PD.

SYNTAX UML Syntax

In UML class diagrams, the + sign next to the function names indicate that these
functions are public. The – sign next to the attributes name and number indicate
that they are private. For the class Directory_Entry we show the types of the
attributes, and the parameter types and return types of the member functions.
Showing this information on the diagram is optional. We will generally show this
information in separate tables such as Table 1.9. Appendix B provides a sum-
mary of UML.

F I G U R E 1 . 1 5
Phone Directory Application Class Diagram: Revision 2

110 Chapter 1 Introduction to Software Design

Design of the Directory_Entry Class
The Directory_Entry objects will contain the name-and-number pairs. The name is
immutable; that is, it cannot be changed. For the purposes of your design, if you
need to change the name of a person in your directory, you must remove the old
entry and create a new one. The number, however, can be changed. Thus a straight-
forward design consists of

• Two data fields: name and number
• A constructor that sets both name and number
• Accessor functions for both name and number
• A mutator function for number

This design is shown in Table 1.10.

TA B L E 1 . 1 0
Design of the Directory_Entry Class

Data Field Attribute

string name The name of the individual represented in the entry.

string number The phone number for this individual.

Constructor Behavior

Directory_Entry(string name, string number) Creates a new Directory_Entry with the specified
name and number.

Function Behavior

string get_name() const Retrieves the name.

string get_number() const Retrieves the number.

void set_number(const string& new_number) Sets the number to the specified value.

Function Behavior

void load_data(const string& source_name) Loads the data from the data file whose name is given
by source_name.

string add_or_change_entry(const string& Changes the number associated with the given name to
name, const string& number) the new value, or adds a new entry with this name and

number.

string lookup_entry (const string& name) Searches the directory for the given name.
const

string remove_entry(const string& name) Removes the entry with the specified name from the
directory and returns that person’s number or an empty
string if not in the directory (left as an exercise).

void save() Writes the contents of the array of directory entries to
the data file.

TA B L E 1 . 1 1
Functions Declared in ADT Phone_Directory

1.6 Design of an Array-Based Phone Directory 111

Design of the Array_Based_PD Class
The Array_Based_PD class implements the Phone_Directory ADT. We showed a por-
tion of this ADT earlier (Table 1.5); Table 1.11 shows the functions for the ADT.

Class Array_Based_PD must implement these functions. It must also declare a data
field for storage of the phone directory. Table 1.12 describes the data fields of class
Array_Based_PD. In addition to the array of directory entries, the class includes data
fields to help keep track of the array size and capacity and whether it has been mod-
ified. The functions will be designed in the next section.

Design of Array_Based_PD Member Functions
In this section you will complete the design of the Array_Based_PD class. At this stage
you need to specify the function algorithms. First, we will develop pseudocode
descriptions of the algorithms.

Function load_data
Function load_data is used to read the initial directory from a data file. The file
name is passed as an argument to load_data when it is called.

Algorithm for Function load_data
1. Create an ifstream for the input file.
2. Read the name of the data file.
3. while the ifstream is not in the fail state
4. Read the number.
5. if the ifstream is not in the fail state
6. Add a new entry using function add.
7. Read the name.

Note that we have identified a new member function, add, for class Array_Based_PD.

Function add_or_change_entry
Function add_or_change_entry is used to either add a new entry to the directory or
change an existing entry if the name is already in the directory. The name and num-
ber are passed as arguments to add_or_change_entry.

TA B L E 1 . 1 2
Data Fields of Class Array_Based_PD

Data Field Attribute

static const int INITIAL_CAPACITY The initial capacity of the array to hold the directory entries.

int capacity The current capacity of the array to hold the directory entries.

int size The number of directory entries currently stored in the array.

Directory_Entry* the_directory The array of directory entries.

string source_name The name of the data file.

bool modified A bool variable to indicate whether the contents of the array
have been modified since they were last loaded or saved.

112 Chapter 1 Introduction to Software Design

Algorithm for Function add_or_change_entry
1. Call function find to see whether the name is in the directory.
2. if the name is in the directory
3. Change the number using the set_number function of the

Directory_Entry.
4. Return the previous value of the number.

else

5. Add a new entry using function add.
6. Return an empty string.

Note that we have identified another new function, find, for class Array_Based_PD.

Function lookup_entry
Function lookup_entry is passed a person’s name as an argument. It retrieves the
person’s number if the name is found and an empty string if the name is not found.

Algorithm for lookup_entry
1. Call function find to see whether the name is in the directory..
2. if the entry is found
3. Directory_Entry’s get_number function retrieves the number, which is

returned to the caller.
else

4. The empty string is returned.

Function save
Function save creates an output file and then writes all information stored in the
array to this file. The file name is stored in data field source_name. The algorithm
for the save function follows.

Algorithm for save
1. Create an ofstream object associated with the file.
2. for each entry in the array
3. Call get_name to get the name from the entry.
4. Write the name on a line.
5. Call get_number to get the number from the entry.
6. Write the number on a line.
7. Close the ofstream object.

Figure 1.16 shows the final class diagram with the additional functions.

1.6 Design of an Array-Based Phone Directory 113

F I G U R E 1 . 1 6
Phone Directory Application Class Diagram: Revision 3

Directory_Entry

sends command

User

main()
process_commands()

- string name
- string number

+ Directory_Entry(string name, string number)
+ string get_name() const
+ string get_number() const
+ void set_number(const string& new_number)

Array_Based_PD

 PD_Application

load_data()
add_or_change_entry()
lookup_entry()
remove_entry()
save()

- int size
- int capacity
- Directory_Entry* the_directory
- string source_name
- bool modified

+ load_data()
+ add_or_change_entry()
+ lookup_entry()
+ remove_entry()
+ save()
- add()
- find()
- reallocate()

‹‹interface››
Phone_Directory

updates

E X E R C I S E S F O R S E C T I O N 1 . 6

S E L F - C H E C K

1. Write the algorithm for the use case “Remove entry”.

P R O G R A M M I N G

1. Code class Directory_Entry.

114 Chapter 1 Introduction to Software Design

1.7 Implementing and Testing the Array-Based Phone Directory

In this section, the case study continues to illustrate implementation and testing of
the array-based phone directory. We will describe this as the class Array_Based_PD.
The class definition will be in the file Array_Based_PD.h and the implementation in
the file Array_Based_PD.cpp. However, the name of the class will be
Phone_Directory. This allows the client programs to be written to use the interface
defined by the ADT. The client program will include Array_Based_PD.h to use this
particular implementation of the ADT and will link with the Array_Based_PD object
file. Later we will describe other implementations of the Phone_Directory. To
change the client to use the different implementation, we need only to change the
#include directive and link with the correct object file.

CASE STUDY Designing a Telephone Directory Program (cont.)

Implementation First we show the definition of class Phone_Directory (See Listing 1.9, file
Array_Based_PD.h). The data field declarations for the class are shown in the private
part of Listing 1.9. As previously described, we use the Javadoc or Doxygen style
for commenting the data fields.

L I S T I N G 1 . 9
Array_Based_PD.h

#ifndef ARRAY_BASED_PD_H_
#define ARRAY_BASED_PD_H_
#include <string>

/** Specification file for the array-based phone directory. */
class Phone_Directory {

public:
/** Construct an empty phone directory. */
Phone_Directory();

/** Destroy the phone directory when it is no longer needed. */
~Phone_Directory();

/** Load the data file containing the directory, or
establish a connection with the data source.
@param source_name The name of the file (data source)

with the phone directory entries.
*/
void load_data(const std::string& source_name);

1.7 Implementing and Testing the Array-Based Phone Directory 115

/** Look up an entry.
@param name The name of the person to look up
@return The number associated with that person

or an empty string if name is not in
the directory

*/
std::string lookup_entry(const std::string& name) const;

/** Changes the number associated with the given name to
the new value, or adds a new entry with this name and
number.
@param name The name of the person
@param number The new number
@return The old value of number or an empty string

if this is a new entry
*/
std::string add_or_change_entry(const std::string& name,

const std::string& number);

/** Removes the entry with the specified name from the directory.
@param name The name of the person
@return The person's name or an empty string if not in

the directory
*/
std::string remove_entry(const std::string& name);

/** Writes the contents of the directory to the data file. */
void save();

private:
// Insert the definition of the Directory_Entry class here.

// Private Functions
/** Searches the array of directory entries for the name.

@param name The name to be found
@return The index of the entry containing the name, or size

if the name is not found
*/
int find(const std::string& name) const;

/** Adds a new entry with the given name and number to the array
of directory entries.
@param name The name to be added
@param number The number to be added

*/
void add(const std::string& name, const std::string& number);

/** Removes the entry at the given index.
@param index The index of the entry to be removed

*/
void remove_entry(int index);

/** Creates a new array of directory entries with twice the
capacity of the current one.

*/
void reallocate();

116 Chapter 1 Introduction to Software Design

/** The number of entries in the directory. */
int size;
/** The current capacity of the array. */
int capacity;
/** Pointer to the array containing the directory data. */
Directory_Entry* the_directory;
/** The name of the data file that contains the directory data. */
std::string source_name;
/** Boolean flag to indicate whether the directory was

modified since it was either loaded or saved. */
bool modified;

};

#endif

Coding the Functions in the Implementation File
Table 1.13 reviews the private functions defined in file class Array_Based_PD.cpp.
They are private because they were not declared in the Phone_Directory interface
and should not be called by a client. Two of these, add and find, were discussed pre-
viously. Function reallocate will be discussed later in this section. Function
remove_entry is left as an exercise.

TA B L E 1 . 1 3
Private Functions of Array_Based_PD Class

Private Function Behavior

int find(string& name) const Searches the array of directory entries for the name.

void add(const string& name, Adds a new entry with the given name and number to the array
string& number) of directory entries.

void remove_entry(int index) Removes the entry at the given index from the directory array.

void reallocate() Creates a new array of directory entries with twice the capacity
of the current one.

The load_data Function
The load_data function (Listing 1.10) is called by the main function to read the ini-
tial directory data from an input file (parameter source_name). The data entry
process takes place in the while loop. The while loop implements Steps 4 through 6
of the algorithm for load_data shown earlier. This function reads each name and
number from two consecutive data lines and adds that entry to the array.

L I S T I N G 1 . 1 0
Function load_data from Array_Based_PD.cpp

/** Function to load the data file.
pre: The directory storage has been created and it is empty.

If the file exists, it consists of the name-number pairs
on adjacent lines.

post: The data from the file is loaded into the directory.
@param source_name The name of the data file

1.7 Implementing and Testing the Array-Based Phone Directory 117

*/
void Phone_Directory::load_data(const string& source_name)
{
// Remember the source name for use by save.
this->source_name = source_name;
// Create an input stream for this file.
ifstream in(source_name.c_str());
if (in) { // Stream exists.
string name;
string number;
while (getline(in, name)) {
if (getline(in, number)) {
add(name, number);

}
}
// Close the file.
in.close();

}
}

The getline function reads a line from an istream and returns it in a string object.
The istream is the returned value. If there is no more data to be read, the istream
is returned in the fail state, so we exit the while loop. Note that we combined the
call to getline and an implicit call to fail in the while statement condition

while (getline(in, name)) {...}

Similarly we combined the call to getline and fail when reading the number in the
if condition

if (getline(in, number))

Therefore, we also exit the loop if a name was read but a number was not. If both a
name and number are read, then a new entry is added to the directory and we con-
tinue reading and adding entries.

If a file with name source_name is not found, we immediately return (no data to
read). (Later, we will write the new directory to file source_name.)

The add_or_change_entry Function
This function calls the internal function find to locate the name in the array.
Function find will either return the index of the entry, or return –1 (minus 1) to indi-
cate that the entry is not in the array. If the entry is in the array, that entry’s set_num-
ber function is called to change the number; otherwise a new entry is added by
calling the add function:

/** Add an entry or change an existing entry.
@param name The name of the person being added or changed
@param number The new number to be assigned
@return The old number or, if a new entry, an empty string

*/
string Phone_Directory::add_or_change_entry(const string& name,

const string& number)

118 Chapter 1 Introduction to Software Design

{
string old_number = "";
int index = find(name);
if (index != -1) {
old_number = the_directory[index].get_number();
the_directory[index].set_number(number);

} else {
add(name, number);

}
modified = true;
return old_number;

}

The lookup_entry Function
This function also uses the internal find function to locate the entry in the array. If
the entry is located, it is returned; otherwise the empty string is returned.

/** Look up an entry.
@param name The name of the person
@return The number. If not in the directory, an empty string

*/
string Phone_Directory::lookup_entry(const string& name) const {
int index = find(name);
if (index != -1) {
return the_directory[index].get_number();

} else {
return "";

}
}

The save Function
If the directory has not been modified, function save does nothing. Otherwise it cre-
ates an ofstream object and writes all phone directory entries to it. The output file
name is the same as the input file name (source_name), so an existing directory file
will be overwritten. The for statement writes the entries.

/** Function to save the directory.
pre: The directory has been loaded with data
post: Contents of directory written back to the file in the

form of name-number pairs on adjacent lines.
modified is reset to false.

*/
void Phone_Directory::save() {
if (modified) { // If not modified, do nothing
// Create an output stream.
ofstream out(source_name.c_str());
for (int i = 0; i < size; i++) {
out << the_directory[i].get_name() << endl;
out << the_directory[i].get_number() << endl;

}
// Close the output stream.
out.close();
modified = false;

}
}

1.7 Implementing and Testing the Array-Based Phone Directory 119

The find Function
The find function uses a for loop to search the array for the requested name. If
located, its index is returned; otherwise –1 is returned.

/** Search the array for a given name.
@param name The name to be found
@return The index of the entry containing this name

or -1 if the name is not present
*/
int Phone_Directory::find(const string& name) const {
for (int i = 0; i < size; i++) {
if (the_directory[i].get_name() == name)
return i;

}
return -1;

}

The add Function
The add function checks to see whether there is room in the array by comparing the
size to the capacity. If the size is less than the capacity, the new entry is stored at
the end of the array and size is incremented by one after the entry is stored (size++).
If the size is greater than or equal to the capacity, then the reallocate function is
called to increase the size of the array before the new item is inserted.

/** Add a new name-number pair to the directory.
@param name The name to be added
@param number The number to be added

*/
void Phone_Directory::add(const string& name,

const string& number) {
if (size == capacity) // If no room, reallocate.
reallocate();

// Increment size and add new entry.
the_directory[size] = Directory_Entry(name, number);
size++;

}

P I T F A L L

Returning –1 (Failure) Before Examining All Array Elements
A common logic error is to code the search loop for function find as follows:
for (int i = 0; i < size; i++) {
if (the_directory[i].get_name() == name) {
return i;

} else {
return –1; // Incorrect! – tests only one element.

}
}

This loop incorrectly returns a result after testing just the first element.

120 Chapter 1 Introduction to Software Design

The reallocate Function
This function allocates a new array whose size is twice the current array. We use a
for loop to copy the old array to the new array, and the_directory is changed to
point to the new array. The storage allocated to the old array is then returned to the
free-memory pool via the delete[] operator.

By doubling the size each time that a reallocation is necessary, we reduce the num-
ber of times we need to do this. Surprisingly, if we do this only fourteen times, we
can store over 1 million entries.

/** Create a new array of directory entries with twice the capacity
of the current one.

*/
void Phone_Directory::reallocate() {
// Double the capacity.
capacity *= 2;
// Create a new directory array.
Directory_Entry* new_directory = new Directory_Entry[capacity];
// Copy the old to the new
for (int i = 0; i < size; i++) {
new_directory[i] = the_directory[i];

}
// Return the memory occupied by the old directory.
delete[] the_directory;
// Set the_directory to point to the new directory.
the_directory = new_directory;

}

Using a Storage Structure Without Reallocation
In Chapter 4, you will study the vector data structure, which will enable you to
store a directory of increasing size without needing to reallocate storage. You will
see that we can change to a different data structure for storing the directory with
very little effort, because the problem solution has been so carefully designed. We
will only need to code the functions declared in the Phone_Directory ADT so that
they perform the same operations on a vector.

P I T F A L L

Failure to Delete Dynamically Allocated Arrays
If we do not return the storage allocated to the old array to the free-memory pool, this
memory is lost. This is known as a memory-leak. Although modern computers seem to
have infinite memory, there is in fact only a finite supply. Furthermore, programs that
leak memory can impact other programs running on the same computer. A program that
routinely leaks memory can eventually require you to reboot your computer.

1.8 Completing the Phone Directory Application 121

Testing Class Array_Based_PD
To test this class, you should run it with data files that are empty or that contain a
single name-and-number pair. You should also run it with data files that contain an
odd number of lines (ending with a name but no number). You should see what hap-
pens when the array is completely filled and you try to add a new entry. Does func-
tion reallocate properly double the array’s size? When you do a retrieval or an edit
operation, make sure you try to retrieve names that are not in the directory as well
as names that are in the directory. If an entry has been changed, verify that the new
number is retrieved. Finally, check that all new and edited entries are written cor-
rectly to the output file. We will discuss testing further in the next chapter.

E X E R C I S E S F O R S E C T I O N 1 . 7

P R O G R A M M I N G

1. Code the remove_entry function.

1.8 Completing the Phone Directory Application

So far we have described the main function and the Phone_Directory ADT. The main
function creates a Phone_Directory object, calls its load_data function, and then
calls the process_commands function.

CASE STUDY Designing a Telephone Directory Program (cont.)

Analysis The process_commmands function is declared as follows:
void process_commands(Phone_Directory the_directory);

The interface enables clients to use function process_commands without knowing the
details of its implementation (information hiding). We will introduce additional
functions that are called by process_commands to perform its tasks.

The function process_commands should present a menu of choices to the user:

• Add or Change an Entry
• Look Up an Entry
• Remove an Entry
• Save the Directory Data
• Exit the Program

122 Chapter 1 Introduction to Software Design

Design The function process_commands will use a “menu-driven” loop to control the inter-
action with the user. After each command is processed, the menu of choices is dis-
played again. This process continues until the user selects “Exit”.

do {
// Get the action to perform from the user.
// The user’s choice will be a number from 0 through 4.
...
switch (choice) {
case 0: do_add_change_entry(); break;
case 1: do_lookup_entry(); break;
case 2: do_remove_entry(); break;
case 3: do_save(); break;
case 4: do_save(); break;

}
} while (choice < NUM_COMMANDS - 1);

The function process_commands calls a function shown in the foregoing switch state-
ment to perform the user’s choice. Note that function do_save is called by the last
two cases. We discuss the design and coding of these functions next.

Implementation Listing 1.11 shows the code for the PD_Application. This program uses cout to dis-
play the menu of choices and results. It also uses cin to read data from the user. It
begins with forward definitions of the functions that are called in the switch state-
ment. C++ functions must be declared in a function prototype that appears before
the first use of the function. The prototype consists of the heading of the function
only.

Function process_commands
The function process_commands begins by displaying the menu:

Select: 0 Add/Change Entry
Select: 1 Look Up Entry
Select: 2 Remove Entry
Select: 3 Save Directory
Select: 4 Exit

The first statement below
cin >> choice;
cin.ignore(numeric_limits<int>::max(), '\n');

reads the user’s choice (an integer) from the console. The second statements skips
over the newline character that follows the integer.

Function do_add_change_entry
The do_add_change_entry function requests the name followed by the number. The
Phone_Directory.add_or_change_entry function is called after values are entered for
the name and number. A return value of an empty string indicates that this is a new
entry, and a confirmation dialog is displayed as follows

Enter name: Quincy
Enter number: 555-111-3333
Quincy has been added to the directory

1.8 Completing the Phone Directory Application 123

If the name was already in the directory, the previous value of the number is
returned, and the confirmation shows both the old and new number as follows:

Enter name: Tom
Enter number: 123-456-7890
Tom has been changed in the directory
Old number was 444-555-6666

Function do_lookup_entry
The do_lookup_entry function uses the same prompt as do_add_change_entry to request
the name. The number is looked up by calling the Phone_Directory.lookup_entry func-
tion, and the result is displayed. If the name is not in the directory, a message is dis-
played. Examples of both cases follow:

Enter name: Tom
The number for Tom is 123-456-7890

Enter name: Dick
Dick is not in the directory

Function do_save
The do_save function calls the save function of the Phone_Directory.

L I S T I N G 1 . 1 1
PD_Application.cpp

/** Phone directory application that uses console I/O. */
#include "Array_Based_PD.h"
#include <iostream>
#include <istream>
#include <ostream>
#include <limits>
using namespace std;

// Forward declaration of functions
void process_commands(Phone_Directory&);
void do_add_change_entry(Phone_Directory&);
void do_lookup_entry(Phone_Directory&);
void do_remove_entry(Phone_Directory&);
void do_save(Phone_Directory&);

int main(int argc, char* argv[]) {
if (argc < 2) {
cerr << "Must specify the name of the data file"

<< " that contains the directory\n";
return 1;

}
Phone_Directory the_directory;
the_directory.load_data(argv[1]);
process_commands(the_directory);

}

124 Chapter 1 Introduction to Software Design

void process_commands(Phone_Directory& the_directory) {
string commands[] = {
"Add/Change Entry",
"Look Up Entry",
"Remove Entry",
"Save Directory",
"Exit" };

const int NUM_COMMANDS = 5;
int choice = NUM_COMMANDS - 1;
do {
for (int i = 0; i < NUM_COMMANDS; i++) {
cout << "Select: " << i << " " << commands[i] << "\n";

}
cin >> choice;
cin.ignore(numeric_limits<int>::max(), '\n');
switch (choice) {
case 0: do_add_change_entry(the_directory); break;
case 1: do_lookup_entry(the_directory); break;
case 2: do_remove_entry(the_directory); break;
case 3: do_save(the_directory); break;
case 4: do_save(the_directory); break;

}
} while (choice < NUM_COMMANDS - 1);

}

void do_add_change_entry(Phone_Directory& the_directory) {
string name;
string number;
cout << "Enter name: ";
getline(cin, name);
cout << "Enter number: ";
getline(cin, number);
string old_number =
the_directory.add_or_change_entry(name, number);

if (old_number != "") {
cout << name << " has been changed in the directory\n";
cout << "Old number was " << old_number << "\n";

} else {
cout << name << " has been added to the directory\n";

}
}

void do_lookup_entry(Phone_Directory& the_directory) {
string name;
cout << "Enter name: ";
getline(cin, name);
string number = the_directory.lookup_entry(name);
if (number != "") {
cout << "The number for " << name << " is " << number << "\n";

} else {
cout << name << " is not in the directory\n";

}
}

void do_remove_entry(Phone_Directory& the_directory) {
// Exercise

}

void do_save(Phone_Directory& the_directory) {
the_directory.save();

}

E X E R C I S E S F O R S E C T I O N 1 . 8

P R O G R A M M I N G

1. Code the do_remove_entry function.

C h a p t e r R e v i e w

◆ We discussed the software engineering process. We introduced two software life
cycle models (waterfall and Unified) and discussed the activities performed in each
stage of these models. In this text we will use a simplified five-step process for
developing software:

1. Requirements 4. Implementation
2. Analysis 5. Testing
3. Design

◆ Although these steps are shown in sequence, in reality there is quite a bit of inter-
action between them. During the design phase, you may need to go back and redo
the requirements and analysis steps. Of course, this is provided for in the full
Unified Model.

◆ Procedural abstraction, data abstraction, and information hiding are tools for
managing program complexity, so that progams can be designed as a collection of
separate but interacting classes. Procedural abstraction focuses on the operations
to be performed; data abstraction focuses on the data elements and their opera-
tions; information hiding means that users of a class or function need to know
only how to use the class or function, not how it is implemented.

◆ An Abstract Data Type (ADT) defines a set of objects and the operations that can
be performed on them. An ADT can have several classes that implement it (define
its data and operations).

◆ Use cases summarize the interaction between the user and the system during
requirements specification and analysis.

◆ UML class diagrams are used during the analysis and design phases to document
the interaction of classes with each other and with the user.

◆ Sequence diagrams and pseudocode can be used to describe the sequence of
actions performed by a program that is implemented as a collection of multiple
interacting classes. Sequence diagrams are employed during the design phase of
the software life cycle.

Chapter 1 Review 125

126 Chapter 1 Introduction to Software Design

Quick-Check Exercises
1. The disadvantage of the ______ model is that it assumes that the software life cycle

stages are performed in sequence and not revisited once completed. The Unified Model
consists of ______ and ______, and the system designer can work on more than one
______ during each iteration.

2. Procedural abstraction enables a system designer to model ______; data abstraction
focuses on the ______ and ______.

3. An ADT specifies a contract between the ______ and ______; a ______ implements the
ADT.

4. An ADT can be implemented by multiple classes (True/False).
5. A ______ is a statement that must be true before a ______ executes, and a ______ repre-

sents the ______ of executing a ______.
6. A ______ specifies the interaction between an external entity and a system.
7. ______ means that a class ______ does not need to know its implementation details.
8. ______ is a mixture of English and ______ used to specify an algorithm.

Answers to Quick-Check Exercises
1. The disadvantage of the waterfall model is that it assumes that the software life cycle

stages are perfromed in sequence and not revisited once completed. The Unified Model
consists of activities/workflows and phases, and the system designer can work on more
than one activity during each iteration.

2. Procedural abstraction enables a system designer to model processes/operations; data
abstraction focuses on the data elements and operations on that data.

3. An ADT specifies a contract between the developer and user; a class implements the
ADT.

4. True.
5. A precondition is a statement that must be true before a function executes, and a post-

condition represents the result of executing a function.
6. A use case specifies the interaction between an external entity and a system.
7. Information hiding means that a class user does not need to know its implementation

details.
8. Pseudocode is a mixture of English and programming language used to specify an

algorithm.

Review Questions
1. Explain why the principle of information hiding is important to the software designer.
2. Discuss the differences between the waterfall model and Unified Model of the software

life cycle.
3. Define the terms procedural abstraction and data abstraction.
4. Explain the role of function preconditions and postconditions.
5. What is the advantage of specifying an abstract data type instead of just going ahead

and implementing a class?
6. Define an ADT Money that has operations for arithmetic operations (addition, subtrac-

tion, multiplication, and division) on real numbers having exactly two digits to the right

Chapter 1 Review 127

of the decimal point, as well as functions for representing a Money object as a string and
as a real number. Also include the operators == and < for this ADT.

7. Answer Review Question 6 for an ADT Complex that has operations for arithmetic
operations on a complex number (a number with a real and imaginary part). Assume
that the same operations (+, –, *, /) are supported. Also define the == and != operators
and overload the ostream extraction operator.

Programming Projects
1. Modify the telephone directory project in this chapter so that it could be used by a com-

pany. Each employee’s information should contain a name, job description, telephone
number, and room number. Assume that the information for each person is available on
a single line of a data file in the form last name, first name, job description, phone num-
ber, room number with commas as separators between data items. Provide a submenu
for the edit operation that allows the user to edit any of the person’s data fields. After
using the directory and updating it, save the data file in the same format as before.

2. Follow the software development model illustrated in this chapter to design and imple-
ment an array-based program application that manages a collection of DVDs. The data
for each DVD will consist of a title, a category, running time, year of release, and price.
Use a file to save the collection after it has been updated. The user should be able to add
new DVDs to the collection, remove a DVD, edit the information stored for a DVD, list
all DVDs in a specified category, and retrieve and display the information saved for a
DVD given its title. Also, the user should be able to sort the collection of DVDs by year
or by title.

3. Follow the software development model illustrated in this chapter to design and imple-
ment an array-based program application that manages your personal library. The data
for each book will consist of a title, author, number of pages, year of publication, price,
and the name of the person who has borrowed it (if any). Use a file to save the collec-
tion after it has been updated. The user should be able to add new books to the collec-
tion, remove a book, edit the information stored for a book, list all books by a specified
author, list all books loaned to a particular person, and retrieve and display the informa-
tion saved for a book given its title. Also, the user should be able to sort the collection
of books by author or by title.

4. Assume that you have decided to loan DVDs in your DVD collection to friends (see
Project 2) but just one DVD at a time to each friend. Assume that you also have a col-
lection of friends. For each friend, you need to store the friend’s name and phone num-
ber and the number of the DVD your friend has borrowed (–1 if none). Besides
managing your DVD collection as in Project 2, you should also be able to manage your
list of friends (add friend, edit friend, and so on). One of the edit operations should
allow your friend to return a DVD or to exchange it for another. You should also be
able to display each friend and the name of the DVD that the friend currently has (if
any). Draw UML class diagrams before you start to code the program.

5. Develop a program that could be used to determine election results for a town. Assume
that the town is divided into a number of precincts (an input item) and that the number
of candidates is variable (an input item). The votes received for each candidate by
precinct should be stored in a two-dimensional array that is part of class
Vote_Tabulation. Your program should allow its user to issue any of the following
instructions:

• Load the vote data from a file
• Load the vote data interactively
• Edit the vote data interactively to account for absentee ballots just received
• Request a table showing the raw vote results by precinct and candidate
• Request a table showing the percentage of votes by precinct and candidate
• Request a table showing the raw vote results by candidate and precinct
• Request a table showing the precentage of votes by candidate and precinct
• Display the top n vote getters for the township and their results in decreasing order,

where n is a data item
6. Develop a program that could be used as a point-of-order inventory system. Read in a

database from a file that represents the store inventory. Each item consists of an ID, a
description, a price, a quantity on hand, and a reorder point. Assume that the database
can be updated at a terminal by the operator when a customer purchases an item. The
quantity purchased for an item is deducted from that item’s quantity (if sufficient) and a
register receipt is displayed after all purchases are entered. An operator can also process
the return of an item by adding the quantity returned to the inventory. A register receipt
should also be displayed for a return. Finally, the operator can process new items
received from a supplier by adding the items to the database. It should also be possible
for an operator to update the price of an item, provided the operator enters the correct
security key. Also, the operator should be able to display a list of all items whose quan-
tity on hand is less than the reorder point for that item.

7. Develop a sales-tracking program that enables a company to keep track of its sales
force’s performance by quarter. The program should read in each person’s name and the
past performance of that salesperson for the last n quarters, where n is a data item. The
operator should be able to enter the results for each person for the current quarter inter-
actively. The operator should be able to add a new salesperson to the system (past per-
formances set to 0) and edit the information stored for a salesperson. The operator
should be able to request any of the following tables:
• Total sales by quarter (for all quarters or for a specified quarter)
• Sales for each person by quarter (for all quarters or for a specified quarter)
• Rank of each person by quarter (for all quarters or for a specified quarter)
• A list of salespeople and amounts in decreasing order by quarter (for all quarters or

for a specified quarter)

128 Chapter 1 Introduction to Software Design

C h a p t e r O b j e c t i v e s

◆ To understand the differences between the three categories of program errors
◆ To understand what it means to throw an exception and how to throw an exception in

a function
◆ To understand the effect of an uncaught exception and why you should catch

exceptions
◆ To learn how to catch and process exceptions
◆ To understand different testing strategies and when and how they are performed
◆ To learn how to write special functions to test other functions and classes
◆ To become familiar with debugging techniques and debugger programs
◆ To be introduced to the process of program verification and the use of assertions and

loop invariants
◆ To understand the meaning of big-O notation and how it is used to analyze an algo-

rithm’s efficiency

129

Program Correctness
and Efficiency

C h a p t e r 2

This chapter discusses program correctness and efficiency. You will learn about
program defects and how to avoid them in your programs: through careful
program design and by using other members of your programming team to

help detect errors in logic before they become part of the code. As in all other situ-
ations in life, early detection leads to the best results.

You will study the different kinds of errors that can occur in programs: syntax
errors, run-time errors or exceptions, and logic errors. You will learn about the dif-
ferent kinds of exceptions in C++, how to handle exceptions in programs, and the
benefit of doing so.

The chapter discusses program testing in some detail. You will learn how to gen-
erate a proper test plan and the differences between unit and integration testing as

they apply to an object-oriented design. You will also learn how to use drivers and
stubs, special functions that are written to test other functions and classes.

You will learn how to detect errors during debugging and techniques for gener-
ating diagnostic information to help in debugging. You will also see what features
are available in debugger programs to help with this process.

You will also see how formal verification can be used to help you reason about
a program. We don’t expect you to write a program like a mathematical proof, but
you can use these ideas to help in the design and documentation of your programs
and to increase your confidence that critical parts of programs operate as intended.

Finally, you will learn about algorithm efficiency and how to characterize the
efficiency of an algorithm. You will learn about big-O notation, which you can use
to compare the relative efficiency of different algorithms.

130 Chapter 2 Program Correctness and Efficiency

P r o g r a m C o r r e c t n e s s a n d E f f i c i e n c y

2.1 Program Defects and “Bugs”
2.2 Exceptions
2.3 Testing Programs
2.4 Debugging a Program
2.5 Reasoning about Programs: Assertions and Loop Invariants
2.6 Efficiency of Algorithms

2.1 Program Defects and “Bugs”

This chapter is about program errors or defects and how to avoid them. It does not
matter much whether a program runs efficiently if it does not do what it is supposed
to do. Very often, defects appear in a software product after it is delivered, some-
times with disastrous results. Some notable software defects have caused power
brownouts, telephone network saturation, space flight delays, loss of spacecraft,
and even loss of life.

One way to show that a program is correct is by thorough testing, but it is difficult to
determine how much testing needs to be done. In fact, testing can never demonstrate
the complete absence of defects. Furthermore, in some situations it is very difficult to
test a software product completely in the environment in which it is used, such as soft-
ware that controls a missile or prevents a meltdown in a nuclear power plant.

You may also hear the term “bug” used to refer to a software defect. “Debugging”
is a commonly used term for removing defects, and a debugger is a commonly used
testing tool that helps find defects, as we discuss in Section 2.4. Because of society’s
ever-increasing dependence on computer systems, however, many software profes-
sionals have come to believe that calling software defects “bugs” tends to trivialize
their serious consequences.

Careful design and careful testing can reduce program defects. Obviously, it is much
easier to eliminate defects by design rather than by removing them later through
testing.

There are three kinds of defects or errors that you might encounter:

• Syntax errors
• Run-time errors or exceptions
• Logic errors

Syntax Errors
Syntax errors are mistakes in your use of the grammar (or syntax) of the C++ lan-
guage (for example, omitting a closing }). The C++ compiler will detect most syntax
errors during compilation and will require you to correct them before it can success-
fully compile your program. The following are some other common syntax errors:

• Omitting or misplacing braces that bracket compound statements
• Invoking a member function that is not defined for the object it is applied to
• Not declaring a variable before using it
• Providing multiple declarations of a variable
• Not assigning a value to a local variable before referencing it
• Not returning a value from a function whose result type is not void

Some syntax errors are the result of typographical errors (for example, using =
where you intended to use ==, misspelling a variable name, or typing { instead of }
or [).

The compiler does not detect all typographical errors. For example, using = where
you intended to use == is generally still valid syntax, but not what you intended.
This will result in the computer performing a different operation from the one
intended (assignment instead of comparison). Because a syntactically correct pro-
gram can contain errors, careful review and testing are essential.

Run-time Errors
Run-time errors occur during program execution. A run-time error occurs when the
computer or the C++ run-time library detects an operation that it knows to be incor-
rect. Table 2.1 shows some examples of common run-time errors. Most run-time
errors will cause the operating system or run-time library to issue an error message
and halt your program. The behavior will be different for different computers, oper-
ating systems, and compilers. This is a “good news, bad news” situation. The good
news is that the error has been detected. The bad news is that your program is no
longer executing. We will discuss exceptions in more detail in Sections 2.2 and 2.3
and show how to prevent the bad-news situation from occurring. Following are
brief discussions and examples of some of the errors listed in the table.

Division by Zero
The C++ standard states that the result of division by zero is undefined. This is the
standard’s way of saying that something is an error but that the compiler and run-

2.1 Program Defects and “Bugs” 131

time system are not required to detect it. The behavior will depend on the computer,
operating system, and compiler being used.

When using an Intel x68 family of computers, if count represents the number of
items being processed and it is possible for count to be zero, then the assignment
statement

average = sum / count;

will cause a division-by-zero error. Under the Windows operating system this error
is indicated by a dialog box as follows:

Under the Linux operating system, you merely get the message:
Floating point exception

You can easily guard against such a division with an if statement so that the divi-
sion operation will not be performed when count is zero:

if (count == 0)
average = 0.0;

else
average = sum / count;

Normally you would compute an average as a double value, so you could cast an
int value in sum to type double before doing the division.

average = double(sum) / count;

On the Intel x86 this is not an error if count is 0. Instead, average is assigned a spe-
cial value, representing either positive or negative infinity, depending on the sign of
sum.

132 Chapter 2 Program Correctness and Efficiency

TA B L E 2 . 1
Common Run-time Errors in C++

Run-Time Error Cause

Division by zero Integer division by zero.

Array index out of bounds Attempt to access an array with an index value that is greater than the array’s
length (not detected by C++).

Null pointer reference Attempt to dereference a pointer whose value is NULL.

Array Index Out of Bounds
C++ does not check the validity of array subscripts. Accessing or modifying an array
element using a subscript that is negative or greater than or equal to the array’s
length is another one of these conditions that the standard says is undefined.

E X A M P L E 2 . 1 Suppose we define the array scores as follows:
int scores[500];

The subscripted variable scores[i] uses i (type int) as the array index. If i is less
than zero or greater than 499, a location outside of the array will be accessed or
modified. What happens is that some location in memory that is not part of the
array is either accessed or modified. If the location happens to be a location that is
not accessible to the program, then an error may be reported. Otherwise the pro-
gram may appear to work just fine. Or the program may exhibit strange behavior
at some point far removed from the location of the error.

Incorrect loop control parameters can cause array-index-out-of-bounds errors.
Carefully check the boundary values for an index that is also a loop control vari-
able. A common error is using the array size as the upper limit rather than the array
size minus 1.

E X A M P L E 2 . 2 If X_SIZE is the size of array x, the following loop would cause an array-index-out-
of-bounds error during the last pass, when i is equal to X_SIZE.

for (int i = 0; i <= X_SIZE; i++)
x[i] = i * i;

You should replace the loop header with one of the following:.

for (int i = 0; i < X_SIZE; i++)
for (int i = 0; i <= X_SIZE - 1; i++)
for (int i = 0; i != X_SIZE; i++)

If an array index is passed as a function argument, the function should validate the
argument before using it as an array subscript. The next example shows one way to
guard against this type of error.

2.1 Program Defects and “Bugs” 133

P R O G R A M S T Y L E

Type Casting in C++ Versus C or Java
In the type cast
double(sum)

the target data type is used as an operator, and the expression being cast is enclosed in
parentheses. You could also use the C or Java form for type casting:
(double) sum

but it is not the preferred form.

E X A M P L E 2 . 3 Function set_element_of_x stores its second argument (val) in the element of array
x (a type int[] data field) selected by its first argument (index). The if statement
validates that index is in bounds before the assignment. The function returns a bool
value indicating whether or not the array element was changed. If the function did
not validate that index is in bounds, an out-of-bounds error could occur.

/** Stores val in the element of array x with subscript index.
@param index The subscript of element to be changed
@param val The value to be stored
@return true if val is stored; otherwise, false

*/
bool set_element_of_x(int index, int val) {
if (index >= 0 && index < X_SIZE) {
x[index] = val;
return true;

} else {
return false;

}
}

E X A M P L E 2 . 4 A common technique for communicating the name of a data file to a program is to
pass the file name as a parameter to function main. If you are running from the con-
sole window, you can do this by listing the file name on the command line that ini-
tiates program execution. If you are using an integrated deveopment environment
(IDE), you can enter parameters in a special window. When the main function exe-
cutes, any parameters are stored as strings in array argv. The name of the executable
file is stored in argv[0] followed by the arguments starting at argv[1]. The value of
the first parameter, argc, specifies the number of elements in array argv.

The following main function expects the second string to be the input file name, so
it contains an if statement that validates that at least two strings were passed to
array argv before the function attempts to store argv[1] in input_file_name. If a
parameter is not supplied, then we use the string "Phone.dat" as the default name
of the input file. Without the if statement, there would be an out-of-bounds error
when argv[1] was referenced and no parameters were passed.

int main(int argc, char* argv[]) {
string input_file_name;
if (argc > 1)
input_file_name = argv[1];

else
input_file_name = "Phone.dat";

...

134 Chapter 2 Program Correctness and Efficiency

Null Pointer
If you attempt to de-reference a null pointer, the operating system will generally
issue an error message and terminate the program. Under Windows the message is
a dialog box similar to the following:

Under Linux the typical message is
Segmentation fault

You can avoid this error by ensuring that pointers are not null before dereferencing
them.

2.1 Program Defects and “Bugs” 135

P R O G R A M S T Y L E

Using a bool Result to Indicate Success or Failure
What is gained by returning a bool value when we execute function set_element_of_x?
The caller of the function can use this result to display an error message to the program
user if desired. The following if statement applies function set_element_of_x to array
x and writes an error message to stream cerr:
if (!set_element_of_x(index, val))
cerr << "*** ERROR – index value " << index

<< " is out of bounds. ***\n";

P I T F A L L

Buffer Overruns Cause Security Holes
Many of the security holes in programs are due to buffer overruns, which are a type of
array-index-out-of-bounds error. A malicious program sends a large input stream to a
program that does not check to see that the data fits into the array allocated to receive
it. By modifying data outside of the allocated array, the malicious program is able to
take over control of the target computer.

E X A M P L E 2 . 5 The first of the following statements declares p to be a pointer variable that refer-
ences a type double value, and it initializes p to NULL. The second statement attempts
to store 15.5 in this variable by using the operator * to dereference p. Because p is
NULL, this will lead to a run-time error.

double *p = NULL;
*p = 15.5; // Invalid assignment – p is NULL

Before making the assignment, you must reset p to reference a memory cell that can
be used to store a type double value:

double *p = NULL;
p = new double;
*p = 15.5;

Logic Errors
Logic errors are the final category of error. A logic error occurs when the program-
mer/analyst has made a mistake in the design of a class or a class function or has
implemented an algorithm incorrectly. In either case, even if the C++ code compiles
and runs, it will not meet the specification for that function—that is, it will produce
incorrect results. If the user is fortunate, a logic error may cause a run-time error in
another function that relies on the results generated by the faulty function, but this
may not happen. Most logic errors do not cause syntax or run-time errors and, con-
sequently, are difficult to find. Some examples are given in the Pitfalls in this chapter.

Sometimes logic errors are found during testing by careful comparison of the actual
program output with the expected results. This can happen only if the tester pro-
vides test cases that cause execution of the incorrect portion of the algorithm. Also,
the tester must determine beforehand the output that should be generated, so that
the expected output can be compared with the actual output.

A worse scenario is when logic errors are encountered during real-world operation
of a program. There are many examples in which logic errors have made the popu-
lar news. The original Mars Lander spacecraft crashed because of inconsistent cal-
culations (feet versus meters). Billing programs have sent out bills for exorbitant

136 Chapter 2 Program Correctness and Efficiency

P R O G R A M S T Y L E

Initialize Pointers to NULL
Although your program crashes if it attempts to dereference a null pointer, this is much
better than having an error go unreported. C++ does not assign default values automati-
cally to pointers when they are allocated. Until a pointer is assigned a value, it may
point to anything at all. For this reason, it is a good practice to initialize a pointer to
NULL when you first declare it. This way, if you attempt to dereference such a pointer
before it is given an initial value, you will know about it.

amounts of money. Logic errors in automatic teller machine (ATM) programs or off-
track betting programs have caused machine owners to lose significant amounts of
money. Many popular operating systems have been released with logic errors that
have enabled hackers to access computers easily. One popular word processor, when
integrated with any document management system, frequently would “eat” the doc-
ument off the server and leave an empty file in its place. In the 1980s several patients
died after errors in the software that controlled therapeutic radiation machines gave
them massive overdoses. In August 2004, two of the four automobile recalls listed
in Consumer Reports were due to software errors: an automatic braking system and
an ignition control system. Both errors could lead to fatal accidents. To avoid these
kinds of catastrophes, software professionals must be very diligent about detecting
and correcting logic errors.

In Section 2.5 we show you how to reduce logic errors by carefully checking the pro-
gram design. We also show how to detect logic errors through testing.

2.1 Program Defects and “Bugs” 137

E X E R C I S E S F O R S E C T I O N 2 . 1

S E L F - C H E C K

1. Explain and correct any syntax errors in the following main function.
int main() {
int x = 3.45;
double w = x / 2;
char ch = 'a' + 'b';
if (x = y) {
int z = x++;

else
int z = y++;

}
cout << z << "***" << sqrt(z) << endl;

}

2. Identify any of the following statements that would result in a run-time error.
const int X_SIZE = 10;
int x[X_SIZE];
x[X_SIZE] = 5;
x[X_SIZE - 1] = -95;
x[0] = 7;
int n = 0;
x[n] = 10 / n;

P R O G R A M M I N G

1. Write a member function get_element_of_x that returns a type int value stored
in an array data field x of type int[]. The function argument is the subscript of
the value to be retrieved. Validate the argument to prevent an array-out-of-
bounds error. Return numeric_limits<int>::min() (defined in <limits>) if the
subscript is not valid.

2.2 Exceptions

Ways to Indicate an Error
There are many ways to indicate an error. Some examples are:

• Return a special value.
• Use a bool return value to indicate success or failure.
• Set a global variable.
• Print an error message.
• Print an error message and exit the program.
• Put an input or output stream in a fail state.

The first three allow you, as a user of the function that detects the error, the ability
to respond to the error. We illustrated how to use a bool return value in Example
2.3. We next show an example of returning a special value.

E X A M P L E 2 . 6 Assume function get_element_of_x(int index) returns the value of array element
x[index] if index is in bounds and returns numeric_limits<int>::min() (defined in
<limits>) if the argument is not valid. In the following fragment, we test the value
returned and attempt to recover from the error if it is numeric_limits<int>::min().

int value = get_element_of_x(i);
if (value > numeric_limits<int>::min()) {
// Do something with value
...

}
else {
// Recover from the error
...

}
// Continue normal processing

However, if there are several possible errors, this approach can result in a program
in which the main thread of execution is hard to follow. An alternative way to indi-
cate an error is through the use of exceptions. Exceptions are used to signal that an
error has occurred. You can insert code in your program that throws an exception
when a particular kind of error occurs. When an exception is thrown, the normal
flow of execution is interrupted. If there is no exception handler, then the program
terminates. In this case, throwing an exception is equivalent to printing an error mes-
sage and calling the exit function. However, by throwing an exception you give the
user of the function the opportunity to catch or handle the exception and perhaps
recover from the error. Next, we will discuss throwing and handling exceptions.

The throw Statement
In the following version of function get_element_of_x, the throw statement executes
when the value of index is out of bounds. It throws an out_of_range exception, cre-
ating an instance of this class. The message passed to the constructor gives the cause

138 Chapter 2 Program Correctness and Efficiency

of the exception and is stored in the exception object. It can be retrieved and dis-
played by the exception. Control is then passed to the exception handler for this
type of exception (discussed later) if one is available.

/** Gets the value in the element of array x with subscript index.
@param index The subscript of the element to be retrieved
@return the value stored at x[index] if index is in range
@throws a std::out_of_range exception if index is not in range

*/
int get_element_of_x(int index) {
if (index < 0 || index >= X_SIZE) {
throw std::out_of_range(
"In get_element_of_x, the value of index is out of range");

}
return x[index];

}

As is shown in the syntax box, the exception object can be of any type—for exam-
ple, a string literal (of type const char*) or a class instance (std::out_of_range).
The standard library includes classes that can be used to indicate exceptions. We dis-
cuss these later in this section. It is recommended that you use one of the standard
exceptions or a class derived from one of the standard exceptions.

2.2 Exceptions 139

SYNTAX The throw Statement

FORM:
throw expression;

EXAMPLES:
throw "The value of index is out of range";
throw std::out_of_range("The value of index is out of range");

MEANING:
The normal sequence of execution is interrupted, and control is transferred to the
nearest exception handler whose parameter type matches the type of the expression.
An exception handler is like a function, and the rules for matching an exception
handler are the same as the rules for matching an overloaded function. If the cur-
rent function body contains no such handler, then control is returned to the calling
function, and a search is made from the point of the call. This process is repeated
until the corresponding exception handler is found or until the main function is
reached. If no exception handler is found, then the program terminates.

Uncaught Exceptions
When an exception occurs that is not caught, the program stops and an error mes-
sage is displayed. This message is compiler- and operating-system dependent and
generally not very informative. The g++ compiler under Linux merely gives the
message

Aborted

and the Microsoft .NET C++ compiler gives the message
This application has requested the Runtime to terminate it in an
unusual way.
Please contact the application's support team for more information.

In the next few subsections you will see how to avoid the default behavior when an
exception is thrown. You will also see why it is advantageous to do this.

Catching and Handling Exceptions with try and catch Blocks
To avoid uncaught exceptions you write a try block that can throw an exception
and follow it with a catch block that actually catches an exception and handles it.

try {
val = get_element_of_x(10);

}
catch (std::out_of_range& ex) {
std::cerr << "Out of range exception occurred\n";
std::cerr << ex.what() << endl; // Display string stored in ex.
std::abort(); // Exit with an error indication.

}

If all statements in the try block body execute without error, the exception handler
is skipped. If an out_of_range exception is thrown, the try block body is exited and
the exception handler (the catch block) executes. The try block in the preceding
example will throw an exception if the argument, 10, in the function call
get_element_of_x(10) is out of range.

The heading for the catch block,
catch (std::out_of_range& ex) {

is similar to a function declaration. The parameter, ex, has the type
std::out_of_range. If an exception of this type is thrown in the try block, then the
exception object will be copied into the parameter ex, and the code in the body of
the exception handler will be executed.

This exception handler simply displays an error message and then exits with an
error indication. The line

std::cerr << ex.what() << endl; // Display string stored in ex

writes to the standard error stream cerr the string passed to object ex when it was
thrown by get_element_of_x: "In get_element_of_x, the value of index is out
of range". Note that the exception object is actually thrown (created) inside
function get_element_of_x but is handled by the catch block in the caller of
get_element_of_x.

Following a try block, there can be more than one catch block, each handling a dif-
ferent kind of exception. If so, they are checked in the order in which they appear.

Although the earlier catch block handles the exception, it basically duplicates the
default behavior for uncaught exceptions with a slightly more informative error
message. Next, we show you how to use the catch block to recover from errors and
continue execution of your program.

140 Chapter 2 Program Correctness and Efficiency

SYNTAX The try Block

FORM:
try {

code that may throw an exception
}
catch (type-1 parameter-1) {

statements to process type-1
}
catch (type-2 parameter-2) {

statements to process type-2
}
...
catch (type-n parameter-n)

statements to process type-n
}

EXAMPLE:
try {
val = get_element_of_x(10);

}
catch (std::out_of_range& ex) {
cerr << "Out of range exception occurred\n";
cerr << ex.what() << endl;
abort(); // Exit with an error indication.

}

MEANING:
The statements in the try block execute through to completion unless an excep-
tion is thrown. If there is an exception handler for the exception, its body exe-
cutes to completion. If there is no exception handler that matches the exception,
then the exception is passed up the call chain until either it is caught by some
other function in the call chain or it is processed by the run-time library as an
uncaught exception. If there are multiple catch blocks, they are checked in the
order in which they appear.

Standard Exceptions
The C++ library defines several standard exception classes, which it uses to report
errors. These are listed in Table 2.2. Other than ios_base::failure, these exception
classes are defined in the header <stdexcept>. The ios_base::failure class is
defined in the header <ios> inside the class ios_base.

Table 2.2 shows each exception class, the function(s) or operator(s) that throws each
class of exception (the third column), and the reason it is thrown. Not all of these
exceptions are used by the language or the library. The errors domain_error and
range_error are indicated by the C mathematics functions (which C++ includes) by
setting a global variable. In a function with calls to these functions, the programmer
could report errors to higher-level functions by throwing these exceptions. The over-
flow_error and underflow_error are reported by the floating-point operators in
most implementations. The function to detect them varies by implementation.

2.2 Exceptions 141

TA B L E 2 . 2
Standard Exceptions

142 Chapter 2 Program Correctness and Efficiency

Standard Exception Reason Thrown Thrown by

bad_alloc Memory is not available. The new operator.

bad_cast Attempt to cast a reference that is The dynamic_cast operator.
not of the target type.

bad_typeid Attempt to obtain the typeid of The typeid operator.
a null pointer or of the default
typeid object.

domain_error Function not defined for the input Not thrown by a C++ operator or standard
value (for example, attempting to library function.
take the square root of a negative
number).

invalid_argument Invalid function argument. The bitset constructor takes a string argu-
ment. This string should contain only the char-
acters 1 or 0. If any other characters appear, the
invalid_argument exception will be thrown.

length_error Attempt to create a string or vector The string and vector classes.
that is larger than the maximum
allowed size.

out_of_range Index that is either negative or The at member function for the string, vector,
larger than size(). and deque classes. Also thrown by other string

functions such as substr that take an index
parameter. It is not thrown by the subscript oper-
ator (operator[]).

ios_base::failure An error flag being set that matches Input/output stream objects after erroneous
one set earlier by a call to the input/output operations.
exceptions function.

range_error Output of a function that is larger Not thrown by a C++ operator or standard
or smaller than can be represented library function.
by the output data type.

overflow_error Result that is larger than can be If the bit string contained in a bitset is larger
represented by the output data type. than the value of an unsigned long, then the

overflow_error exception will be thrown by the
ulong member function.

underflow_error Result that is smaller than can be Not thrown by a C++ operator or standard
represented by the output data type. library function.

E X A M P L E 2 . 7 The string function substr extracts a substring from the string object it is applied
to starting at the index pos. If pos is greater than the length of the string, the
out_of_range exception is thrown. The catch block in the following program han-
dles this exception.

/** Program to demonstrate the out_of_range exception thrown
by the string.substr function if the start index is greater
than the length of the string.

*/
#include <string>
#include <stdexcept>
#include <iostream>

using namespace std;

int main() {
// Enter a string and substring start index.
string a_string;
int start_pos;
cout << "Type in a string: ";
getline(cin, a_string);
cout << "Enter start position of a substring: ";
cin >> start_pos;

try {
cout << "The substring is "

<< a_string.substr(start_pos) << endl;
return 0;

} catch (out_of_range& ex) {
cerr << "*** Out_of_range exception thrown for start position "

<< start_pos << "\n"
<< ex.what() << endl;

return 1;
}

}

The user is asked to enter a string and then the starting index of a substring. If the
starting positon is valid, the substring is displayed:

Type in a string: unnecessary roughness
Enter start position of a substring: 2
The substring is necessary roughness

If the starting position is not valid, an error message is displayed and an error return
occurs:

Type in a string: unnecessary roughness
Enter start position of a substring: 30
*** Out_of_range exception thrown for start position 30
basic_string::substr

Handling Exceptions to Recover from Errors
In addition to reporting errors, exceptions provide us with the opportunity to
recover from errors. One common source of errors is user input. When you read a
value using the istream extraction operator, if the input is not in the correct format,
the stream is placed in the fail state. For example, we can use the following sequence
to verify that input was read correctly.

if (cin >> i) {
// Input of i was successful – process i

} else {
// Problem reading i – attempt to recover

}

2.2 Exceptions 143

If the attempt to read a value into variable i is unsuccessful, the input stream cin is
placed in the fail state and the condition (cin >> i) is false. However, this approach
requires you to test the state of the input stream after each input operation.

Another approach is to have the istream object throw the exception
std::ios_base::failure when an input error occurs. This is done by calling the
istream member function exceptions and passing it the error flags that will cause
an exception to be thrown when they are set by a failed input operation. The call

cin.exceptions(ios_base::failbit);

will cause the istream cin to throw the ios_base::failure exception when the error
flag ios_base::failbit is set. This happens when the stream enters the fail state as
a result of incorrectly formatted input.

E X A M P L E 2 . 8 Function read_int (Listing 2.1) returns the integer value that was typed into the
console by the program user. The function argument is the prompt string.

The while loop repetition condition (true) ensures that the try block will execute
“forever” or until the user enters a correct data item. The statements

cout << prompt;
cin >> num;

display the prompt string and read the input into the variable num, if the input con-
tains only digit characters. If not, an ios_base::failure exception is thrown, which
is handled by the exception handler. The exception handler displays an error message.
The user then has another opportunity to enter a valid numeric string. The statement

cin.clear();

clears the error flags. The statement
cin.ignore(numeric_limits<int>::max(), '\n');

skips over the rest of the data on the current data line. The user then has another
opportunity to enter a valid numeric string.

L I S T I N G 2 . 1
Function read_int

#include <string>
#include <iostream>
#include <stdexcept>
#include <limits>
#include <ios>

using namespace std;

/** Function to return an integer data value in response
to a prompt. If a non-number is entered (as when the
first character is not a digit) the function will
prompt for another input after discarding the
erroneous input.
@param prompt Message to be displayed
@return The first valid data value

144 Chapter 2 Program Correctness and Efficiency

*/
int read_int(const string& prompt) {
cin.exceptions(ios_base::failbit);
int num = 0;
while (true) { // Loop until valid input
try {
cout << prompt;
cin >> num;
return num;

} catch (ios_base::failure& ex) {
cout << "Bad numeric string -- try again\n";
// Reset the error flag
cin.clear();
// Skip current input line
cin.ignore(numeric_limits<int>::max(), '\n');

}
}

}

The Exception Class Hierarchy
As we will discuss in Chapter 3, one class may be derived from another. Such a class
inherits the member functions of the class from which it is derived. The standard
exception classes listed in Table 2.2 are all derived from the class exception, which
has a member function named what. All of the exception classes have a constructor
that takes a C-string argument. The value of this argument is saved in the exception
object and can be retrieved by calling member function what as shown earlier in
Example 2.7.

E X A M P L E 2 . 9 std::ios_base::failure is a class derived from std::exception. The two exception
handlers in the following code must appear in the sequence shown to avoid a warn-
ing message. The first exception handler handles a std::ios_base::failure, which
occurs when the format of the input is not correct. This exception handler sets the
value of age to DEFAULT_AGE, and the program continues. The second exception han-
dler processes any other standard exception, which indicates an unexpected error
condition. It outputs an error message, then the string passed to the exception object
(ex.what()), and then exits the program with an error indication (abort()).

try {
// Enter a value for age
age = read_int("Enter your age ");

} catch (std::ios_base::failure& f) {
cerr << "Invalid number format input\n";
age = DEFAULT_AGE;

} catch (std::exception& ex) {
cerr << "Fatal error occurred in read_int\n";
cerr << ex.what() << endl;
abort();

}

2.2 Exceptions 145

146 Chapter 2 Program Correctness and Efficiency

P I T F A L L

Unreachable Exception Handler
Note that only the first exception handler (catch block) that has an appropriate excep-
tion type executes. All other exception handlers are skipped. If an exception handler’s
parameter type is derived from the class in an earlier exception handler, the earlier
handler will match that type as well, and the later exception handler cannot execute. In
this case the C++ compiler will issue a warning message. To correct this error, switch the
order of the exception handlers so that the exception handler for the derived class type
comes first.

P R O G R A M S T Y L E

Using Exceptions to Enable Straightforward Code
In computer languages that did not provide exceptions, programmers had to incorpo-
rate error-checking logic throughout their code to check for many possibilities, some of
which were of low probability. The result was sometimes messy, as follows:
Step A
if (Step A successful) {

Step B
if (Step B successful) {

Step C
} else {

Report error in Step B
Clean up after Step A

}
} else {

Report error in Step A
}

With exceptions this becomes much cleaner, as follows:
try {

Step A
Step B
Step C

} catch (exception indicating Step B failed) {
Report error in Step B
Clean up after Step A

} catch (exception indicating Step A failed) {
Report error in Step A

}

Catching All Exceptions
Exceptions may be of any type. Although it is recommended that all exceptions be
derived from the std::exception class, there is no guarantee for this. Thus, even
though you include an exception handler for std::exception, you might still have
an uncaught exception. C++ allows you to define an exception handler that will
catch all exceptions by using ... as the exception handler parameter. Unfortunately,
in that case C++ does not provide a way to determine what exception was caught.
Thus, to catch all possible exceptions, we add an additional catch clause to the code
in Example 2.9:

try {
// Enter a value for age
age = read_int("Enter your age ");

} catch (std::ios_base::failure& f) {
cerr << "Invalid number format input\n";
age = DEFAULT_AGE;

} catch (std::exception& ex) {
cerr << "Fatal error occurred in read_int\n";
cerr << ex.what() << '\n';
abort();

} catch (...) {
cerr << "Undefined exception occurred in read_int\n";
abort();

}

E X E R C I S E S F O R S E C T I O N 2 . 2

S E L F - C H E C K

1. For each of the following errors, what kind of exception should be thrown?
a. A subscript value that is equal to the number of elements in the array
b. An index for a string that is less than 0
c. A function return value that is too small to be represented
d. A function return value that is too large to be represented
e. An input operation that reads an invalid numeric string
f. Attempting to open an input stream whose associated disk file cannot be

found
g. Attempting to allocate storage for a dynamic array when there is not sufficient

memory available

P R O G R A M M I N G

1. Rewrite function set_element_of_x in Example 2.3 to throw an exception if the
argument passed to index is out of range.

2. Write a read_int function with three parameters, where the first parameter in the
prompt string, the second parameter is the smallest acceptable integer, and the
third parameter is the largest acceptable integer. Function read_int should return

2.2 Exceptions 147

the first data value that is within the range specified by its second and third
parameters. It should throw a std::invalid_argument exception if the range of
integer values is empty. It should throw a std::ios_base::failure exception if
the input stream enters a bad state (unrecoverable error) or if the end of file is
encountered. If the input is not in a valid format (input stream enters a fail state),
the stream should be reset, the current input line discarded, and the user
prompted to try again.

3. Write try-catch blocks that call function read_int from Programming Exercise 2
and handle any exceptions that may be thrown.

2.3 Testing Programs

After you have removed all syntax errors and run-time errors, a program will exe-
cute through to normal completion. That is no guarantee that the program does not
contain logic errors, however. Because logic errors do not usually cause an error
message to be displayed, they frequently go undetected.

Logic errors can be difficult to detect and isolate. If the logic error occurs in a part
of the program that always executes, then each run of the program may generate
incorrect results. Although this sounds bad, it is actually the best situation, because
the error is more likely to be detected if it occurs frequently. If the value that is being
computed incorrectly is always displayed, it will be easier to find the logic error.
However, if this value is part of a computation and is not displayed, it will be very
difficult to track down the error and the section of code that caused it.

The worst kind of logic error is one that occurs in a relatively obscure part of the
code that is infrequently executed. If the test data set does not exercise this section
of code, the error will not occur during normal program testing. Therefore, the soft-
ware product will be delivered to its users with a hidden defect. Once that happens,
it becomes much more difficult to detect and correct the problem.

Structured Walkthroughs
Most logic errors arise during the design phase and are the result of an incorrect
algorithm. They can, however, also result from typographical errors during coding
that do not cause syntax or run-time errors. One form of testing that does not
involve execution of the program is checking the algorithm carefully before imple-
menting it and checking that the program implements the algorithm. This can be
done by hand-tracing the algorithm or program, carefully simulating the execution
of each step, and comparing its execution result to one that is calculated by hand.

Hand-tracing an algorithm or program is complicated by the fact that the designer
often anticipates what a step should do. Because the designer knows the purpose of
each step, it requires quite a bit of discipline to simulate each individual step care-
fully. For this reason, programmers often work in teams. The designer must explain
the algorithm or program to the other team members and simulate its execution

148 Chapter 2 Program Correctness and Efficiency

with the other team members looking on (called a structured walkthrough).
Industrial experience has shown that the use of structured walkthroughs is effective
in detecting errors and removing defects.

Levels and Types of Testing
Testing is the process of exercising a program (or part of a program) under con-
trolled conditions and verifying that the results are as expected. The purpose of test-
ing is to detect program defects after all syntax errrors have been removed and the
program compiles successfully. The more thorough the testing, the greater the like-
lihood that the defects will be found. However, no amount of testing can guarantee
the absence of defects in sufficiently complex programs. The number of test cases
required to test all possible inputs and states in which each function may execute
can quickly become prohibitively large. That is one reason why commercial soft-
ware products have successive versions or patches that the user must install. Version
n usually corrects the errors that were discovered in version n – 1.

Testing is generally done at the following levels:

• Unit testing refers to testing the smallest testable piece of the software. In
object-oriented design (OOD), the unit will be either a function or a class. The
complexity of a function determines whether it should be tested as a separate
unit or whether it can be tested as part of its class.

• Integration testing involves testing the interactions among units. If the unit is
the function, then integration testing includes testing interactions among func-
tions within a class. However, generally it involves testing interactions among
several classes.

• System testing is the testing of the whole program in the context in which it will
be used. A program is generally part of a collection of other programs and hard-
ware, called a system. Sometimes a program will work correctly until some other
software is loaded onto the system, and then it will fail for no apparent reason.

• Acceptance testing is system testing designed to show that the program meets
its functional requirements. It generally involves use of the system in the real
environment or as close to the real environment as possible.

There are two types of testing:

• Black-box testing tests the item (function, class, or program) based on its inter-
faces and functional requirements. This is also called closed-box testing or
functional testing. For testing a function, the input parameters are varied over
their allowed range and the results compared against independently calculated
results. In addition, values outside the allowed range are tested to ensure that
the function responds as specified (for example, throws an exception or com-
putes a nominal value). Also, the inputs to a function are not only the explicit
parameters of the function but also the values of the data fields of the implicit
parameter and any global variables that the function accesses.

• White-box testing tests the software element (function, class, or program) using
knowledge of its internal structure. Other terms used for this type of testing are
glass-box testing, open-box testing, and coverage testing. The goal is to exer-

2.3 Testing Programs 149

cise as many of the possible paths through the element as is practical. There are
various degrees of coverage. The simplest is statement coverage; full statement
coverage ensures that each statement is executed at least once. Full branch cov-
erage ensures that each choice of each branch (if statements, switch state-
ments, and loops) is taken. For example, if there are only if statements, and
they are not nested, then each if statement is tried with its condition true and
with its condition false. This could possibly be done with two test cases: one
with all of the if conditions true and one with them all false. Full path cover-
age tests each path through a function. If there are n if statements and the if
statements are not nested, each condition has two possible values, so there
could be 2n possible paths, so full path coverage could require 2n test cases.

E X A M P L E 2 . 1 0 Function test_function has a nested if statement and displays one of four mes-
sages, Path 1 through Path 4, depending on which path is followed. The values
passed as its arguments determine the path.

#include <iostream>
using std::cout;

void test_function(char a, char b) {
if (a < 'M') {
if (b < 'X') {
cout << "Path 1\n";

} else {
cout << "Path 2\n";

}
} else {
if (b < 'C') {
cout << "Path 3\n";

} else {
cout << "Path 4\n";

}
}

}

To test this function, we need to pass it argument values that cause it to follow all
of the different paths. Table 2.3 shows some possible values and the corresponding
paths:

TA B L E 2 . 3
Testing All Paths of test_function

150 Chapter 2 Program Correctness and Efficiency

a b Message

'A' 'A' Path 1

'A' 'Z' Path 2

'Z' 'A' Path 3

'Z' 'Z' Path 4

The values chosen for a and b in Table 2.3 are the smallest and largest uppercase let-
ters. For a more thorough test, you should see what happens when a and b are
passed values that are between A and Z. For example, what happens if the value of
a changes from L to M? We pick those values because the condition (a < 'M') has
different values for each of them.

Also, what happens when a and b are not uppercase letters? For example, if a and
b are both digit characters (for example, '2'), the Path 1 message should be dis-
played because the digit characters precede the uppercase letters (see A C++ Primer,
Table P.3). If a and b are both lowercase letters, the Path 4 message should be dis-
played. (Why?) If a is a digit and b is a lowercase letter, the Path 2 message should
be displayed. (Why?) As you can see, the number of test cases required to test even
a simple function like test_function thoroughly can become quite large.

Preparations for Testing
Although testing is usually done after each unit of the software is coded, a test plan
should be developed early in the design stage. Some aspects of a test plan include
deciding how the software will be tested, when the tests will occur, who will do the
testing, and what test data will be used. If the test plan is developed early in the
design stage, testing can take place concurrently with the design and coding. Again,
the earlier an error is detected, the easier and less expensive it is to correct it.

Another advantage of deciding on the test plan early is that this will encourage pro-
grammers to prepare for testing as they write their code. A good programmer will
practice defensive programming and include code that detects unexpected or invalid
data values. For example, if a function has the precondition

pre: n greater than zero.

you can place the assert statement
assert (n > 0);

at the beginning of the function. The assert macro will provide a diagnostic mes-
sage and terminate the program in the event that the argument passed to the func-
tion is invalid.

Similarly, if a data value being read from the keyboard is supposed to be between 0
and 40, a defensive programmer might read this value using a modified version of
the read_int function that has three parameters instead of one (see Programming
Exercise 2, Section 2.2). The first parameter would be the prompt string, the second
parameter would be the lower limit, and the third parameter would be the upper
limit.

int read_int(string prompt, int low, int high) { ... }

If an integer was read without error, the revised function would verify that this value
was in the desired range low to high before returning it. If not, the user would be
asked to enter a new number. The following function call could be used to read a
data value read between 0 and 40.

hours = read_int("Enter number of hours worked ", 0, 40);

2.3 Testing Programs 151

Testing Tips for Program Systems
Most of the time, you will be testing program systems that contain collections of
classes, each with several functions. We provide a list of testing tips to follow in
writing these functions next.

1. If the function implements an interface, the interface specification should docu-
ment the input parameters and the expected results.

2. Carefully document each function parameter and class attribute using comments
as you write the code. Also describe the function operation using documentation
comments, following the conventions discussed in Section 1.3.

3. Leave a trace of execution by displaying the function name as you enter it.
4. Display the values of all input parameters upon entry to a function. Also display

the values of any class attributes that are accessed by this function. Check that
these values make sense.

5. Display the values of all function outputs after returning from a function. Also,
display any class attributes that are modified by this function. Verify that these
values are correct by hand computation.

You should plan for testing as you write each module rather than after the fact.
Include the output statements required for Steps 2 through 4 in the original C++
code for the function. When you are satisfied that the function works as desired, you
can “remove” the testing statements. One efficient way to remove them is to enclose
them in an if (TESTING) block as follows:

if (TESTING) {
// Code that you wish to "remove"
...

}

You would then define TESTING at the beginning of the class as true to enable
testing,

static const bool TESTING = true;

or as false to disable testing,
static const bool TESTING = false;

If you need to, you can define different bool flags for different kinds of tests.

In Section 2.4 we discuss how to perform testing and debugging using a modern
debugger. You will be able to view the effect of each statement’s execution without
adding output statements to your code.

Developing the Test Data
The test data should be specified during the analysis and design phases. This should
be done for the different levels of testing: unit, integration, and system. In black-box
testing, we are concerned with the relationship between the unit inputs and outputs.
There should be test data to check for all expected inputs as well as unanticipated
data. The test plan should also specify the expected unit behavior and outputs for
each set of input data.

152 Chapter 2 Program Correctness and Efficiency

In white-box testing we are concerned with exercising alternative paths through the
code. Thus the test data should be designed to ensure that all if statement condi-
tions will evaluate to both true and false. For nested if statements, test different
combinations of true and false values. For switch statements, make sure that the
selector variable can take on all values listed as case labels and some that are not.

For loops, verify that the result is correct if an immediate exit occurs (zero repeti-
tions). Also verify that the result is correct if only one iteraton is performed and if
the maximum number of iterations is performed. Finally, verify that loop repetition
can always terminate.

Testing Boundary Conditions
When hand-tracing through an algorithm or performing white-box testing, you
must exercise all paths through the algorithm. It is also important to check special
cases, called boundary conditions, to make sure that the algorithm works for these
cases as well as the more common ones. For example, if you are testing a function
that searches for a particular target element in an array, the code may contain a
search loop such as

for (int i = 0; i < x_length; i++) {
if (x[i] == target)
return i;

}

Testing the boundary conditions means that you should make sure that the function
works for all the cases in the following list. The first four test the boundary conditions
for the loop and would be required in white-box testing. However, a program tester
using black-box testing should also test these four cases. The next case (target in the
middle) is not a boundary case, but it is a typical situation that should also be tested.
The rest are boundary conditions for an array search that should be tested in either
white-box or black-box testing.

• The target element is the first array element (x[0] == target is true).
• The target element is only in the last array element (x[x_length – 1] ==
target is true).

• The target element is not in the array (x[i] == target is always false).
• There are multiple occurrences of the target element (x[i] == target is true

for more than one value of i).
• The target element is somewhere in the middle of the array.
• The array has only one element.
• The array has no elements.

To carry out the test, you can write a main function that creates an array to be searched.
The easiest way to create such an array is to declare it using an initializer list. Listing
2.2 shows an array search function, and Listing 2.3 shows a main function that tests all
the listed cases for it. In function search, the array to be searched is the first parame-
ter, and the target of the search is the second parameter. The function either returns the
subscript of the first occurrence of the target, or –1 if the target is not present. The
value –1 is chosen because array subscripts are all greater than or equal to 0.

2.3 Testing Programs 153

The function verify is passed the array to be searched, the array length, the target
value, and the expected return value. It calls the search function and then prints the
actual and expected results.

int actual = search(x, x_length, target);
cout << "search(x, " << target << ") is "

<< actual << ", expected " << expected;

It then prints either ": Pass\n" or ": ****Fail\n" depending on whether or not
the expected value is equal to the actual value.

if (actual == expected)
cout << ": Pass\n";

else
cout << ": ****Fail\n";

There are calls to verify for each one of the test cases in the list. For example, the
first call,

verify(x, x_length, 5, 0);

searches array x for a target 5, which is expected to be at x[0]. (The fourth argu-
ment is therefore 0). The line displayed should be:

search(x, 5) is 0, expected 0: Pass

Figure 2.1 shows the result of a sample run. To verify that function search is cor-
rect, check for Pass at the end of each output line. For large-scale testing, you could
write a program to do this.

In test_array_search, the line
const int x_length = sizeof(x) / sizeof(int);

computes the number of items in the test array. The compile time function sizeof
returns the size of its argument in bytes. Therefore, sizeof(int) returns the size, in
bytes, of an int, and sizeof(x) returns the size of the array x. The quotient is the
number of items in array x.

L I S T I N G 2 . 2
array_search.cpp

/** Searches an array to find the first occurrence of a target.
@param x Array to search
@param x_length The length of the array
@param target Target to search for
@return The subscript of first occurrence if found;

otherwise, return -1.
*/
int search(int x[], int x_length, int target) {
for (int i = 0; i < x_length; i++) {
if (x[i] == target)
return i;

}

// target not found
return -1;

}

154 Chapter 2 Program Correctness and Efficiency

L I S T I N G 2 . 3
test_array_search.cpp

#include <iostream>
using std::cout;

// Declare function to be tested.
int search(int[], int, int);

// Declare verify function.
void verify(int[], int, int, int);

/** main function. */
int main() {
int x[] = {5, 12, 15, 4, 8, 12, 7}; // Array to search.
// Compute length of array.
const int x_length = sizeof(x) / sizeof(int);

// Test for target as first element.
verify(x, x_length, 5, 0);
// Test for target as last element.
verify(x, x_length, 7, 6);
// Test for target not in array.
verify(x, x_length, -5, -1);
// Test for multiple occurrences of target.
verify(x, x_length, 12, 1);
// Test for target somewhere in middle.
verify(x, x_length, 4, 3);

// Test for 1-element array.
int y[1] = {10};
const int y_length = 1;
verify(y, y_length, 10, 0);
verify(y, y_length, -10, -1);

// Test for an empty array.
int* z = NULL;
verify(z, 0, 10, -1);

}

/** Call the search function with the specified parameters and
verify the expected result.
@param x The array to be searched
@param x_length The length of the array to be searched
@param target The target to be found
@param expected The expected result

*/
void verify(int x[], int x_length, int target, int expected) {
int actual = search(x, x_length, target);
cout << "search(x, " << target << ") is "

<< actual << ", expected " << expected;
if (actual == expected)
cout << ": Pass\n";

else
cout << ": ****Fail\n";

}

2.3 Testing Programs 155

F I G U R E 2 . 1
Testing Function search

156 Chapter 2 Program Correctness and Efficiency

Who Does the Testing?
Normally testing is done by the programmer, by other members of the software
team who did not code the module being tested, and by the final users of the soft-
ware product. It is extremely important not to rely only on the programmers who
coded a module for testing it, because programmers are often blind to their own
oversights. If they neglected to account for a possible error in the design, they are
also likely to neglect testing for it. Some companies have special testing groups who
are experts at finding defects in other programmers’ code.

The reason for involving future users is to determine whether they have difficulty in
interpreting prompts for data. Because they are not as knowledgeable about coding,
users are more likely to make data entry errors than members of the programming
or testing teams are.

Companies also have quality assurance (QA) organizations that verify that the test-
ing process is performed correctly. Members of the QA organization typically do not
do the testing themselves, but they independently review the test plans, witness the
conduct of the tests, and independently verify the results.

Generally the programmer who wrote the unit does unit testing, while a separate
test team does integration testing and system testing. However, many organizations
are finding that having other members of the programming team do unit testing is
very effective. There is one methodology (called Extreme Programming) in which
programmers work in pairs; one writes the code and the other writes the tests. The
tester also observes the coder while the code is being written. They take turns so that
each team member is involved in both coding and testing. The units are kept small
so that they can be coded and tested quickly.

Stubs
Although we want to do unit testing as soon as possible, it may be difficult to test
a function or a class that interacts with other functions or classes. The problem is
that not all functions and not all classes will be completed at the same time. So if a
function in class A calls a function defined in class B (not yet written), the unit test
for class A cannot be performed without the help of a replacement function for the

one in class B. The replacement for a function that has not yet been implemented or
tested is called a stub. A stub has the same header as the function it replaces, but its
body only displays a message indicating that the stub was called.

E X A M P L E 2 . 1 1 The following function is a stub for a void function save. The stub will enable a
function that calls save to be tested even though the real function save has not been
written.

/** Function to save the directory.
pre: The directory has been loaded with data.
post: The directory contents have been written back to the

file as name-number pairs on adjacent lines.
modified is reset to false.

*/
void save() {
cout << "Stub for save has been called\n";
modified = false;

}

Besides displaying an identification message, a stub can print out the values of the
inputs and can assign predictable values (such as 0 or 1) to any outputs to prevent
execution errors caused by undefined values. Also, if a function is supposed to
change the state of a data field, the stub can do so (modified is set to false by the
stub in this example). If a client program calls one or more stubs, the message
printed by each stub when it is executed provides a trace of the call sequence and
enables the programmer to determine whether the flow of control within the client
program is correct.

Drivers
Another testing tool for a function is a driver program. A driver program declares
any necessary object instances and variables, assigns values to any of the function’s
inputs (as specified in the function’s preconditions), calls the function, and displays
the values of any outputs returned by the function. When you run a C++ program,
execution begins at the main function in the class you designate as the one to exe-
cute. The main function shown in Listing 2.3 is a driver program to test function
search.

Testing a Class
In Section 1.6 we specified the Directory_Entry class. The coding of this class was
left as an exercise. Below we show a test driver as a main function for this class. The
test driver contains several test cases.

When main executes, two Directory_Entry objects are created and then displayed on
the console. Both the name and number attributes are displayed. We can use these test
cases to verify that the constructor and functions get_name and get_number perform
as expected.

2.3 Testing Programs 157

// Create some directory entries.
Directory_Entry tom("Tom", "123-555-4567");
Directory_Entry dick("Dick", "321-555-9876");
// Display the entries.
cout << "tom -- name: " << tom.get_name()

<< " number: " << tom.get_number() << '\n';
cout << "dick -- name: " << dick.get_name()

<< " number: " << dick.get_number() << '\n';

Next we test the == operator. Because the two objects have different name fields, we
expect that they are not equal.

// See if they are equal.
if (tom == dick)
cout << "FAILURE -- tom and dick are equal\n";

else
cout << "SUCCESS -- tom and dick are not equal\n";

if (dick == tom)
cout << "FAILURE -- tom and dick are equal\n";

else
cout << "SUCCESS -- tom and dick are not equal\n";

Then we create a third Directory_Entry object with the same name as one of the
others. We expect this to be equal to the one with the same name.

// Create another directory entry.
Directory_Entry tom2("Tom", "888-555-9999");
cout << "tom2 -- name: " << tom2.get_name()

<< " number: " << tom2.get_number() << '\n';
// See whether the two toms are equal.
if (tom == tom2)
cout << "SUCCESS -- tom and tom2 are equal\n";

else
cout << "FAILURE -- tom and tom2 are not equal\n";

if (tom2 == tom)
cout << "SUCCESS -- tom and tom2 are equal\n";

else
cout << "FAILURE -- tom and tom2 are not equal\n";

Finally we test the set_number function by changing the number of one of the
objects and displaying it.

dick.set_number(tom.get_number());
// Dick and Tom should have the same number
cout << "dick -- name: " << dick.get_name()

<< " dick -- number: " << dick.get_number() << '\n';

Figure 2.2 shows the results of testing the Directory_Entry class.

Using a Test Framework
The test driver for the Directory_Entry class relied on visual verification of the out-
put. In some instances the user needed to know the expected result, and in others
we displayed a success/failure indication. We could have added code to verify the
expected result for all of the tests, but that would have made our test code much
longer.

158 Chapter 2 Program Correctness and Efficiency

F I G U R E 2 . 2
Test of Directory_Entry Class

2.3 Testing Programs 159

This test driver contained several test cases. A test case is an individual test. A col-
lection of test cases is known as a test suite. A program that executes a series of tests
and reports the results is known as a test harness. Thus the test driver for the
Directory_Entry class was both a test harness and a test suite.

A test framework is a software product that facilitates writing test cases, organizing
the test cases into test suites, running the test suites, and reporting the results. One
test framework often used for C++ projects is CppUnit, an open-source product that
can be used in a stand-alone mode and is available from cppunit.sourceforge.net.
We describe its usage in Appendix C.

Regression Testing
The test plan, test suite (stubs and drivers), and test results should be saved. When-
ever a change is made to a function, class, or program, the tests can and should be
rerun to determine that the change did not cause an unintended consequence. This
rerunning of tests and verifying that nothing changed is called regression testing.

Integration Testing
Another aspect of testing a system is called integration testing. In integration test-
ing, the program tester must determine whether the individual components of the
system, which have been separately tested, can be integrated with other compo-
nents. (In this context the word component is used to represent a function, a class,
or a collection of classes.)

Each phase of integration testing deals with larger components, progressing from
individual units, such as functions or classes, and ending with the entire system. For
example, after two units are completed, integration testing must determine whether
the two units can work together. Once the entire system is completed, integration
testing must determine whether that system is compatible with other systems in the
computing environment in which it will be used.

If you have prepared UML diagrams as system documentation, you can use these
diagrams to determine the expected interaction between units in your program sys-
tem. Then, as you add a new unit to your system, you can validate its interaction
with other units.

E X E R C I S E S F O R S E C T I O N 2 . 3

S E L F - C H E C K

1. Why is it a good idea to use the structured walkthrough approach when hand-
tracing an algorithm?

2. List two boundary conditions that should be checked when testing function
read_int with three parameters (Programming Exercise 2, Section 2.2) where the
first parameter is the prompt string, the second parameter is the smallest accept-
able integer, and the third parameter is the largest acceptable integer. Function
read_int should return the first data value that is within the range specified by
its second and third parameters.

3. Explain why a function that does not match its declaration in the interface would
not be discovered during white-box testing.

4. Devise a set of data to test the function read_int with three parameters using:
a. White-box testing
b. Black-box testing

5. During which phase of testing would each of the following tests be performed?
a. Testing whether a function worked properly at all its boundary conditions
b. Testing whether class A can use class B as a component
c. Testing whether a phone directory application and a word-processing applica-

tion can run simultaneously on a PC
d. Testing whether function search can search an array that was returned by

function build_array
e. Testing whether a class with an array data field can use static function search

in class Array_Search

P R O G R A M M I N G

1. Write a driver program to test function read_int described in Self-Check Exercise 2.
2. Write a stub to use in place of function read_int.
3. Write a search function with four parameters: the search array, the target, the

start subscript, and the finish subscript. The last two parameters indicate the part
of the array that should be searched. Your function should catch or throw excep-
tions where warranted. Write a driver program to test this function.

2.4 Debugging a Program

In this section we will discuss the process of debugging (removing errors), both with
and without the use of a debugger program. Debugging is the major activity per-
formed by programmers during the testing phase. Testing determines whether you
have an error; during debugging you determine the cause of run-time and logic
errors and correct them, without introducing new ones. If you have followed the

160 Chapter 2 Program Correctness and Efficiency

suggestions for testing described in the previous section, you will be well prepared
to debug your program.

Debugging is like detective work. To debug a program, you must carefully inspect the
information displayed by your program, starting at the beginning, to determine whether
what you see is what you expect. For example, if the result returned by a function is
incorrect but the arguments (if any) passed to the function had the correct values, then
there is a problem inside the function. You can try to trace through the function to see
whether you can find the source of the error and correct it. If you can’t, you may need
more information. One way to get that information is to insert additional diagnostic
output statements in the function. For example, if the function contains a loop, you may
want to display the values of loop control variables during loop execution.

E X A M P L E 2 . 1 2 The function read_int in Listing 2.4 does not seem to recognize that a value is out-
side of the specified range. Instead it appears to accept any input value.

L I S T I N G 2 . 4
The Function read_int

#include <string>
#include <iostream>
#include <stdexcept>
#include <limits>

using namespace std;

/** Function to return an integer data value between two
specified end points.
pre: min_n <= max_n
@param prompt Message to be displayed
@param min_n Smallest value in range
@param max_n Largest value in range
@throws invalid_argument if min_n > max_n
@return The first data value that is in range

*/
int read_int(const string& prompt, int min_n, int max_n) {
if (min_n > max_n)
throw invalid_argument("In read_int, min_n not <= max_n");

bool in_range = false;
int num = 0;
while (!in_range) {
cout << prompt;
if (cin >> num) {
in_range = min_n <= num <= max_n;

} else {
cout << "Bad numeric string -- try again\n";
// Reset the error flag.
cin.clear();
// Skip current input line.
cin.ignore(numeric_limits<int>::max(), '\n');

}
}
return num;

}

2.4 Debugging a Program 161

To determine the source of the problem, you should insert a diagnostic output state-
ment that displays the value of min_n, max_n, n, and in_range. You could insert the
statement

cout << "min_n:" << min_n << " max_n:" << max_n << " num:" << num
<< " in_range:" << in_range << '\n';

after the statement:
in_range = min_n <= num <= max_n;

This will show that min_n, max_n, and num all have the expected values, but that
in_range is not correct! Therefore, there must be something wrong with the assign-
ment to in_range. This is an example of valid syntax that does not mean what you
may think. It is common in mathematics to use the expression xlow � x � xhigh.
However, in C++ the expression min_n <= n <= max_n first evaluates min_n <= n.
The resulting bool value is then converted to an int value, 0 for false and 1 for
true, and then compared to max_n. If max_n is greater than or equal to 1, the expres-
sion is always true. You need to change the calculation of in_range to

in_range = min_n <= num && num <= max_n;

Using a Debugger
Debugger programs were available long before IDEs, and they can still be used from
the command line. If you are using an IDE, you will generally have a built-in debug-
ger program. A debugger can execute your program incrementally rather than all at
once. After each increment of the program executes, the debugger pauses, and you
can view the contents of variables to determine whether the statement(s) executed
as expected. You can inspect all the program variables without needing to insert
diagnostic output statements. When you have finished examining the program vari-
ables, you direct the debugger to execute the next increment.

You can choose to execute in increments as small as one program statement (called
single-step execution) to see the effect of each statement’s execution. Another possi-
bility is to set breakpoints in your program to divide it into sections. The debugger
can execute all the statements from one breakpoint to the next as a group. For
example, if you wanted to see the effects of a loop’s execution but did not want to
step through every iteration, you could set breakpoints at the statements just before
and just after the loop.

When your program pauses, if the next statement contains a call to a function, you
can select single-step execution in the function being called (that is, step into the
function). Alternatively, you can execute all the function statements as a group and
pause after the return from the function execution (that is, step over the function).

The actual mechanics of using a debugger depend on the IDE that you are using.
However, the process that you follow is similar among IDEs, and if you understand
the process for one, you should be able to use any debugger. In this section we
demonstrate how to use the debugger in the Eclipse Platform. The Eclipse Platform
is an open-source project available from www.eclipse.org. This platform was origi-
nally developed for Java, but there is a configuration option (called a plug-in) that
supports C++.

162 Chapter 2 Program Correctness and Efficiency

Figure 2.3 is the display produced by this debugger at the beginning of debugging
the read_int function. The source editor window displays the test program. The
Run pull-down menu shows the options for executing the code. To start the debug-
ger we select Debug. Figure 2.4 shows the display after the debugger has started.
The source window (at the bottom left) shows that the statement:

int i = read_int("Enter a number between 1 and 10: ", 1, 10);

is the next to be executed. We select Step Into, a common technique for starting sin-
gle-step execution, by selecting the icon with the curved yellow arrow pointing
between the two dots (where the cursor arrow appears in Fig. 2.4). A window (such
as the Variables window at the upper right) typically shows the values of data fields
and local variables. In this case there is one local variable for function main: the int
variable i, which currently has an undefined value. (The actual number displayed is
whatever happens to have been in the memory location when the object containing
this variable was created.) The arrow to the left of the highlighted line in the source
editor window indicates the next step to execute (the call to function read_int).
Select Step Into again to execute the individual statements of function read_int.

F I G U R E 2 . 3
Starting the Debugger in Eclipse

2.4 Debugging a Program 163

F I G U R E 2 . 4
Using the Debugger in Eclipse

164 Chapter 2 Program Correctness and Efficiency

Figure 2.5 shows the editor and Local Variables windows after we have entered 11
and executed the statement

in_range = min_n <= num <= max_n;

The contents of num is 11, the value of in_range is true! The next statement to exe-
cute is highlighted. It is the loop header, which tests the loop repetition condition.
Although we expect the condition to be false, it is true (why?).

E X E R C I S E S F O R S E C T I O N 2 . 4
S E L F - C H E C K

1. The following function does not appear to be working properly. Explain where
you would add diagnostic output statements to debug it, and give an example of
each statement. Write a driver program and test the function.

/** Finds the largest value in array elements x[start] through x[last].
pre: first <= last.
@param x Array whose largest value is found
@param start First subscript in range
@param last Last subscript in range
@return The largest value of x[start] through x[last]

*/
int find_max(int x[], int start, int last) {
if (start > last)
throw invalid_argument("Empty range");

int max_so_far = 0;
for (int i = start; i < last; i++) {
if (x[i] > max_so_far)
max_so_far = i;

}
return max_so_far;

}

2. Explain the difference between selecting Step Into and Step Over during debugging.

2.4 Debugging a Program 165

F I G U R E 2 . 5
The Editor and Debugging Windows in Eclipse

P R O G R A M M I N G

1. After debugging, provide a corrected version of the function in Self-Check
Exercise 1. Leave the debugging statements in, but execute them only when the
global constant TESTING is true.

2.5 Reasoning about Programs: Assertions and Loop Invariants

In Section 2.3 we discussed some aspects of program and system testing. In this sec-
tion we describe some formal concepts that are intended to help a programmer
prove that a program or function is correct. We will focus on using assertions and
loop invariants to help you reason about an algorithm. Our goal is just to introduce
the concepts and give you a feel for what can be done. Although it would be very
desirable to be able to prove the correctness of a program, we usually cannot do
this. In practice, formal verification is used more as a documentation tool and to
enable a programmer to reason about a program than as a strict proof of correct-
ness. Formal verification of programs is an active area of computer science research.

Assertions
An important part of formal verification is to document a program using assertions:
logical statements about the program that are “asserted” to be true. An assertion is
generally written as a comment, and it describes what is supposed to be true about
the program variables at that point. Preconditions and postconditions are assertion
statements. A precondition is an assertion about the state of the program (generally
the input parameters) before a function is executed, and a postcondition is an asser-
tion about the state when the function finishes.

E X A M P L E 2 . 1 3 We rewrite function search, shown earlier, with an assertion comment following
loop exit.

int search(int x[], int x_length, int target) {
for (int i = 0; i < x_length; i++) {
if (x[i] == target)
return i;

}

// assert: all elements were tested and target not found.
return -1;

}

The assertion states what we know to be true at this point: All elements were tested
and the target was not found, because, if it had been, we would have executed the
return statement in the loop.

166 Chapter 2 Program Correctness and Efficiency

Loop Invariants
We stated earlier that loops are a very common source of program errors. It is often
difficult to determine that a loop body executes exactly the right number of times
or that loop execution causes the desired change in program variables. Programmers
can use a special type of assertion, called a loop invariant, to help prove that a loop
meets its specification. A loop invariant is a statement (a Boolean expression) that
is true before loop execution begins, at the beginning of each repetition of the loop
body, and just after loop exit. It is called an invariant because it is a relationship that
remains true at all times as loop execution progresses; that is, the execution of the
loop body preserves the invariant. If we can determine the loop invariant for the
process that we want a loop to perform and then verify that the execution of a C++
loop preserves the invariant, then we can be quite confident that the C++ loop is
correct.

A proposed invariant for a search loop that finds the first occurrence of a target
value might be the following: If i is the subscript of the array element we are test-
ing in the loop,

for all k, such that 0 <= k < i, x[k] != target

In English, this means “For all nonnegative integer values of k less than i, the kth
element of x is not equal to the target.” Let’s verify that this is an invariant.

• The invariant must be true before loop execution begins: Before loop execu-
tion begins, i would be 0 and there is no nonnegative integer less than 0, so
there are no possible values of k and thus no value of k such that x[k] is equal
to target, so the invariant must be true.

• The invariant must be true at the beginning of each repetition of the loop:
During loop repetition, we should compare x[i] to the target and exit the loop
if the target is found. However, if x[k] was equal to target for a value of k <
i, we would have already found the target, exited the loop, and not started the
present repetition, so the invariant must be true.

• The invariant must be true after loop exit: We exit the loop after testing all
array elements and finding that x[k] != target for all k < x_length, so the
invariant must be true.

Now that we have the invariant, we must write a C++ loop that preserves it. Of
course, we already have one, but let’s pretend that we don’t.

int i = 0;
// invariant: for all k, such that 0 <= k < i, x[k] != target
while (i < x_length) {
if (x[i] == target)
return i; // target found at i

i++; // Test next element
}

// assert: for all k, such that 0 <= k < i, x[k] != target
// and i >= x_length
return -1; // target not found

Let’s show that this loop preserves the invariant. Variable i is initially 0, so the
invariant is certainly true before loop repetition begins. Prior to each loop

2.5 Reasoning about Programs: Assertions and Loop Invariants 167

repetition, the invariant must be true for the current value of i, or we would have
executed the return statement with a value of k less than i. Loop exit occurs when
the loop repetition condition fails (i is x_length), and because this occurs only if we
did not find the target, x[k] != target must be true for all k < x_length (the cur-
rent value of i), so the loop invariant is still true. When the loop ends, the invariant
is still true, but the loop repetition condition is now false. We can therefore combine
the loop invariant and the negation of the loop repetition condition to create the
assertion that follows the loop.

This discussion used the loop invariant as a guide to writing a loop that preserved
the invariant. A topic of computer science research is proving that a loop is correct
by writing an assertion that is a loop precondition and an assertion that is a loop
postcondition (an assertion that “ANDs” the loop invariant and the negation of the
loop repetition condition), and then proving that the postcondition assertion fol-
lows from the precondition assertion. This would be a proof that the loop is correct.

168 Chapter 2 Program Correctness and Efficiency

D E S I G N C O N C E P T

Loop Invariants as a Design Tool
You can write the loop invariant as a specification for a loop and use that specification
to help determine the loop initialization, the loop repetition condition, and the loop
body. For example, we can write the following loop invariant to describe a summation
loop that adds n data items:

// invariant: sum is the sum of all the data read so far, and the
// count of data items read is less than or equal to n.

From the loop invariant we can determine that

• The loop initialization is
sum = 0.0;
count = 0;

• The loop repetition test is
count < n

• The loop body is
cout << "Enter next number: ";
cin >> next;
sum = sum + next;
count = count + 1;

Given all this information, it becomes a simple task to write the summation loop (see
Programming Exercise 2).

The C++ assert Macro
Assertions written as comments are valuable for understanding a program, but the
programmer must check the actual code manually. C++ allows us to give an asser-
tion “teeth” by writing it using the C++ assert macro. This macro is defined in the
header <cassert> and described in the syntax box. Generally the assert macro

SYNTAX Assertion Statement

FORM:
assert(expression);

EXAMPLE:
assert(x == 5);

INTERPRETATION:

If the expression evaluates to false, then the program writes an error message
and aborts. The error message includes the expression that failed, the source file
name, and the line number of the assertion statement.

2.5 Reasoning about Programs: Assertions and Loop Invariants 169

defined in the standard library implementation calls an internally defined function
to print an error message and terminate the program if the condition asserted is not
true. This internal function is passed the string representation of the assertion and
the file name and line number as parameters.

The actual definition of this macro varies with different implementations. A func-
tionally equivalent macro is the following:

#define kw_assert(x)\
if (!(x)) {\
std::cerr << "Assertion " << #x << " failed\n";\
std::cerr << "Line " << __LINE__ << " in file " << __FILE__ << "\n";\
exit(1);\

}

E X E R C I S E S F O R S E C T I O N 2 . 5
S E L F - C H E C K

1. Write the loop invariant and the assertion following the while loop in function
read_int.

P R O G R A M M I N G

1. Write a function that returns the number of digits in an arbitrary integer
(number). Your solution should include a while loop for which the following is a
valid loop invariant:
// invariant:
// count >= 0 and number has been
// divided by 10 count times.

and the following assertion would be valid after exit from the loop:
// assert: count is the number of digits.

2. Write a program fragment that implements the loop whose invariant is described
in the Design Concept discussion “Loop Invariants as a Design Tool.”

2.6 Efficiency of Algorithms

You can’t easily measure the amount of time it takes to run a program with modern
computers. When you issue the command

my_program

(or click the Run button of your IDE), the operating system first loads your pro-
gram. Much of the time taken to execute the program is taken up by this step. If you
run your program a second time immediately after the first, it may seem to take less
time. This is because the operating system may have kept the files in a local mem-
ory area called a cache. However, if you have a large enough or complicated enough
problem, then the actual running time of your program will dominate the time
required to load it.

Because it is very difficult to get a precise measure of the performance of an algo-
rithm or program, we normally try to approximate the effect of a change in the
number of data items, n, that an algorithm processes. In this way, we can see how
an algorithm’s execution time increases with respect to n, so we can compare two
algorithms by examining their growth rates.

For many problems there are algorithms that are relatively obvious but inefficient.
Although computers are getting faster, with larger memories, every day, there are
algorithms whose growth rate is so large that no computer, no matter how fast or
with how much memory, can solve the problem above a certain size. Furthermore,
if a problem that has been too large to be solved can now be solved with the latest,
biggest, and fastest supercomputer, adding a few more inputs may make the prob-
lem impractical, if not impossible, again. Therefore, it is important to have some
idea of the relative efficiency of different algorithms. Next, we see how we might
obtain such an idea by examining three functions in the following examples.

E X A M P L E 2 . 1 4 Consider the following function, which searches an array for a value:
int search(int x[], int x_length, int target) {
for (int i = 0; i < x_length; i++) {
if (x[i] == target)
return i;

}

// target not found
return -1;

}

If the target is not present in the array, then the for loop body will be executed
x_length times. If the target is present, it could be anywhere. If we consider the aver-
age over all cases where the target is present, then the loop body will execute
x_length/2 times. Therefore the total execution time is directly proportional to
x_length. If we doubled the size of the array, we would expect the time to double
(not counting the overhead discussed earlier).

170 Chapter 2 Program Correctness and Efficiency

E X A M P L E 2 . 1 5 Now let us consider another problem. We want to find out whether two arrays have
no common elements. We can use our search function to search one array for val-
ues that are in the other.

/** Determine whether two arrays have no common elements.
@param x One array
@param x_length The length of the x array
@param y The other array
@param y_length The length of the y array
@return true if there are no common elements

*/
bool are_different(int x[], int x_length, int y[], int y_length) {
for (int i = 0; i < x_length; i++) {
if (search(y, y_length, x[i]) != -1)
return false;

}
return true;

}

The loop body will execute x_length times. But it will call search, whose loop body
will execute y_length times for each of the x_length times it is called. Therefore, the
total execution time would be proportional to the product of x_length and
y_length.

E X A M P L E 2 . 1 6 Let us consider the problem of determining whether each item in an array is unique.
We could write the following function.

/** Determine whether the contents of an array are all unique.
@param x The array
@param x_length The length of the array
@return true if all elements of x are unique

*/
bool are_unique(int x[], int x_length) {
for (int i = 0; i < x_length; i++) {
for (int j = 0; j < x_length; j++) {
if (i != j && x[i] == x[j])
return false;

}
}
return true;

}

If all values are unique, the for loop with i as its index will execute x_length times.
Inside this loop the for loop with j as its index will also execute x_length times.
Thus the total number of times the loop body of the innermost loop will execute is
(x_length)2.

2.6 Efficiency of Algorithms 171

E X A M P L E 2 . 1 7 The function we showed in Example 2.16 is very inefficient. We do twice as many
tests as necessary. We can rewrite it as follows:

/** Determine whether the contents of an array are all unique.
@param x The array
@param x_length The length of the array
@return true if all elements of x are unique

*/
bool are_unique(int x[], int x_length) {
for (int i = 0; i < x_length; i++) {
for (int j = i + 1; j < x_length; j++) {
if (x[i] == x[j])
return false;

}
}
return true;

}

The first time the for loop with the j index will execute x_length - 1 times. The
second time it will execute x_length - 2 times, and so on. The last time it will exe-
cute just once. The total number of times it will execute is:

x_length - 1 + x_length - 2 + · · · + 2 + 1

The series 1 + 2 + 3 + · · · + (n – 1) is a well-known series that has a value of

Therefore, this sum is
x_length � (x_length – 1)/2 or 0.5 � (x_length)2 – 0.5 � x_length.

Big-O Notation
Today, the type of analysis just illustrated is more important to the development of
efficient software than measuring the milliseconds in which a program runs on a
particular computer. Understanding how the execution time (and memory require-
ments) of an algorithm grow as a function of increasing input size gives program-
mers a tool for comparing various algorithms and how they will perform. Computer
scientists have developed useful terminology and notation for investigating and
describing the relationship between input size and execution time. For example, if
the time is approximately doubled when the number of inputs, n, is doubled, then
the algorithm grows at a linear rate. Thus we say that the growth rate has an order
of n. On the other hand, if the time is approximately quadrupled when the number
of inputs is doubled, then the algorithm grows at a quadratic rate. In this case we
say that the growth rate has an order of n2.

In the previous section we looked at four functions: one whose execution time was
related to x_length, another whose execution time was related to x_length times
y_length, one whose execution time was related to (x_length)2, and one whose exe-
cution time was related to (x_length)2 and x_length. Computer scientists use the
notation O(n) to represent the first case, O(n � m) to represent the second, and
O(n2) to represent the third and fourth, where n is x_length and m is y_length. The

n n× (– 1)
2

172 Chapter 2 Program Correctness and Efficiency

symbol O (which you will see in a variety of type faces and styles in computer sci-
ence literature) can be thought of as an abbreviation for “order of magnitude”. This
notation is called big-O notation.

A simple way to determine the big-O of an algorithm or program is to look at the
loops and to see whether the loops are nested. Assuming that the loop body consists
only of simple statements, a single loop is O(n), a nested loop is O(n2), a nested loop
in a nested loop is O(n3), and so on. However, you also must examine the number
of times the loop executes.

Consider the following:
for (int i = 1; i < x_length; i *= 2) {

Do something with x[i]
}

The loop body will execute k � 1 times with i having the following values: 1, 2, 4,
8, 16, 32, . . . , 2k until 2k is greater than x_length. Since 2k – 1 � x_length < 2k and
log2 2k is k, we know that k – 1 � log2(x_length) < k. Thus we say that this loop
is O(log n). The logarithm function grows slowly. The log to the base 2 of 1,000,000
is approximately 20. Typically, in analyzing the running time of algorithms, we use
logarithms to the base 2.

Formal Definition of Big-O
Consider a program that is structured as follows:

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

Simple Statement
}

}
for (int k = 0; i < n; k++) {

Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5

}
Simple Statement 6
Simple Statement 7
...
Simple Statement 30

Let us assume that each Simple Statement takes one unit of time and that the for
statements are free. The nested loop executes a Simple Statement n2 times. Then 5
Simple Statements are executed n times. Finally, 25 Simple Statements are executed.
We would then conclude that the expression

T(n) = n2 + 5n + 25

expresses the relationship between processing time and n (the number of data items
processed in the loop), where T(n) represents the processing time as a function of n.

In terms of T(n), formally, the big-O notation

T(n) = O(f(n))

means that there exist two constants, n0 and c greater than zero, and a function,
f(n), such that for all n > n0, cf(n) � T(n). In other words, as n gets sufficiently large

2.6 Efficiency of Algorithms 173

(larger than n0), there is some constant c for which the processing time will always
be less than or equal to cf(n), so cf(n) is an upper bound on the performance. The
performance will never be worse than cf(n) and may be better.

If we can determine how the value of f(n) increases with n, we know how the pro-
cessing time will increase with n. Often the growth rate of f(n) will be determined
by the growth rate of the fastest-growing term (the one with the largest exponent),
which in this case is the n2 term. This means that the algorithm in this example is
an O(n2) algorithm rather than an O(n2 � 5n � 25) algorithm. In general, it is safe
to ignore all constants and drop the lower-order terms when determining the order
of magnitude for an algorithm.

E X A M P L E 2 . 1 8 Given T(n) = n2 � 5n � 25, we want to show that this is indeed O(n2). Thus we
want to show that there are constants n0 and c such that for all n > n0, cn2 > n2 �
5n � 25.

To solve this we need to find a point where

cn2 = n2 � 5n + 25

If we let n be n0 and solve for c, we get

c = 1 � 5/n0 � 25/n0
2

For an n0 of 5, this gives us a c of 3. So 3n2 > n2� 5n � 25 for all n greater than 5,
as shown in Figure 2.6.

F I G U R E 2 . 6
3n2 versus n2 + 5n + 25

174 Chapter 2 Program Correctness and Efficiency

200

180

160

140

120

100

80

60

40

20

0
1 20 3 4 5 6 7 8

f(
n)

3n2

n2 + 5n + 25

E X A M P L E 2 . 1 9 Consider the following program loop:
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {

3 simple statements
}

}

The first time through the outer loop, the inner loop is executed n – 1 times; the next
time n – 2, and the last time once. The outer loop is executed n – 1 times. So we get
the following expression for T(n):

3(n – 1) � 3(n – 2) � · · · � 3

We can factor out the 3 to get

3(n – 1 � n – 2 � n � · · · � 1)

The sum 1 � 2 + · · · � n – 1 (the factor in parentheses) is equal to

Thus our final T(n) is

T(n) = 1.5n2 – 1.5n

This polynomial is zero when n is 1. For values greater than 1, 1.5n2 is always
greater than 1.5n2 – 1.5n. Therefore we can use 1 for n0 and 1.5 for c to conclude
that our T(n) is O(n2) (see Figure 2.7).

F I G U R E 2 . 7
1.5n2 versus 1.5n2 – 1.5n

n n× (– 1)
2

2.6 Efficiency of Algorithms 175

20

15

10

5

0

-5

f(
n)

1.5n2

1.5n2 – 1.5n

n

20 1 43

If T(n) is the form of a polynomial of degree d (the highest exponent), then it is O(nd).
A mathematically rigorous proof of this is beyond the scope of this text. An intuitive
proof of this is demonstrated in the previous two examples. If the remaining terms
have positive coefficients, find a value of n where the first term is equal to the remain-
ing terms. As n gets bigger than this value, the nd term will always be bigger.

TA B L E 2 . 4
Symbols Used in Quantifying Software Performance

176 Chapter 2 Program Correctness and Efficiency

T(n) The time that a function or program takes as a function of the number of inputs, n. We may not be
able to measure or determine this exactly.

f(n) Any function of n. Generally f(n) will represent a simpler function than T(n), for example, n2 rather
than 1.5n2 – 1.5n.

O(f(n)) Order of magnitude. O(f(n)) is the set of functions that grow no faster than f(n). We say that T(n) =
O(f(n)) to indicate that the growth of T(n) is bounded by the growth of f(n).

We use the expression O(1) to represent a constant growth rate. This is a value that
doesn’t change with the number of inputs. The simple steps all represent O(1). Any
finite number of O(1) steps is still considered O(1); that is, their aggregate time is
not affected by the size of the problem.

Summary of Notation
In this section we have used the symbols T(n), f(n), and O(f(n)). Their meaning is
summarized in Table 2.4.

Comparing Performance
Throughout this text, as we discuss various algorithms, we will discuss how their
execution time or storage requirements grow as a function of the problem size using
this big-O notation. There are several common growth rates that will be encoun-
tered. These are summarized in Table 2.5.

Figure 2.8 shows the growth rates of a logarithmic, a linear, a log-linear, a quad-
ratic, a cubic, and an exponential function by plotting f(n) for each function. Notice
that for small values of n the exponential function is smaller than all of the others.
As shown, it is not until n reaches 20 that the linear function is smaller than the
quadratic. This illustrates two points. For small values of n, the less efficient algo-
rithm may be actually more efficient. If you know that you are going to process only
a limited amount of data, an O(n2) algorithm may be much more appropriate than
an O(n log n) algorithm that has a large constant factor. On the other hand, algo-
rithms with exponential growth rates can start out small but very quickly grow to
be quite large.

The raw numbers in Figure 2.8 can be deceiving. Part of the reason is that big-O
notation ignores all constants. An algorithm with a logarithmic growth rate O(log
n) may be more complicated to program, so it may actually take more time per data
item than an algorithm with a linear growth rate O(n). For example, at n = 25,
Figure 2.8 shows that the processing time is approximately 1800 units for an algo-
rithm with a logarithmic growth rate and 2500 units for an algorithm with a linear
growth rate. Comparisons of this sort are pretty meaningless. The logarithmic algo-
rithm may actually take more time to execute than the linear algorithm for this rel-
atively small data set. Again, what is important is the growth rate of each of these
two kinds of algorithms, which tells you how performance of each kind of algo-
rithm changes with n.

TA B L E 2 . 5
Common Growth Rates

2.6 Efficiency of Algorithms 177

Big-O Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) Log-linear

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

F I G U R E 2 . 8
Different Growth Rates

15,000

10,000

5,000

0
200 40

Cubic

Log-linear

Linear

Logarithmic

Quadratic

60

Exponential

f(
n)

n

E X A M P L E 2 . 2 0 Let’s look at how growth rates change as we double the value of n (say, from n = 50
to n = 100). The results are shown in Table 2.6. The third column gives the ratio of
processing times for the two different data sizes. For example, it shows that it will
take 2.35 times as long to process 100 numbers as it would to process 50 numbers
with an O(n log n) algorithm.

TA B L E 2 . 6
Effects of Different Growth Rates

178 Chapter 2 Program Correctness and Efficiency

O(f (n)) f (50) f (100) f (100)/f (50)

O(1) 1 1 1

O(log n) 5.64 6.64 1.18

O(n) 50 100 2

O(n log n) 282 664 2.35

O(n2) 2500 10,000 4

O(n3) 12,500 100,000 8

O(2n) 1.126 � 1015 1.27 � 1030 1.126 � 1015

O(n!) 3.0 � 1064 9.3 � 10157 3.1 � 1093

Algorithms with Exponential and Factorial Growth Rates
Algorithms with exponential and factorial (even faster) growth rates have an effec-
tive practical upper limit on the size of problem they can be used for, even with
faster and faster computers. For example, if we have an O(2

n
) algorithm that takes

an hour for 100 inputs, adding the 101st input will take a second hour, adding 5
more inputs will take 32 hours (more than a day!), and adding 14 inputs will take
16,384 hours, which is almost two years!

This relationship is the basis for cryptographic algorithms. Some cryptographic
algorithms can be broken in O(2

n
) time, where n is the length of the key. A key

length of 40 bits is considered breakable by a modern computer, but a key length of
100 (60 bits longer) is not, because the key with a length of 100 bits will take
approximately a billion billion (1018) times as long as the 40-bit key to crack.

E X E R C I S E S F O R S E C T I O N 2 . 6

S E L F - C H E C K

1. Determine how many times the output statement is displayed in each of the fol-
lowing fragments. Indicate whether the fragment execution time is O(n) or O(n2).
a. for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
cout << i << " " << j << endl;

b. for (int i = 0; i < n; i++)
for (int j = 0; j < 2; j++)

cout << i << " " << j << endl;

c. for (int i = 0; i < n; i++)
for (int j = n - 1; j >= i; j--)

cout << i << " " << j << endl;

d. for (int i = 1; i < n; i++)
for (int j = 0; j < i; j++)

if (j % i == 0)
cout << i << " " << j << endl;

2. For the following T(n) find values of n0 and c such that cn3 is larger than T(n)
for all n larger than n0.

T(n) = n3 – 5n2 � 20n – 10

3. How does the performance grow as n goes from 2000 to 4000 for the following?
Answer the same question as n goes from 4000 to 8000. Provide tables similar to
Table 2.6.
a. O(log n)
b. O(n)
c. O(n log n)
d. O(n2)
e. O(n3)

4. According to the plots in Figure 2.8, what are the processing times at n = 20 and
at n = 40 for each of the growth rates shown?

P R O G R A M M I N G

1. Write a program that compares the values of y1 and y2 in the following expres-
sions for values of n up to 100 in increments of 10. Does the result surprise you?
y1 = 100 * n + 10
y2 = 5 * n * n + 2

C h a p t e r R e v i e w

◆ There are three kinds of defects (“bugs”) that can occur in programs. Syntax
errors, which prevent your program from compiling, are generally the simplest to
detect and fix. These are generally due to a typographical error or a misunder-
standing of the language syntax. However, not all typographical errors result in
syntax errors.

◆ Run-time errors are those errors that arise during the execution of your program
and are generally indicated by exceptions. You can reduce the occurrence of run-
time errors by using if statements to test the validity of variables before execut-
ing statements that can throw run-time exceptions.

◆ Logic errors occur when your program does not produce the correct result. Some
logic errors are easy to find because the program always produces the wrong
result. Other logic errors are difficult to find, because they occur only under spe-
cial cases that are sometimes difficult to reproduce.

Chapter 2 Review 179

◆ You can throw an exception when you detect that an error will occur. The excep-
tion that is thrown will cause your program to stop if it is not caught or handled.
If you throw an exception inside a try block, you can provide a catch block that
handles that type of exception object. The catch block can either display an
appropriate error message and terminate your program or attempt to recover
from the error and continue execution.

◆ The C++ standard library defines a hierarchy of standard exceptions that it uses
to indicate some errors. For example, if the index of a substring is greater than the
size of the string, the exception out_of_range is thrown. Programmers should also
use these standard exceptions or define their own exceptions as extensions of a
standard exception.

◆ Program testing is done at several levels starting with the smallest testable piece
of the program, called a unit. A unit is either a function or a class, depending on
the complexity.

◆ Once units are individually tested, they can then be tested together; this level is
called integration testing.

◆ Once the whole program is put together, it is tested as a whole; this level is called
system testing.

◆ Finally, the program is tested in an operational manner demonstrating its func-
tionality; this level is called acceptance testing.

◆ Black-box (also called closed-box) testing tests the item (unit or system) based on
its functional requirements without using any knowledge of the internal structure.

◆ White-box (also called glass-box or open-box) testing tests the item using knowl-
edge of its internal structure. One of the goals of white-box testing is to achieve
test coverage. This can range from testing every statement at least once, to testing
each branch condition (if statements, switch statements, and loops) for each
path, to testing each possible path through the program.

◆ Test drivers and stubs are tools used in testing. A test driver exercises a function
or class and drives the testing. A stub stands in for a function that the unit being
tested calls. This can be used to provide a test result, and it can be used to enable
a caller of that function to be tested when the function being called is not yet
coded.

◆ We described the debugging process and showed an example of how a debugger
can be used to obtain information about a program’s state.

◆ We discussed formal verification of programs and how assertions and loop invari-
ants can help in the design and verification of our programs.

◆ Computer scientists are interested in comparing the efficiency of different algo-
rithms. We introduced big-O notation and showed how to determine it by exam-
ining the loops in a program. We will use this notation throughout the text to
describe the relative efficiency of different data structures and algorithms that act
on them.

180 Chapter 2 Program Correctness and Efficiency

Quick-Check Exercises
1. What are the three broad categories of program defects discussed in this chapter?
2. What is the purpose of a structured walkthrough of an algorithm?
3. ______ testing requires the use of test data that exercise each statement in a module.
4. ______ testing focuses on testing the functional characteristics of a module.
5. ______ determines whether a program has an error; ______ determines the ______ of

the error and helps you ______ it.
6. Assume you have the following catch clauses following a try block. List the sequence

in which they must occur:
catch(std::ios_base::failure& ex)
catch(...)
catch(std::exception& ex)
catch(std::out_of_range& ex)

7. Indicate which of the following may be false: loop invariant, while condition,
assertion.

8. Write a loop invariant for the following code segment:
product = 1;
counter = 2;
while (counter < 5) {

product *= counter;
counter++;

}

9. Determine the order of magnitude (big-O) for an algorithm whose running time is
given by the equation T(n) = 3n4 – 2n2 � 100n � 37.

10. If a loop processes n items and n changes from 1024 to 2048, how does that affect the
running time of a loop that is O(n2)? How about a loop that is O(log n)? How about
a loop that is O(n log n)?

Answers to Quick-Check Exercises
1. Syntax errors, run-time errors, logic errors.
2. To increase the likelihood of finding program logic errors.
3. White-box testing requires the use of test data that exercise each statement in a

module.
4. Black-box testing focuses on testing the functional characteristics of a module.
5. Testing determines whether a program has an error; debugging determines the cause of

the error and helps you correct it.
6. The catch clauses for std::ios_base::failure and std::out_of_range& ex

must be the first, followed by the catch clause for std::exception and then the
catch clause catch(...).

7. A while condition
8. invariant: product contains product of all positive integers

< counter and counter is between 2 and 5, inclusive.

9. O(n4)
10. The running time quadruples for the O(n2) loop; it increases by a factor of 1.1 for the

O(log n) loop (11/10); it increases by a factor of 2.2 for the O(n log n) algorithm
((2048 � 11)/(1024 � 10)).

Chapter 2 Review 181

Review Questions
1. Describe a technique for preventing a run-time error caused by the user typing a bad

character while entering a numeric value.
2. Describe the differences between stubs and drivers.
3. Briefly describe a test plan for the telephone directory program described in Chapter 1.

Assume that integration testing is used.
4. Indicate in which stage of testing (unit, system, integration) each of the following kinds

of errors should be detected:
a. An array index is out of bounds.
b. An ios_base::failure exception is thrown.
c. An incorrect value of withholding tax is being computed under some circumstances.

5. Which of the following statements is incorrect?
a. Loop invariants are used in loop verification.
b. Loop invariants are used in loop design.
c. A loop invariant is always an assertion.
d. An assertion is always a loop invariant.

6. Write a function that counts the number of adjacent data items out of place in an array
(assume increasing order is desired). Include loop invariants and any other assertions
necessary to verify that the procedure is correct.

7. Write big-O expressions for the following loops.
a. for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)
for (int k = n; k >= 1; k--) {

sum = i + j + k;
cout << sum << endl;

}

b. for (int i = 0; i < n; i++)
for (int j = 0; j < i * i; j++)

cout << j << endl;

c. for (int i = n; i >= 0; i -= 2)
cout << i << endl;

d. for (int i = 0; i < n; i++)
for (int j = i; j > 0; j /= 2)

cout << j << endl;

Programming Projects
1. Write a program that determines the average number of array locations that were exam-

ined in successful searches to locate an integer in an array of 100 unordered integers
using sequential search. Your program should also compute the average number of array
calculations that were examined for a failed search in the same array. Your average cal-
culations should be based on trials involving searching for at least 50 different numbers.

2. Redo Project 1 using an array of integers sorted in ascending order. Modify the sequen-
tial search algorithm to halt a search as soon as the array values are larger than the tar-
get value being sought.

3. Write a program that allows you to examine the effects of array size and initial data
order when your favorite sort operates on an array of integers. Test three different array
sizes (n = 100, n = 1,000, and n = 10,000) and three different array orderings (ascending

182 Chapter 2 Program Correctness and Efficiency

order, inverse order, and random order). This should produce nine test results. The C++
function rand() may be helpful in building the randomly ordered arrays. If you don’t
have a favorite sort, use function sort defined in the header <algorithm>.

4. Write a set of stub functions for the Array_Based_PD class (Section 1.6) that could be
used to test the logic of a main function.

5. Design and program a white-box test for a class that computes the sine and cosine func-
tions in a specialized manner. This class is going to be part of an embedded system run-
ning on a processor that does not support floating-point arithmetic. The class to be
tested is shown in Listing 2.5. Your job is to test the functions sin and cos; you are to
assume that the functions sin0to45 and sin45to90 have already been tested.
You need to design a set of test data that will exercise each of the if statements. To do
this, look at the boundary conditions and pick values that are
• Exactly on the boundary
• Close to the boundary
• Between boundaries

L I S T I N G 2 . 5
sin_cos.cpp

/** These functions compute the sine and cosine of an angle
expressed in degrees. The result will be
an integer representing the sine or cosine as
ten-thousandths. For example, a result of 7071 represents
7071e-4 or 0.7071.

*/

// Forward declarations
int sin0to45(int);
int sin45to90(int);
int polyEval(int, int[], int);

/** Compute the sine of an angle in degrees.
@param x The angle in degrees
@return The sine of x

*/
int sin(int x) {
if (x < 0) {
x = -x;

}
x = x % 360;
if (0 <= x && x <= 45) {
return sin0to45(x);

}
else if (45 <= x && x <= 90) {
return sin45to90(x);

}
else if (90 <= x && x <= 180) {
return sin(180 - x);

}
else {
return -sin(x - 180);

}
}

Chapter 2 Review 183

/** Compute the cosine of an angle in degrees.
@param x The angle in degrees
@return The cosine of x

*/
int cos(int x) {
return sin(x + 90);

}

/** Compute the sine of an angle in degrees
between 0 and 45.
pre: 0 <= x < 45
@param x The angle
@return The sine of x

*/
int sin0to45(int x) {
// Code to compute sin(x) for x between 0 and 45 degrees
...

}

/** Compute the sine of an angle in degrees
between 45 and 90.
pre: 45 <= x <= 90
@param x The angle
@return The sine of x

*/
int sin45to90(int x) {
// Code to compute sin(x) for x between 45 and 90 degrees
...

}

...

6. Develop a test plan and test drivers/stubs as required to test Programming Project 2 in
Chapter 1.

7. Update the test plan and test drivers/stubs to test the modified version of the DVD col-
lection project described in Programming Project 4 in Chapter 1.

8. Develop a test plan and test drivers/stubs as required to test Programming Project 5 in
Chapter 1.

9. Develop a test plan and test drivers/stubs as required to test Programming Project 6 in
Chapter 1.

184 Chapter 2 Program Correctness and Efficiency

C h a p t e r O b j e c t i v e s

◆ To understand inheritance and how it facilitates code reuse
◆ To understand how C++ determines which member function to execute when there are

multiple member functions with the same name in a class hierarchy
◆ To learn how to define and use abstract classes as base classes in a hierarchy
◆ To understand how to create namespaces and to learn more about visibility
◆ To learn about multiple inheritance and how to use it effectively
◆ To become familiar with a class hierarchy for geometric shapes

185

Inheritance and Class
Hierarchies

C h a p t e r 3

This chapter describes important features of C++ that can make your code more
reusable. Object-oriented languages allow you to build and exploit hierarchies
of classes to group common features and member functions in your program

designs. You will learn how to extend an existing C++ class to define a new class
that inherits all the attributes of the original, as well as having additional attributes
of its own. Because there may be many versions of the same member function in a
class hierarchy, we show how polymorphism enables C++ to determine which ver-
sion to execute at any given time. We will also introduce multiple inheritance and
show how desirable features of multiple inheritance can be exploited in C++.

You will learn how to create namespaces in C++ and how to use the different
kinds of visibility for instance variables (data fields) and member functions.

3.1 Introduction to Inheritance and Class Hierarchies

A major reason for the popularity of object-oriented programming (OOP) is that it
enables programmers to reuse previously written code saved as classes, reducing the
time required to code new applications. Because previously written code has already
been tested and debugged, the new applications should also be more reliable and
therefore easier to test and debug. The C++ Standard Library gives the C++ pro-
grammer a head start in developing new applications. C++ programmers can also
build and reuse their own individual libraries of classes.

However, OOP provides additional capabilities beyond the reuse of existing classes.
If an application needs a new class that is similar to an existing class, the program-
mer can create it by extending the existing class, rather than rewriting the original
class. The new class (called the derived class) can have additional data fields and
member functions for increased functionality. Its objects also inherit the data fields
and member functions of the original class (called the base class). You may also see
the term subclass used for derived class and the term superclass used for base class.
These terms are used generally in object-oriented programming and in discussion of
other object-oriented programming languages such as Java. C++, however, uses the
terms derived class and base class.

Classes can be arranged in a hierarchy, with a top-level base class. Figure 3.1 shows
the input/output stream class hierarchy. The entities farther down the hierarchy
inherit data fields (attributes) and functions from those farther up, but not vice
versa. Because all I/O stream classes are derived classes of ios_base (the top-level
base class), they can all use the functions and data fields that are defined in class
ios_base. For example, the function clear which sets and resets the error flags, is a
member of ios_base, so there is no need to define it in the lower-level classes such
as ifstream and ofstream.

Inheritance in OOP is analogous to inheritance in humans. We all inherit genetic
traits from our parents. If we are fortunate, we may even have some ancestors who
have left us an inheritance of monetary value. As we grow up, we benefit from our
ancestors’ resources, knowledge, and experiences, but our experiences will not

186 Chapter 3 Inheritance and Class Hierarchies

I n h e r i t a n c e a n d C l a s s H i e r a r c h i e s

3.1 Introduction to Inheritance and Class Hierarchies
3.2 Member Function Overriding, Member Function Overloading, and Polymorphism
3.3 Abstract Classes, Assignment, and Casting in a Hierarchy

Case Study: Displaying Addresses for Different Countries
3.4 Multiple Inheritance
3.5 Namespaces and Visibility
3.6 A Shape Class Hierarchy

Case Study: Processing Geometric Shapes

istringstream ifstream stringstream fstream ostringstream ofstream

iostream

istream ostream

basic_ios

ios_base

affect how our parents or ancestors developed. Although we have two parents to
inherit from, C++ classes usually have only one parent, but may have multiple par-
ents. We will discuss multiple parents in Section 3.4.

Inheritance and hierarchical organization allow you to capture the idea that one thing
may be a refinement or extension of another. For example, an object that is an
Hourly_Employee is also an Employee. This means that an object of type
Hourly_Employee has all the data fields and functions defined by class Employee, but it
may also have more. Objects further down the hierarchy are more complex and less
general than those further up. For this reason an object that is an Hourly_Employee is
an Employee, but the converse is not true, because an Employee object does not neces-
sarily have the additional properties defined by class Hourly_Employee.

Is-a Versus Has-a Relationships
One misuse of inheritance is confusing the has-a relationship with the is-a relation-
ship. The is-a relationship between classes means that every instance of one class is
also an instance of the other class (but not the other way around). A jet airplane is an
airplane, but not all airplanes are jets. The is-a relationship is represented in object-
oriented programming by extending a class. For example, to say that a jet plane is an
airplane means that the jet plane class is a derived class of the airplane class.

The has-a relationship between classes means that every instance of one class is or
may be associated with one or more instances of the other class (but not necessar-
ily the other way around). For example, a jet plane has a jet engine. The has-a rela-
tionship is represented by declaring in the one class a data field whose type is the
other class.

We can combine is-a and has-a relationships. For example, a jet plane is an airplane,
and it has a jet engine. Also, an airplane has a tail, so a jet plane does too because
it is an airplane.

3.1 Introduction to Inheritance and Class Hierarchies 187

F I G U R E 3 . 1
Input/Output Stream
Class Hierarchy

C++ allows you to capture both the inheritance (is-a) relationship and the has-a rela-
tionship. For example, a class Jet_Plane might be declared as:

class Jet_Plane : public Airplane {
private:
int num_engines;
Jet_Engine jets[4]; // Jet planes have up to 4 engines.

// ...
};

The part of the class heading following the colon specifies that Jet_Plane is a
derived class of Airplane. The data field jets (type Jet_Engine[4]) stores informa-
tion for up to 4 jet engines for a Jet_Plane object.

A Base Class and a Derived Class
To illustrate the concepts of inheritance and class hierarchies, let’s consider a simple
case of two classes: Computer and Lap_Top. A computer has a manufacturer, proces-
sor, RAM, and disk. A laptop computer is a kind of computer, so it has all the prop-
erties of a computer plus some additional features (screen size and weight).
Therefore, we can define class Lap_Top as a derived class of class Computer. Figure
3.2 shows the class hierarchy.

Class Computer
Listing 3.1 shows the definition file for the class Computer (Computer.h), and Listing
3.2 shows the implementation (Computer.cpp).

Notice that we refer to the standard string class using the fully qualified name
std::string in file Computer.h, but we use the abbreviated name string in file
Computer.cpp. We can do this in file Computer.cpp because it contains the statement
using string::std;. The reason we did not put the using statement in file
Computer.h is discussed in Section 3.5.

L I S T I N G 3 . 1
Computer.h

#ifndef COMPUTER_H_
#define COMPUTER_H_

#include <string>

/** Class that represents a computer. */
class Computer {
// Data Fields
private:
std::string manufacturer;
std::string processor;
int ram_size;
int disk_size;

188 Chapter 3 Inheritance and Class Hierarchies

F I G U R E 3 . 2
Classes Lap_Top and
Computer

Computer

string manufacturer
string processor
int ram_size
int disk_size

int get_ram_size()
int get_disk_size()
string to_string()

Lap_Top

double screen_size
double weight

public:
// Functions
/** Initializes a Computer object with all properties specified.

@param man The computer manufacturer
@param proc The processor type
@param ram The RAM size
@param disk The disk size

*/
Computer(const std::string& man,

const std::string proc,
int ram, int disk) :

manufacturer(man), processor(proc),
ram_size(ram), disk_size(disk) {}

int get_ram_size() const { return ram_size; }

int get_disk_size() const { return disk_size; }

// Insert other accessor and modifier functions here.
// ...
std::string to_string() const;

};

#endif

L I S T I N G 3 . 2
Computer.cpp

/** Implementation of the class Computer. */
#include "Computer.h"
#include <sstream>
using std::ostringstream;
using std::string;

string Computer::to_string() const {
ostringstream sb;
sb << "Manufacturer: " << manufacturer

<< "\nCPU: " << processor
<< "\nRAM: " << ram_size << " megabytes"
<< "\nDisk: " << disk_size << " gigabytes";

return sb.str();
}

Class Lap_Top
In the Lap_Top class diagram in Figure 3.2, we show just the data fields declared in
class Lap_Top; however, Lap_Top objects also have the data fields that are inherited
from class Computer (processor, ram_size, and so forth). The first line in class
Lap_Top,

class Lap_Top : public Computer {

indicates that class Lap_Top is derived from class Computer and inherits its data and
member functions. The rest of the definition of class Lap_Top defines any additional
data fields and functions for this class in the normal way.

3.1 Introduction to Inheritance and Class Hierarchies 189

SYNTAX Defining a Derived Class

FORM:
class derived-class : public base-class { ... }

EXAMPLE:
class Lap_Top : public Computer { ... }

MEANING:

The class derived-class inherits the member functions and data fields from the
class base-class.

190 Chapter 3 Inheritance and Class Hierarchies

P I T F A L L

Neglecting the Keyword public When Declaring a Derived Class
If we omit the keyword public when we declare a derived class, we will declare a
derived class with private inheritance. This means that the derived class will inherit the
data fields and functions of the base class, but they will not be visible to client classes.
Effectively, the derived class contains a private data field that contains a base-class
object. This is another way to represent the has-a relationship.

Initializing Data Fields in a Derived Class
The constructor for class Lap_Top must begin by initializing the four data fields
inherited from class Computer. Because those data fields are private to the base class,
C++ requires that they be initialized by a base class constructor. Therefore, a
Computer constructor must be invoked as the first data initialization expression in
the Lap_Top constructor. We indicate this by inserting a call to this constructor as the
first initialization expression (following the “:”) for the Lap_Top constructor.

Lap_Top(const std::string& man, const std::string& proc,
int ram, int disk, double screen, double wei) :

Computer(man, proc, ram, disk), screen_size(screen), weight(wei) {}

The initialization expression Computer(man, proc, ram, disk) invokes the base
class constructor with the signature Computer(const string&, const string&, int,
int), passing it the four arguments listed. (A function signature consists of the func-
tion’s name followed by its parameter types.) Next, the Lap_Top constructor initial-
izes the data fields that are not inherited (screen_size to size and weight to wei).
Listing 3.3 shows the class definition file for Lap_Top (Lap_Top.h).

L I S T I N G 3 . 3
Lap_Top.h

#ifndef LAP_TOP_H_
#define LAP_TOP_H_

#include "Computer.h"

/** Class to represent a laptop computer. */
class Lap_Top : public Computer {
private:
// Data Fields
double screen_size;
double weight;

public:
// Functions
/** Construct a Lap_Top object.

@param man The manufacturer
@param proc The processor
@param ram The RAM size
@param disk The disk size
@param screen The screen size
@param wei The weight

*/
Lap_Top(const std::string& man, const std::string& proc,

int ram, int disk, double screen, double wei) :
Computer(man, proc, ram, disk), screen_size(screen), weight(wei) {}

};

#endif

The No-Parameter Constructor
If the execution of any constructor in a derived class does not invoke a base class
constructor, C++ automatically invokes the no-parameter constructor for the base
class. C++ does this to initialize that part of the object inherited from the base class
before the derived class starts to initialize its part of the object. Otherwise, the part
of the object that is inherited would remain uninitialized.

3.1 Introduction to Inheritance and Class Hierarchies 191

P I T F A L L

Not Defining the No-Parameter Constructor
If no constructors are defined for a class, the no-parameter constructor for that class will
be provided by default. However, if any constructors are defined, the no-parameter con-
structor must also be defined explicitly if it needs to be invoked. C++ does not provide it
automatically in this case, because it may make no sense to create a new object of that
type without providing initial data field values. (It was not defined in class Lap_Top or
Computer because we want the client to specify some information about a Computer
object when that object is created.) If the no-parameter constructor is defined in a
derived class but is not defined in the base class, you will get a syntax error. For exam-
ple, the g++ compiler displays an error such as
no matching function call to class_name::class_name()

You can also get this error if a derived-class constructor does not explicitly call a base-
class constructor. There will be an implicit call to the no-parameter base-class construc-
tor, so it must be defined.

Protected Visibility for Base-Class Data Fields
The data fields inherited from class Computer have private visibility. Therefore, they
can be accessed only within class Computer, so the following assignment statement
would not be valid in class Lap_Top:

manufacturer = man;

Because it is fairly common for a derived-class member function to reference data
fields declared in its base class, C++ provides a less restrictive form of visibility
called protected visibility. A data field (or member function) with protected visibil-
ity can be accessed in either the class defining it or any derived class of that class.

Therefore, if class Computer had the declaration
protected:
string manufacturer;

the earlier assignment statement would be valid in class Lap_Top.

We will use protected visibility on occasion when we are writing a class that we
intend to extend. However, in general, it is better to use private visibility, because
derived classes may be written by different programmers, and it is always a good
practice to restrict and control access to the base-class data fields. We discuss visi-
bility further in Section 3.5.

E X E R C I S E S F O R S E C T I O N 3 . 1
S E L F - C H E C K

1. Explain the effect of each valid statement in the following fragment. Indicate any
invalid statements.
Computer c1;
Computer c2("Ace", "AMD Athlon 2000", 512, 60);
Lap_Top c3("Ace", "AMD Athlon 2000", 512, 60);
Lap_Top c4("Ace", "AMD Athlon 2000", 512, 60, 15.5, 7.5);
cout << c2.manufacturer << ", " << c2.processor << endl;
cout << c2.get_disk_size() << ", " << c4.get_ram_size() << endl;
cout << c2.to_string() << '\n' << c4.to_string() << endl;

2. Indicate where in the hierarchy you might want to add data fields for the fol-
lowing and the kind of data field you would add.
Cost
The battery identification
Time before battery discharges
Number of expansion slots
Has integrated wireless Internet

3. Can you add the following constructor to class Lap_Top? If so, what would you
need to do to class Computer?
Lap_Top() {}

P R O G R A M M I N G

1. Write accessor and modifier member functions for class Computer.
2. Write accessor and modifier member functions for class Lap_Top.

192 Chapter 3 Inheritance and Class Hierarchies

3.2 Member Function Overriding, Member Function Overloading,
and Polymorphism

In the preceding section we discussed inherited data fields. We found that we could
not access an inherited data field in a derived-class object if its visibility was private.
Next, we consider inherited member functions. Member functions generally have
public visibility, so we should be able to access a member function that is inherited.
However, what if there are multiple member functions with the same name in a class
hierarchy? How does C++ determine which one to invoke? We answer this question
next.

Member Function Overriding
Let’s use the following main function to test our class hierarchy.

/** Tests classes Computer and Lap_Top. Creates an object of each and
displays them.

*/
int main() {
Computer my_computer("Acme", "Intel P4 2.4", 512, 60);
Lap_Top your_computer("DellGate", "AMD Athlon 2000", 256, 40,

15.0, 7.5);
cout << "My computer is :\n" << my_computer.to_string() << endl;
cout << "\nYour computer is :\n" << your_computer.to_string()

<< endl;
}

In the second output statement, the function call
your_computer.to_string()

applies the function to_string to object your_computer (type Lap_Top). Because class
Lap_Top doesn’t define its own to_string member function, class Lap_Top inherits
the to_string member function defined in class Computer. Executing this program
displays the following output lines:

My computer is:
Manufacturer: Acme
CPU: Intel P4 2.4
RAM: 512 megabytes
Disk: 60 gigabytes

Your computer is:
Manufacturer: DellGate
CPU: AMD Athlon 2000
RAM: 256 megabytes
Disk: 40 gigabytes

Unfortunately, this output doesn’t show the complete state of object your_computer.
To show the state of a laptop computer, complete with screen size and weight, we
need to define a to_string member function for class Lap_Top. If class Lap_Top has
its own to_string member function, it will override the inherited member function
and will be invoked by the member function call your_computer.to_string(). To
show the complete state of the laptop, this function must access the Computer data

3.2 Member Function Overriding, Member Function Overloading, and Polymorphism 193

fields, but because they are private, the overriding to_string function in class
Lap_Top cannot access them. Class Computer does have a member function to output
that information: to_string, the very function we are overriding. The to_string
function for a Lap_Top needs a way to call the to_string function for the Computer
that the laptop is. We define member function to_string for class Lap_Top next.

string Lap_Top::to_string() const {
ostringstream sb;
sb << Computer::to_string()

<< "\nScreen Size: " << screen_size
<< "\nWeight: " << weight;

return sb.str();
}

This member function, Lap_Top::to_string, returns a string representation of the
state of a Lap_Top object. The expression

Computer::to_string()

invokes the to_string function of the base class to get the string representation of
the four data fields that are inherited from the base class. The next two lines append
the data fields defined in class Lap_Top to this string.

Member Function Overloading
Let’s assume we have decided to standardize and purchase our laptop computers
from only one manufacturer. We could then introduce a new constructor with one
less parameter for class Lap_Top.

Lap_Top(const std::string& proc, int ram, int disk,
double screen, double wei) :

Computer(DEFAULT_LT_MAN, proc, ram, disk), screen_size(screen),
weight(wei) {}

We now have two constructors with different signatures in class Lap_Top. Having
multiple member functions with the same name but different signatures in a class is
called member function overloading.The operator overloading described in Chapter
1 is an example.

SYNTAX Calling Base-Class Functions

FORM:
base-class::function-name()
base-class::function-name(argument-list)

EXAMPLE:
Computer::to_string()

MEANING:

Using the prefix base-class:: in a call to function function-name calls the func-
tion with that name defined in the base class of the current class.

194 Chapter 3 Inheritance and Class Hierarchies

Now we have two ways to create new Lap_Top objects. Both of the following state-
ments are valid:

Lap_Top ltp1("Intel P4 2.8", 256, 40, 14, 6.5);
Lap_Top ltp2("MicroSys", "AMD Athlon 2000", 256, 40, 15, 7.5);

Because the manufacturer string is not specified for ltp1, its manufacturer is
DEFAULT_LT_MAN.

Listing 3.4 shows the revised Lap_Top class definition (Lap_Top.h), and Listing 3.5
shows the implementation file (Lap_Top.cpp). Figure 3.3 shows the UML diagram,
revised to show that Lap_Top has a to_string member function and a constant data
field.

L I S T I N G 3 . 4
Lap_Top.h

#ifndef LAP_TOP_H_
#define LAP_TOP_H_

#include "Computer.h"

/** Class to represent a laptop computer. */

class Lap_Top : public Computer {
public:
// Functions
/** Construct a Lap_Top object.

@param man The manufacturer
@param proc The processor
@param ram The RAM size
@param disk The disk size
@param screen The screen size
@param wei The weight

*/
Lap_Top(const std::string& man, const std::string& proc,

int ram, int disk, double screen, double wei) :
Computer(man, proc, ram, disk), screen_size(screen), weight(wei) {}

/** Construct a Lap_Top object with a default manufacturer. */
Lap_Top(const std::string& proc, int ram, int disk,

double screen, double wei) :
Computer(DEFAULT_LT_MAN, proc, ram, disk), screen_size(screen),

weight(wei) {}

/** Generate a string representation of a Lap_Top object. */
std::string to_string() const;

private:
// Data Fields
static const char* DEFAULT_LT_MAN;
double screen_size;
double weight;

};

#endif

3.2 Member Function Overriding, Member Function Overloading, and Polymorphism 195

F I G U R E 3 . 3
Revised UML Diagram
for Computer Class
Hierarchy

Computer

string manufacturer
string processor
int ram_size
int disk_size

int get_ram_size()
int get_disk_size()
string to_string()

Lap_Top

string DEFAULT_LT_MAN
double screen_size
double weight

string to_string()

L I S T I N G 3 . 5
Lap_Top.cpp

/** Implementation of the Lap_Top class. */
#include "Lap_Top.h"
#include <sstream>

using std::string;
using std::ostringstream;

string Lap_Top::to_string() const {
ostringstream sb;
sb << Computer::to_string()

<< "\nScreen Size: " << screen_size
<< "\nWeight: " << weight;

return sb.str();
}

const char* Lap_Top::DEFAULT_LT_MAN = "MyBrand";

Virtual Functions and Polymorphism
Suppose you are not sure whether a computer referenced in a program will be a lap-
top or a regular computer. Because of your uncertainty, you can’t declare a variable
of either type to store the data for that computer. However, if you declare the
pointer variable

Computer* the_computer;

you can use it to reference an object of either type, because a type Lap_Top object
can be referenced by a type Computer* variable. In C++ a pointer variable of a base-
class type (general) can point to an object of a derived-class type (specific). Lap_Top
objects are Computer objects with more features.

Now suppose you have purchased a laptop computer. What happens when the fol-
lowing statements are executed?

the_computer = new Lap_Top("Bravo", "Intel P4 2.4", 256, 40, 15.0, 7.5);
cout << the_computer->to_string() << endl;

Will the function call the_computer->to_string() return a string with all six data
fields for a Lap_Top object (using Lap_Top::to_string) or just the four data fields
defined for a Computer object (using Computer::to_string)? The answer is a string
with just the four data fields because the_computer is type pointer-to-Computer. This
is not what we want!

What we want is for the type of the object receiving the to_string message to deter-
mine which to_string member function is called. We can tell C++ that this is what
we want by changing the declaration of the function to_string in the class Computer
(in Computer.h) to a virtual function:

virtual std::string to_string() const;

If a member function is declared virtual, then when it is called through a pointer
(or reference) variable the actual member function will be determined at run time
and based on the type of the object pointed to (or referenced). For example, if the
variable the_computer points to a Lap_Top object, then the expression

the_computer->to_string()

will call the member function to_string that is defined by the Lap_Top class.

196 Chapter 3 Inheritance and Class Hierarchies

The fact that the to_string member function invoked depends on the type of the
object pointed to, and not the type of the pointer variable (the_computer is type
pointer-to-Computer), is a very important feature of object-oriented programming
languages. This feature is called polymorphism, which means “the quality of having
many forms or many shapes.” Polymorphism enables the program to determine
which member function to invoke at run time. At compile time, the C++ compiler
cannot determine what type of object the_computer will point to (type Computer or
its derived type Lap_Top), but at run time the program knows the type of the object
that receives the to_string message and can call the appropriate to_string function.

The following displays describe the C++ syntax for using pointer variables to refer-
ence objects.

SYNTAX Declaring a Pointer Type

FORM:
type-name* variable-name;

EXAMPLE:
Computer* the_computer;

MEANING:

The variable variable-name is declared to be of type pointer-to-type-name. As
discussed in the C++ Primer, a pointer is an object that contains the address of
another object. To reference the object pointed to by a pointer variable, use
either the dereferencing operator * (for example, *the_computer) or the pointer
class member access operator -> (for example, the_computer->). Pointers are ini-
tialized using either the address-of operator (&) or the new operator.

SYNTAX Creating New Objects Using the new Operator

FORM:
new type-name;
new type-name(argument-list);

EXAMPLE:
new Computer("Acme", "Intel P4 2.4", 512, 60);

MEANING:

Memory is dynamically allocated for a new object of type type-name and the
constructor is then called to initialize the object. A pointer to the newly created
object is the value of this expression.

3.2 Member Function Overriding, Member Function Overloading, and Polymorphism 197

SYNTAX Accessing an Object Through a Pointer (the Dereferencing Operator *)

FORM:
*pointer-variable

EXAMPLE:
*the_computer

MEANING:

The expression *pointer-variable is a reference to the object pointed to by
pointer-variable. When used on the right-hand side of an assignment, it is the
value of the object:

Computer my_computer = *the_computer;

Now, my_computer contains a copy of the Computer object referenced by the
pointer variable the_computer.

When used on the left-hand side of an assignment

*the_computer = your_computer;

then the referenced object is assigned the value of the right-hand side.

SYNTAX Accessing a Class Member through the Class Member Access Operator

FORM:
pointer-variable->member-name

EXAMPLE:
the_computer->to_string()
my_ram = the_computer->ram_size;
the_computer->ram_size = 1024;

MEANING:

The expression pointer-variable->member-name is a reference to the member of
the object pointed to by pointer-variable. If member-name is a function, then that
function is called. If member-name is a data field, then when the expression is
used on the right-hand side of an assignment, it is the value of the data field.
When the expression is used on the left-hand side of an assignment, then the ref-
erenced data field is assigned the value of the right-hand side.

The expression pointer-variable->member-name is equivalent to

(*pointer-variable).member-name

but the -> operator is considered easier to read. Also, the -> operator can be
overloaded, but the dot operator cannot.

198 Chapter 3 Inheritance and Class Hierarchies

SYNTAX Virtual Function Definition

FORM:
virtual function-declaration;
virtual function-declaration { function-body }

EXAMPLE:
virtual std::string to_string() const;

MEANING:

If the function declared by function-declaration is overridden in a derived class,
and if this function is called through a pointer to (or reference to) the base class,
then the function body associated with the actual object pointed to (or refer-
enced) will be executed. If a function is declared virtual in a base class, it contin-
ues to be virtual in all derived classes. It is, however, a good practice to include
the virtual declaration in the derived classes too, for documentation purposes.

3.2 Member Function Overriding, Member Function Overloading, and Polymorphism 199

P I T F A L L

Failure to Declare a Member Function virtual in a Base Class
Generally, when we override a function, we intend to use polymorphism to reference
objects of it and its derived classes. However, if we omit the keyword virtual, then the
C++ compiler will determine the function to be called at compile time, based on the type
of the pointer and not on the type of the object pointed to.

P R O G R A M S T Y L E

When to Reference an Object through a Pointer Variable
You have seen two different ways to create and reference Computer objects:
Computer my_computer("Acme", "Intel P4 2.4", 512, 60);
Computer* my_computer = new Computer("Acme", "Intel P4 2.4", 512, 60);

What is the difference between these two statements? The first creates a type
Computer object and references it through variable my_computer (for example,
my_computer.to_string()). The second creates a Computer object and references it
through a pointer to a Computer variable (for example, my_computer->to_string()).
Use the first approach when you want the variable my_computer always to reference an
object that is type Computer. Use the second approach when you want flexibility; it
allows my_computer to reference an object of type Computer or any of its derived
classes.

E X A M P L E 3 . 1 If we declare the array lab_computers as follows:
Computer* lab_computers[10];

we can store pointers to 10 Computer or Lap_Top objects in array lab_computers.
Later we can use the following loop to display the information about each object in
the array.

for (int i = 0; i < 10; i++)
cout << lab_computers[i]->to_string() << endl;

The subscripted variable lab_computers[i] can point to either a Computer object or
a Lap_Top object. Because of polymorphism, the actual type of the object pointed to
by lab_computers[i] determines which to_string member function will execute
(Computer::to_string or Lap_Top::to_string) for each value of subscript i.

200 Chapter 3 Inheritance and Class Hierarchies

P I T F A L L

Overridden Member Functions Must Have the Same Return Type
If you write a member function in a derived class that has the same signature as one in
the base class but a different return type, you will get an error message.

P R O G R A M S T Y L E

Declaring a virtual Destructor
A class’s destructor is called when an object of that class is deleted or goes out of scope.
Its purpose is to release any resources (such as dynamically allocated memory for class-
type data members) that the class owns. Suppose a derived-class object is created using
the new operator, and the pointer to it is stored in a pointer to the base-class variable. If
the destructor is not virtual, then only the base-class destructor will be called when
the delete operator is invoked through the pointer. Therefore, when you declare a
member function to be virtual in a class, you should always declare the destructor
virtual even if the destructor does nothing. In our Computer class example we should
include the following:
virtual ~Computer() {}

This declares a virtual destructor that performs no operation.

Some compilers will issue a warning message if the virtual destructor is omitted.

E X A M P L E 3 . 2 We can define the ostream extraction operator for the Computer class as follows:
ostream& operator<<(ostream& os, const Computer& comp) {
return os << comp.to_string;

}

Because comp is a reference to Computer, when this function is called with a Lap_Top
object, the Lap_Top::to_string member function will be called, and when it is called
with a Computer object, the Computer::to_string member function will be called.

E X E R C I S E S F O R S E C T I O N 3 . 2
S E L F - C H E C K

1. Indicate whether member functions with each of the following signatures and
return types (if any) would be allowed and in what classes they would be
allowed. Explain your answers.
Computer()
Lap_Top()
int to_string()
double get_ram_size()
string get_ram_size()
string get_ram_size(string)
string get_processor()
double get_screen_size()

2. For the loop body in the following fragment, indicate which member function is
invoked for each value of i. What is printed?
Computer* comp[3];
comp[0] = new Computer("Ace", "AMD Athlon 2500", 512, 60);
comp[1] = new Lap_Top("Intel P4 2.4", 256, 40, 15.5, 7.5);
comp[2] = comp[1];
for (int i = 0; i < 3; i++) {
cout << comp[i]->get_ram_size() << "\n"

<< comp[i]->to_string() << "\n";
}

3. When does C++ determine which to_string member function to execute for each
value of i in the for statement in the preceding question: at compile time or at
run time? Explain your answer.

P R O G R A M M I N G

1. Write constructors for the Lap_Top and Computer classes that allow you to spec-
ify only the processor, RAM size, and disk size.

2. Complete the accessor and modifier member functions for class Computer.
3. Complete the accessor and modifier member functions for class Lap_Top.

3.2 Member Function Overriding, Member Function Overloading, and Polymorphism 201

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy

In this section we introduce another kind of class called an abstract class. An abstract
class differs from an actual class (sometimes called a concrete class) in two respects:

• An abstract class cannot be instantiated.
• An abstract class declares at least one abstract member function, which must

be defined in its derived classes.

An abstract function is a virtual function that is declared but for which no body
(definition) is provided. We introduce an abstract class in a class hierarchy when we
need a base class for two or more actual classes that share some attributes. We may
want to declare some of the attributes and define some of the functions that are
common to these base classes. However, we may also want to require that the actual
derived classes implement certain functions. We can accomplish this by declaring
these functions abstract, which would make the base class abstract as well.

E X A M P L E 3 . 3 The Food Guide Pyramid provides a recommendation of what to eat each day based
on established dietary guidelines. There are six categories of foods in the pyramid:
fats, oils, and sweets; meats, poultry, fish, and nuts; milk, yogurt, and cheese; veg-
etables; fruits; and bread, cereal, and pasta. If we wanted to model the Food Guide
Pyramid, we might have each of these as actual derived classes of an abstract class
called Food as shown in Listing 3.6.

L I S T I N G 3 . 6
Food.h

#ifndef FOOD_H_
#define FOOD_H_

/** Abstract class that models a kind of food. */
class Food {
// Data Field
private:
double calories;

public:
// Abstract Functions
/** Calculates the percent of protein in a Food object. */
virtual double percent_protein() const = 0;
/** Calculates the percent of fat in a Food object. */
virtual double percent_fat() const = 0;
/** Calculates the percent of carbohydrates in a Food object. */
virtual double percent_carbohydrates() const = 0;

// Functions
double get_calories() const { return calories; }
void set_calories(double cal) {
calories = cal;

}
};

#endif

202 Chapter 3 Inheritance and Class Hierarchies

The three abstract member function declarations,

virtual double percent_protein() const = 0;
virtual double percent_fat() const = 0;
virtual double percent_carbohydrates() const = 0;

impose the requirement that all actual derived classes implement these three func-
tions. We would expect a different function definition for each kind of food.

SYNTAX Abstract Function Definition

FORM:
virtual function-declaration = 0;

EXAMPLE:
virtual double percent_protein() const = 0;

INTERPRETATION:

The function declared by function-declaration is declared to be an abstract func-
tion. The expression = 0; is given in place of the function body and must be
specified in the class declaration. You may also see the term pure virtual function
to refer to an abstract function.

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy 203

P I T F A L L

Omitting the Definition of an Abstract Function in a Derived Class
If you write class Vegetable and forget to define member function
percent_protein, the class Vegetable will also be abstract. If you subsequently
attempt to declare an object of type Vegetable, you will get a syntax error.

Referencing Actual Objects
Because class Food is abstract, you can’t create type Food objects. Therefore, the
statement

Food my_snack(); // Not valid - can't declare an object of an
// abstract class

is not valid. However, you can use a type Food pointer variable to point to an actual
object that belongs to a class derived from Food. For example, if Vegetable is a
derived class of Food, an object of type Vegetable can be pointed to by a Food
pointer variable because a Vegetable object is also a Food object.

E X A M P L E 3 . 4 The following statement creates a Vegetable object that is referenced by variable
my_snack (type pointer-to-Food).

Food* my_snack = new Vegetable("carrot sticks");

Summary of Features of Actual Classes and Abstract Classes
Students often get confused between abstract classes and actual classes (concrete
classes). Table 3.1 summarizes some important points about these constructs.
Notice that you cannot create instances of an abstract class type; however, you can
use a pointer to an abstract type to reference an actual object that is a subclass of
that abstract type.

Assignments in a Class Hierarchy
C++ is what is known as a strongly typed language. This means that each operand
has a type and that operations can be performed only on operands of the same or
compatible types. This includes the assignment operation: the left operand (the vari-
able to the left of =) of an assignment operation is known as an l-value, and the right
operand is known as an r-value. For the built-in types the r-value must be of the
same type as the l-value or there must be a conversion defined to convert the r-value
into a value that is the same type as the l-value. For class types, the assignment oper-
ator may be overridden and overloaded. This is discussed in the following section.

There is an exception to this rule for pointer types. A pointer variable (l-value) that
is of type pointer-to-base class may point to a derived object (r-value). However, the
opposite is not the case.

Computer* a_computer = new Lap_Top(...); // Legal
Lap_Top* a_laptop = new Computer(...); // Incompatible types

TA B L E 3 . 1
Comparison of Actual Classes and Abstract Classes

204 Chapter 3 Inheritance and Class Hierarchies

Property Actual Class Abstract Class

Instances (objects) of this type can be created Yes No

This can define instance variables and functions Yes Yes

This can define constants Yes Yes

The number of these a class can extend Any number Any number

This can extend another class Yes Yes

This can declare abstract member functions No Yes

Pointers to this type can be declared Yes Yes

References of this type can be declared Yes Yes

Casting in a Class Hierarchy
C++ provides a mechanism, dynamic casting, that enables us to process the object
referenced by a_computer through a pointer variable of its actual type, instead of
through a type pointer-to-Computer. The expression

dynamic_cast<Lap_Top*>(a_computer)

casts the type of the object pointed to by a_computer (type Computer) to type
Lap_Top. The casting operation will succeed only if the object referenced by a_com-
puter is, in fact, type Lap_Top; if not, the result is the null pointer.

What is the advantage of performing the cast? Casting gives us a type Lap_Top
pointer to the object that can be processed just like any other type Lap_Top pointer.
The expression

dynamic_cast<Lap_Top*>(a_computer)->get_weight()

will compile because now get_weight is applied to a type Lap_Top reference.
Similarly, the assignment statement

Lap_Top* a_laptop = dynamic_cast<Lap_Top*>(a_computer);

is valid because a type Lap_Top pointer is being assigned to a_laptop (type Lap_Top*).

Keep in mind that the casting operation does not change the object pointed to by
a_computer; instead, it creates a type Lap_Top pointer to it. (This is called an anony-
mous or unnamed pointer.) Using the type Lap_Top pointer, we can invoke any mem-
ber function of class Lap_Top and process the object just like any other type Lap_Top
object.

The cast
dynamic_cast<Lap_Top*>(a_computer)

is called a downcast because we are casting from a higher type in the inheritance
hierarchy (Computer) to a lower type (Lap_Top). Microsoft compilers require you to
set a compiler switch to use dynamic_cast (see the Pitfall on this topic).

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy 205

D E S I G N C O N C E P T

The Importance of Strong Typing
Suppose C++ did not check the expression type and simply performed the assignment

Lap_Top* a_laptop = new Computer(...); // Incompatible types

Further down the line, we might attempt to apply a Lap_Top function to the object ref-
erenced by a_laptop. Because a_laptop is type Lap_Top*, the compiler would permit
this. If a_laptop were pointing to a type Lap_Top object, then performing this opera-
tion would do no harm. But if a_laptop were pointing to an object that was not type
Lap_Top, performing this operation would cause either a run-time error or an unde-
tected logic error. It is much better to have the compiler tell us that the assignment is
invalid.

206 Chapter 3 Inheritance and Class Hierarchies

SYNTAX Dynamic Cast

FORM:
dynamic_cast<class-name*>(object-name)

EXAMPLE:
dynamic_cast<Lap_Top*>(a_computer)

INTERPRETATION:
A pointer of type class-name is created to object object-name, provided that
object-name is an actual object of type class-name (or a derived class of class-
name). If object-name is not type class-name, the result is a null pointer.

P I T F A L L

Run-time Type Identification
If you are using a Microsoft compiler, you may get a warning message that Run-time
Type Identification is needed. You must set a compiler switch (/GR) to enable this or
dynamic_cast will cause a run-time error.

CASE STUDY Displaying Addresses for Different Countries

Problem Different countries use different conventions when addressing mail. We want to write
a program that will display the address in the correct format depending on the desti-
nation. Specifically, we want to distinguish between addresses in Germany and in the
United States and Canada. In Germany the building number follows the street name
(line 1 below), and the postal code (equivalent to the U.S. ZIP code) is placed before
the municipality name (line 2 below). This is the opposite of the convention used in
the United States and Canada. For example, a typical German address would read

Bahnhofstr 345
D-99999 Jedenstadt

while a typical U.S. and Canadian address would read
123 Main St
Somecity ZZ 99999-9999

However, the Canadian postal code is in a different format.

Analysis There are several components that make up an address, and there are numerous
variations between countries as to how to arrange them. One simple approach
would be to ignore these variations and merely record complete address lines as
strings. However, this approach does not allow us to analyze or validate addresses
easily. By parsing the addresses into their components, we can validate addresses

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy 207

against databases provided by the national postal authorities and generate address
labels that conform to national postal authority standards. There are several com-
mercial software packages and databases that do this.

The number of components in an address and their names vary among countries.
We are going to simplify this situation for the purposes of this case study. An address
consists of the following data elements:

• The house number • The state or province
• The street name • The postal code
• The municipality

A German address is organized as follows:
<street name><house number>
<postal code><municipality>

A U.S./Canadian address, on the other hand, is organized this way:
<house number><street name>
<municipality><state or province><postal code>

Because we are originating the mail from the United States, the German address will
have the additional requirement that the name of the destination country (Germany)
be placed on a third line below the line containing the postal code and municipality.

Design We will create an abstract class, Address, that will contain the data elements. This
class will also have the abstract function to_string, which will organize the ele-
ments into a format required for the destination country. The derived classes
German_Address and US_Address will then implement the to_string function. Figure
3.4 shows the UML diagram. The # next to an attribute indicates that it has
protected visibility.

Implementation Listing 3.7 shows the declarations of the classes Address, US_Address, and
German_Address in a single file (Address.h). Although we have always defined a sin-
gle class in each .h file, it is possible to define multiple classes in the same .h file.

Address

string house_number
string street_name
string municipality
string state_or_province
string postal_code

+ string to_string()

German_Address

+ string to_string()

US_Address

+ string to_string()

F I G U R E 3 . 4
Abstract Class Address
and Two Derived
Classes

208 Chapter 3 Inheritance and Class Hierarchies

The Address class declares five data fields to store the address components. It also
has a constructor to initialize them. The classes US_Address and German_Address are
derived from Address. In addition to the declaration of the to_string function, they
contain a constructor to initialize the address components. These constructors pass
the data to the Address constructor.

L I S T I N G 3 . 7
Address.h

#ifndef ADDRESS_H_
#define ADDRESS_H_

#include <string>

/** Declaration of the abstract class Address. */
class Address {
public:
// Functions
Address(const std::string& hn, const std::string& str,

const std::string muni, const std::string& stpro,
const std::string& pc) :

house_number(hn), street_name(str), municipality(muni),
state_or_province(stpro), postal_code(pc) {}

virtual std::string to_string() const = 0;

virtual ~Address() {}

void set_house_number(std::string new_house_number) {
house_number = new_house_number;

}

protected:
// Data Fields
std::string house_number;
std::string street_name;
std::string municipality;
std::string state_or_province;
std::string postal_code;

};

/** Declaration of the class German_Address. */
class German_Address : public Address {
public:
German_Address(const std::string& hn, const std::string& str,

const std::string& muni, const std::string& pc) :
Address(hn, str, muni, "", pc) {}

std::string to_string() const;
};

/** Declaration of the class US_Address. */
// Exercise

#endif

The implementation of the to_string member functions for the US_Address and
German_Address classes is straightforward. They each assemble the address compo-
nents into the appropriate order, adding the necessary spaces and line separators.
Listing 3.8 is the implementation of the German_Address to_string function. Note

3.3 Abstract Classes, Assignment, and Casting in a Hierarchy 209

that we can write this in its own file even though there is no separate header file for
class German_Address. Definition and implementation of the US_Address class is left
as an exercise.

L I S T I N G 3 . 8
German_Address.cpp

/** Implementation file for the class German_Address */
#include "Address.h"
#include <sstream>
using std::string;
using std::ostringstream;

string German_Address::to_string() const {
ostringstream result;
result << street_name << " " << house_number << "\n"

<< postal_code << " " << municipality << "\n"
<< "Germany\n";

return result.str();
}

Testing We can test these classes by simply creating instances and displaying the results of
their to_string functions. This is done with the following program:

#include "Address.h"
#include <iostream>
using std::cout;

int main() {
Address* add1 = new US_Address("123", "Main St", "Somecity",

"ZZ", "99999-9999");
Address* add2 = new German_Address("345", "Bahnhofstr",

"Jedenstadt", "D-99999");
cout << add1->to_string() << "\n\n";
cout << add2->to_string() << "\n\n";

}

E X E R C I S E S F O R S E C T I O N 3 . 3

S E L F - C H E C K

1. What are two important differences between an abstract class and an actual
class? What are the similarities?

P R O G R A M M I N G

1. Write class Vegetable. Assume that a vegetable has three double constants:
VEG_PROTEIN_CAL, VEG_FAT_CAL, and VEG_CARBO_CAL. Compute the fat percentage
as VEG_FAT_CAL divided by the sum of all the constants. Compute the protein and
carbohydrate percentages in a similar manner.

2. We discussed a Computer class with a Lap_Top class as its only derived class.
However, there are many different kinds of computers. An organization may
have servers, mainframes, desktop PCs, and laptops. There are also personal data
assistants (PDAs) and game computers. So it may be more appropriate to declare
class Computer as an abstract class that has an actual derived class for each cate-
gory of computer. Write an abstract class Computer that defines all the member
functions shown earlier and declares an abstract member function with the sig-
nature cost_benefit() that returns the cost-benefit ratio (type double) for each
category of computer.

3. Implement the US_Address class discussed in the case study.

3.4 Multiple Inheritance

The ability of a class to extend more than one class, found in C++, is called multi-
ple inheritance. Multiple inheritance can be a useful concept in some class hierar-
chies. For example, you could have a class Student and also a class Employee. A
university would have many students who are full-time students and many employ-
ees who are full-time employees, but there would also be some student workers who
are both students and employees. This suggests the hierarchy in Figure 3.5. In this
diagram, the data fields for the derived class are all inherited from its base classes.

Multiple inheritance is a language feature that can lead to ambiguity. If a class
extends two classes, and each declares the same data field (for example, name in
Student and Employee), which one does the derived class inherit? In C++, the answer
is both. We will show how C++ handles this next. Because of the ambiguity prob-
lem, the programming language Java does not support multiple inheritance.

F I G U R E 3 . 5
Class Student_Worker Extends Student and Employee

210 Chapter 3 Inheritance and Class Hierarchies

Student_Worker

Student

string name
double gpa
string major
Address* p_address

Employee

string name
int hours
double rate
Address* p_address

L I S T I N G 3 . 9
Student_Worker.h

#ifndef STUDENT_WORKER_H_
#define STUDENT_WORKER_H_

#include "Employee.h"
#include "Student.h"

class Student_Worker : public Employee, public Student {
public:
/** Construct a new Student_Worker.

@param the_name The Student_Worker's name
@param the_address Pointer to the address
@param the_rate The hourly rate
@param the_major The student's major

*/
Student_Worker(const std::string& the_name,

Address* the_address,
double the_rate,
const std::string& the_major) :

Employee(the_name, the_address, the_rate),
Student(the_name, the_address, the_major) {}

/** Return a string representation of a student worker. */
std::string to_string() const;

};

#endif

L I S T I N G 3 . 1 0
Student_Worker.cpp

/** Return string representation of Student_Worker. */
std::string Student_Worker::to_string() const {
std::ostringstream result;
result << name << '\n'

<< p_address->to_string()
<< "\nMajor: " << major
<< " GPA: " << gpa
<< " rate: " << rate
<< " hours: " << hours;

return result.str();
}

Definition of Student_Worker
Listings 3.9 and 3.10 show the declaration and implementation of the class
Student_Worker. In Listing 3.9, the heading

class Student_Worker : public Employee, public Student

shows that class Student_Worker extends class Employee and class Student. The
constructor:

3.4 Multiple Inheritance 211

Student_Worker(const std::string& the_name,
Address* the_address,
double the_rate,
const std::string& the_major) :

Employee(the_name, the_address, the_rate),
Student(the_name, the_address, the_major) {}

contains two initialization expressions separated by commas. The first initializes the
Employee part and the second initializes the Student part. There is no argument
given for data fields hours or gpa, so they are initialized to default values. This is
similar to how we initialized the Computer part of the Lap_Top class (see Listing 3.3).

Unfortunately, when we attempt to compile Student_Worker.cpp, we receive an
error message that says that the references to name and p_address are ambiguous.
We can fix this as follows:

#include "Student_Worker.h"
#include <sstream>

/** Return a string representation of a Student_Worker. */
std::string Student_Worker::to_string() const {
std::ostringstream result;
result << Student::name << '\n'

<< Student::p_address->to_string()
<< "\nMajor: " << major
<< " GPA: " << gpa
<< " rate: " << rate
<< " hours: " << hours;

return result.str();
}

We resolved the ambiguity by specifying which name and which p_address we want
to use. However, this is not a very good solution. We still effectively have two name
data fields and two p_address data fields, even though the constructor sets them
both to the same value. Because the two p_address fields are the same, you may get
a run-time error when the destructor for Student_Worker is called.

Refactoring the Employee and Student Classes
A better solution is to recognize that both Employees and Students have common
data fields. These common data fields and their associated member functions could
be collected into a separate class, which will become a common base class Person.
This process is known as refactoring and is often used in object-oriented design.
However, it leads to similar problems, because there are two Person components in
the Student_Worker class: one inherited from Employee and the other inherited from
Student. A workable solution to this problem is beyond the scope of this text; how-
ever, the interested reader can find this solution in Appendix A.

E X E R C I S E S F O R S E C T I O N 3 . 4
S E L F - C H E C K

1. Explain the basic problem involved in implementing multiple inheritance.
2. Draw the class hierarchy diagram that would result from refactoring the

Employee and Student classes.

212 Chapter 3 Inheritance and Class Hierarchies

3.5 Namespaces and Visibility

Namespaces
You have already seen a namespace. The entire C++ standard library is contained in
the namespace std. Namespaces are used to group collections of declarations into a
functional unit. In this way clashes between duplicate names are avoided. For exam-
ple, you may be writing an adventure game program and define the class map to rep-
resent the area where the action takes place. The standard library also defines a class
called map, which associates values with keys. You may even want to use this class
std::map as part of the implementation of your map. By prefixing the namespace
name before the class name, you can distinguish between std::map and map (the class
defined for your game program).

E X A M P L E 3 . 5 The following shows the declaration of a class map that uses the standard map as a
component.

#include <map> // Get the definition of the standard map.

class map {
private:
std::map the_map; // Declare a component.

...
};

Declaring a Namespace
We could make the distinction even clearer by defining our own namespace game
and placing all the definitions associated with this program into this namespace.
Then we would have std::map versus game::map, thus making the two usages of the
word “map” clear.

SYNTAX Namespace Declaration

FORM:
namespace name { ... }

EXAMPLE:
namespace game { ... }

INTERPRETATION:

All identifiers (e.g., functions, variables, etc.) defined within the block following
the name are within that namespace. Namespaces are open; this means that you
may have more than one namespace declaration with the same name in your
program. The identifiers defined within the different declarations are merged.

3.5 Namespaces and Visibility 213

E X A M P L E 3 . 6 The following declares the namespace game and defines the class map inside of it.
namespace game {
class map { ... };

}

Then the following declarations declare objects of different classes:
std::map a_std_map; // A standard map
game::map a_game_map;

The Global Namespace
Namespaces are nested. At the top level there is the global namespace, whose name
is effectively the null string. Thus, in Example 3.5 the distinction is between
std::map and ::map. Since the reference to ::map is made within the default name-
space, the leading prefix :: (the scope resolution operator) is not required. However,
if we defined the namespace game but did not define the map class inside of it, code
within the scope of namespace game that referenced class map, defined in the global
namespace, would still require the :: qualifier, e.g., ::map.

E X A M P L E 3 . 7 The fragment below declares a class map in the global namespace and one in the game
namespace.

class map { ... }; // Defined in the global namespace

namespace game {
class map { ... }; // Defined in the game namespace

}

The statement
map map1;

in the global namespace will declare an object map1 of type ::map (that is, the map
defined in the global namespace).

The statement
game::map map2

in the global namespace will declare an object map2 of type game::map (that is the map
defined in namespace game).

The statements
namespace game {

map map4; // map4 is the map defined in the game namespace.
::map map5; // map5 is the map defined in the global namespace.

}

are in the game namespace. The object map4 is of the map class that is declared in the
game namespace, and the object map5 is of the type map defined in the global namespace.

214 Chapter 3 Inheritance and Class Hierarchies

The using Declaration and using Directive
The using declaration takes a name from the namespace in which it was declared
and places it into the namespace where the using declaration appears.

The using directive takes all of the names from a given namespace and places them
into the namespace where the using directive appears.

SYNTAX using Declaration

FORM:
using namespace::name;

EXAMPLE:
using std::cout;

MEANING:

The qualified name is now a member of the namespace in which the using decla-
ration appears. In this example, we can now use the name cout without prefixing
the namespace qualifier std:: in front of it.

SYNTAX using Directive

FORM:
using namespace namespace-name;

EXAMPLE:
using namespace std;

MEANING:

All of the names defined in namespace-name are now defined as such within the
current namespace.

3.5 Namespaces and Visibility 215

P R O G R A M S T Y L E

When to Use Namespaces
The default namespace facility is intended for use during the early stages of implement-
ing classes or for small prototype programs. If you are developing an application that
has several classes that are part of a hierarchy of classes, you should declare them all to
be in the same namespace. The namespace declaration will keep you from accidentally
referring to classes by their short names in other classes that are outside the namespace.

216 Chapter 3 Inheritance and Class Hierarchies

P R O G R A M S T Y L E

A using Declaration Versus a using Directive
You are probably in the habit of beginning your programs as follows:
#include <iostream>
// Other include directives
using namespace std;
...

As long as your programs are small, this generally does not cause a problem. But you
should recognize that the standard library is quite large and defines a very large num-
ber of names. In many implementations the include directive
#include <iostream>

brings in a large number of other headers. Many of these headers you would expect, such
as <istream> and <ostream>, but it also may include some headers that you never heard
of, such as <locale>, and others you may not expect, such as <string>. Therefore, if
your program is going to access only cout, then a using declaration is preferred:
#include <iostream>
// Other include directives
using std::cout;

...

P R O G R A M S T Y L E

using Declarations and using Directives in Header Files
Our definition of the class Person included a component of the class string from the
standard library. You may be wondering why we didn’t write the header file as:
#ifndef PERSON_H_
#define PERSON_H_
#include <string>
using namespace std;
class Person {
...
string name;

};

Now assume that you start to write the game program we discussed in Example 3.6 and
define your own class map. You decide that you need a Person class in your game pro-
gram and use this revised header. Because class Person brings in all the names from
namespace std, the game program will not compile, because there is now a name clash
between your map and the standard map! Therefore, you should never place a using dec-
laration or using directive inside a header file. Instead you should always explicitly
qualify all names that are defined in a namespace with their namespace name; for
example, std::cout.

TA B L E 3 . 2
Summary of Kinds of Visibility

3.5 Namespaces and Visibility 217

Visibility Applied to Class Members

private Visible only within this class

protected Visible to classes that extend this class

public Visible to all classes and functions

Using Visibility to Support Encapsulation
The rules for visibility control how encapsulation occurs in a C++ program. Table
3.2 summarizes the rules in order of decreasing protection.

Notice that private visibility is for members of a class that should not be accessible
to anyone but the class, not even classes that extend it.

Use of protected visibility allows the class developer to give control to other pro-
grammers who want to extend classes. Protected data fields are typically essential to
an object. Similarly, protected member functions are those that are essential to an
extending class.

Table 3.2 shows that public members are universally visible.

The friend Declaration
Sometimes you need to define a function external to a class that has the ability to
access the private members of that class. For example, the ostream extraction oper-
ator may need to access the private data fields. The friend declaration gives the
functions and classes it specifies access to the private and protected members of the
class in which the friend declaration appears. This effectively makes the named
function or class a member of the declaring class. Note that the class itself must
declare who its friends are. Also, friendship is not inherited and is not transitive.
This means that if a base class is a friend of a particular class, its derived classes are
not automatically friends too. They must be declared to be friends.

SYNTAX friend Declaration

FORM:
friend function-name;
friend class class-name;

EXAMPLE:
friend foo;

MEANING:

The named function or class is granted access to the private and protected mem-
bers of the class in which the friend declaration appears.

E X A M P L E 3 . 8 The following shows that private data fields of a class can be referenced only in its
friend classes.

class A {
private:
int x;

friend foo;
}

void foo() {
A a;
// . . .
a.x = 10; // Valid, foo is a friend of A.

}

void bar() {
A a;
// . . .
a.x = 10; // Not valid, x is not visible to bar.

}

E X A M P L E 3 . 9 The following shows how friendship is not transitive.
class A {
private:
int x;

friend class B;
};

class B {
private:
int y;
void foo() {
A a;
a.x = 10; // Legal, B is a friend of A.

}
friend class C;

};

class C {
void bar() {
A a;
B b;
b.y = 10; // Legal, C is a friend of B.
a.x = 10; // Not valid, C is not a friend of A.

}
};

218 Chapter 3 Inheritance and Class Hierarchies

3.5 Namespaces and Visibility 219

E X E R C I S E S F O R S E C T I O N 3 . 5

S E L F - C H E C K

1. For class B, which is a friend of class A, is the statement
a.x = 10; // Valid or not valid???

a valid statement? Why or why not? Answer the same questions for this state-
ment in class C, which extends class B.
class A {
private:
int x;

friend class B;
};

class B {
void foo() {
A a;
a.x = 10; // Valid or not valid???

}
};

class C : public B {
void bar() {
A a;
a.x = 10; // Valid or not valid???

}

};

220 Chapter 3 Inheritance and Class Hierarchies

Shape

Rectangle Circle Rt_Triangle

double compute_area()
double compute_perimeter()
string to_string()
read_shape_data()

int width
int height

int base
int height

int radius

double compute_area()
double compute_perimeter()
string to_string()
read_shape_data()

double compute_area()
double compute_perimeter()
string to_string()
read_shape_data()

double compute_area()
double compute_perimeter()
string to_string()
read_shape_data()

3.6 A Shape Class Hierarchy

In this section we provide a case study that illustrates many of the principles in this
chapter.

CASE STUDY Processing Geometric Shapes

Problem We would like to process some standard geometric shapes. Each figure object will
be one of three standard shapes (rectangle, circle, right triangle). We would like to
be able to do standard computations, such as finding the area and perimeter, for any
of these shapes.

Analysis For each of the shapes we can process, we need a class that represents the shape and
knows how to perform the standard computations on it (that is, find its area and
perimeter). These classes will be Rectangle, Circle, and Rt_Triangle. To ensure that
these shape classes all define the required computational functions, we will require
them to implement an abstract class, Shape. If a class does not have the required
functions, we will get a syntax error when we attempt to use it. Figure 3.6 shows
the class hierarchy.

Design We will discuss the design of the Rectangle class here. The design of the other classes is
similar and is left as an exercise. Table 3.3 shows class Rectangle. Class Rectangle has
data fields width and height. It has functions to compute area and perimeter, to read in
the attributes of a rectangular object (read_shape_data), and a to_string function.

F I G U R E 3 . 6
Class Shape and
Three Implementors

3.6 A Shape Class Hierarchy 221

Implementation Listing 3.11 shows class Shape.

L I S T I N G 3 . 1 1
Shape.h

#ifndef SHAPE_H_
#define SHAPE_H_

#include <string>

/** Declaration file for the abstract class Shape. */
class Shape {
public:
virtual double compute_area() const = 0;
virtual double compute_perimeter() const = 0;
virtual void read_shape_data() = 0;
virtual std::string to_string() const = 0;

};

#endif

Listings 3.12 and 3.13 show class Rectangle.

L I S T I N G 3 . 1 2
Rectangle.h

#ifndef RECTANGLE_H_
#define RECTANGLE_H_

#include "Shape.h"

TA B L E 3 . 3
Class Rectangle

Data Field Attribute

int width Width of a rectangle.

int height Height of a rectangle.

Function Behavior

double compute_area() const Computes the rectangle area (width � height).

double compute_perimeter() const Computes the rectangle perimeter (2 � width � 2 � height).

void read_shape_data() Reads the width and height.

string to_string() const Returns a string representing the state.

222 Chapter 3 Inheritance and Class Hierarchies

/** Definition file for the class Rectangle. */
class Rectangle : public virtual Shape {
public:
Rectangle() : width(0), height(0) {}
Rectangle(int the_width, int the_height) :
width(the_width), height(the_height) {}

int get_width() { return width; }
int get_height() { return height; }
double compute_area() const;
double compute_perimeter() const;
void read_shape_data();
std::string to_string() const;

protected:
int width;
int height;

};

#endif

L I S T I N G 3 . 1 3
Rectangle.cpp

/** Implementation of Rectangle class. */
#include "Rectangle.h"

#include <sstream>
#include <iostream>
#include <istream>
#include <ostream>

using std::string;
using std::ostringstream;
using std::cin;
using std::cout;

double Rectangle::compute_area() const {
return width * height;

}

double Rectangle::compute_perimeter() const {
return 2 * width + 2 * height;

}

void Rectangle::read_shape_data() {
cout << "Enter the width of the rectangle: ";
cin >> width;
cout << "Enter the height of the rectangle: ";
cin >> height;

}

3.6 A Shape Class Hierarchy 223

string Rectangle::to_string() const {
ostringstream result;
result << "Rectangle: width is " << width

<< ", height is " << height;
return result.str();

}

Testing To test the shape hierarchy, we will write a program that will prompt for what kind
of figure, read the parameters for that figure, and display the results. The code for
Compute_Area_And_Perim is shown in Listing 3.14. The main function is very straight-
forward, and so is display_result. The main function first calls get_shape, which
constructs a list of available shapes and prompts the user for the choice. The reply is
expected to be a single character. The nested if statement determines which shape
instance to return. For example, if the user’s choice is C (for Circle), the statement

return new Circle();

returns a pointer to a new Circle object.

After the new shape instance is returned to my_shape in main, the statement
my_shape->read_shape_data();

uses polymorphism to invoke the correct member function read_shape_data to read
the shape object’s parameter(s). This member function must be declared a virtual
function in class Shape and defined in each class. The member functions
compute_area and compute_perimeter are then called to obtain the values of the area
and perimeter. Finally, display_result is called to display the result.

The function get_shape is an example of a factory function because it creates a new
object and returns a pointer to it. The author of the main function has no awareness
of the individual kinds of shapes. Knowledge of the available shapes is confined to
the get_shape function. This function must present a list of available shapes to the
user and decode the user’s response to return an instance of the desired shape.

L I S T I N G 3 . 1 4
Compute_Area_And_Perim.cpp

/** Program to compute the area and perimeter of geometric shapes. */

#include "Rectangle.h"
#include "Rt_Triangle.h"
#include "Circle.h"

#include <iostream>
#include <istream>
#include <ostream>
#include <cctype>

using std::cout;
using std::cin;
using std::endl

Shape* get_shape() {
char fig_type;
cout << "Enter C for circle\nEnter R for rectangle"

<< "\nEnter T for right triangle\n";
cin >> fig_type;
fig_type = tolower(fig_type);
if (fig_type == 'c') {
return new Circle();

} else if (fig_type == 't') {
return new Rt_Triangle();

} else if (fig_type == 'r') {
return new Rectangle();

} else {
return NULL;

}
}

void display_result(double area, double perim) {
cout << "The area is " << area

<< "\nThe perimeter is " << perim
<< endl;

}

int main() {
Shape* my_shape;
double perimeter;
double area;
my_shape = get_shape();
my_shape->read_shape_data();
perimeter = my_shape->compute_perimeter();
area = my_shape->compute_area();
display_result(area, perimeter);
delete my_shape;
return 0;

}

E X E R C I S E S F O R S E C T I O N 3 . 6

P R O G R A M M I N G

1. Write class Circle.
2. Write class Rt_Triangle.

224 Chapter 3 Inheritance and Class Hierarchies

C h a p t e r R e v i e w

◆ Inheritance and class hierarchies enable you to capture the idea that one thing
may be a refinement or extension of another. For example, a plant is a living thing.
Such is-a relationships create the right balance between too much and too little
structure. Think of inheritance as a means of creating a refinement of an abstrac-
tion. The entities farther down the hierarchy are more complex and less general
than those higher up. The entities farther down the hierarchy may inherit data
members (attributes) and member functions from those farther up, but not vice
versa. A class that inherits from another class is a derived class; the class from
which it inherits is a base class.

◆ Encapsulation and inheritance impose structure on object abstractions. Poly-
morphism provides a degree of flexibility in defining member functions. It loosens
the structure a bit in order to make member functions more accessible and useful.
Polymorphism means “the ability to have many forms.” It captures the idea that
member functions may take on a variety of forms to suit different purposes.

◆ The keyword virtual defines a function that can be overridden by a correspon-
ding function in a derived class. If a virtual function declaration is followed by
= 0, this function is a pure virtual function or abstract function. An abstract class
is a class that contains at least one abstract function. Abstract classes can also
have data fields and actual functions. You use an abstract class as the base class
for a group of derived classes in a hierarchy.

◆ You cannot declare an object of an abstract class, but you can declare a pointer
(or a reference) to an abstract class. A pointer (or reference) to an abstract class
must point to (refer to) an object of a concrete class that is derived from the
abstract class.

Quick-Check Exercises
1. What does polymorphism mean, and how is it used? What is function overriding?

Function overloading?
2. What is a function signature? Describe how it is used in function overloading.
3. When would you use an abstract class, and what should it contain?
4. Can a class extend more than one class?
5. Describe the difference between is-a and has-a relationships.
6. Which can have more data fields and member functions: the base class or the derived

class?
7. You can point to an object of a ______ type through a variable of a ______ type.
8. You cast an object referenced by a ______ type to an object of a ______ type in order to

apply member functions of the ______ type to the object. This is called a ______.
9. The three kinds of visibility in order of decreasing visibility are: ______, ______, and

______.

Chapter 3 Review 225

Answers to Quick-Check Exercises
1. Polymorphism means “the ability to have many forms.” Function overriding means that

the same function appears in a derived class and a base class. Function overloading
means that the same function appears with different signatures in the same class.

2. A signature is the form of a function determined by its name and arguments. For exam-
ple, do_it(int, double) is the signature for a function do_it that has one type int
parameter and one type double parameter. If several functions in a class have the same
name (function overloading), C++ invokes the one with the same signature as the func-
tion call.

3. An abstract class is used as a base class for a collection of related derived classes. An
abstract class cannot be instantiated. The abstract functions (identified by virtual and
by = 0 for the function body) defined in the abstract class act as placeholders for the
actual functions. The abstract class should also contain the definitions of data fields that
are common to all the derived classes. An abstract class can have actual functions as
well as abstract functions.

4. A class can extend multiple classes; this capability is known as multiple inheritance.
5. An is-a relationship between classes means that one class is a derived class of a base

class. A has-a relationship means that one class has data members (components) of the
second class type.

6. The derived class.
7. You can point to an object of a derived-class type through a variable of pointer-to-base-

class type.
8. You cast an object referenced by a base-class type to an object of a derived-class type in

order to apply member functions of the derived-class type to the object. This is called a
downcast.

9. The three kinds of visibility in order of decreasing visibility are public, protected, and
private.

Review Questions
1. Which member function is invoked in a particular class when a member function defini-

tion is overridden in several classes that are part of an inheritance hierarchy? Answer the
question for the case in which the class has a definition for the member function and
also for the case where it doesn’t.

2. Like a rectangle, a parallelogram has opposite sides that are parallel, but it has a corner
angle, theta (�), that is less than 90 degrees. Discuss how you would add parallelograms
to the class hierarchy for geometric shapes (see Figure 3.6). Write a definition for class
Parallelogram.

3. Explain what multiple inheritance means and what problem it introduces.
4. Explain how assignments can be made within a class hierarchy and the role of casting in

a class hierarchy. What is strong typing? Why is it an important language feature?
5. If C++ encounters a member function call of the following form:

base_class_ptr->function_name()

where base_class_ptr is a pointer to a base class that points to an object whose type
is a derived class, what is necessary for this statement to compile? During run time, will
function function_name from the class that is the type of base_class_ptr always be
invoked, or is it possible that a different function function_name will be invoked?
Explain your answer.

226 Chapter 3 Inheritance and Class Hierarchies

6. Assume the situation in Question 5, except that function function_name is not defined
in the class that is the type of base_class but it is defined in the derived-class type.
Rewrite the function call so that it will compile.

7. Explain the process of initializing an object that is a derived-class type in the derived-
class constructor. What part of the object must be initialized first? How is this done?

8. Discuss when abstract classes are used. How do they differ from actual classes?

Programming Projects
1. A veterinary office wants to store information regarding the kinds of animals it treats.

Data includes diet, whether the animal is nocturnal or not, whether its bite is poisonous
(as for some snakes), whether it flies, and so on. Use a base class Pet with abstract func-
tions and create appropriate derived classes to support about 10 animals of your choice.

2. A student is a person, and so is an employee. Create a class Person that has the data
attributes common to both students and employees (name, social security number, age,
gender, address, and telephone number) and appropriate member function definitions. A
student has a grade-point average (GPA), major, and year of graduation. An employee
has a department, job title, and year of hire. In addition, there are hourly employees
(hourly rate, hours worked, and union dues) and salaried employees (annual salary).
Define a class hierarchy and write an application class that you can use to first store the
data for an array of people and then display that information in a meaningful way.

3. Create a pricing system for a company that makes individualized computers, such as you
might see on a Web site. There are two kinds of computers: laptops and desktop com-
puters. The customer can select the processor speed, the amount of memory, and the size
of the disk drive. The customer can also choose a CD drive (CD ROM, CD-RW), a
DVD drive, or both. For laptops, there is a choice of screen size. Other options are a
modem, a network card, or wireless network. You should have an abstract class
Computer and derived classes Desk_Top and Lap_Top. Each derived class should have
member functions for calculating the price of a computer given the base price plus the
cost of the different options. You should have member functions for calculating memory
price, hard drive price, and so on. There should be a member function to calculate ship-
ping cost.

4. Write a banking program that simulates the operation of your local bank. You should
declare the following collection of classes.
Class Account
• Data fields: customer (type Customer), balance, account_number, transactions

array (type transaction*)
• Member functions: get_balance(), get_customer(), to_string(),

set_customer(), set_balance()
Class Savings_Account extends Account
• Member functions: deposit(), withdraw(), add_interest()

Class Checking_Account extends Account
• Member functions: deposit(), withdraw(), add_interest()
Class Customer
• Data fields: name, address, age, telephone_number, customer_number
• Member functions: Accessors and modifiers for data fields

Chapter 3 Review 227

228 Chapter 3 Inheritance and Class Hierarchies

DVDCD

Audio

Media

VHSCassette

Video

Classes Senior, Adult, Student, all of which extend class Customer
• Each has constant data fields, SAVINGS_INTEREST, CHECK_INTEREST, CHECK_CHARGE,

and OVERDRAFT_PENALTY, that define these values for customers of that type.
Class Bank
• Data field: array accounts (type Account*)
• Member functions: add_account(), make_deposit(), make_withdrawal(),

get_account()

Class Transaction
• Data fields: customer_number, transaction_type, amount, fees (a string describ-

ing unusual fees)
• Member functions: process_tran()
You need to write all these classes and an application class that interacts with the user.
In the application, you should first open several accounts and then enter several trans-
actions.

5. You have a sizeable collection of music and videos and want to develop a database for
storing and processing information about this collection. You need to develop a class
hierarchy for your media collection that will be helpful in designing the database. Try
the class hierarchy shown in Figure 3.7, where Audio and Video are media categories.
Then CDs and cassette tapes would be derived classes of Audio, and DVDs and VHS
tapes would be derived classes of Video.

If you go to the video store to get a movie, you can rent or purchase only movies that
are recorded on VHS tapes or DVDs. For this reason, class Video (and also classes
Media and Audio) should be abstract classes, because there are no actual objects of these
types. However, they are useful classes to help define the hierarchy.

Class Media should have data fields and member functions common to all classes in
the hierarchy. Every media object has a title, major artist, distributor, playing time, price,
and so on. Class Video should have additional data fields for information describing
movies recorded on DVDs and video tapes. This would include information about the
supporting actors, the producer, the director, and the movie’s rating. Class DVD would
have specific information about DVD movies only, such as the format of the picture,
special features on the disk, and so on. Figure 3.8 shows a possible class diagram for
Media, Video, and derived classes of Video.

F I G U R E 3 . 7
Media Class Hierarchy

Provide member functions to load the media collection from a file and write it back out
to a file. Also provide a member function to retrieve the information for a particular
item identified by its title and a member function to retrieve all your items for a particu-
lar artist.

6. Add shape classes Square and Equilateral_Triangle to the figures hierarchy in
Section 3.6. Modify program Compute_Area_And_Perim (Listing 3.14) to compute the
area and perimeter of these new figure types.

7. Complete the Food class hierarchy in Section 3.3. Read and store a list of your favorite
foods. Show the total calories for these foods and the overall percentages of fat, protein,
and carbohydrates for this list. To find the overall percentage, if an item has 200 calories
and 10 percent is fat calories, then that item contributes 20 fat calories. You need to
find the totals for fat calories, protein calories, and carbohydrate calories, and then cal-
culate the percentages.

Chapter 3 Review 229

Media

string title
string major_artist
int playing_time
double price

void play_media()
void increment_plays()
void set_your_rating()
int get_playing_time()
string to_string()

string* supporting_actors
int num_supporting_actors
string director
string producer

string to_string()

Video

string* special_features
int num_special_features
bool wide_screenformat
bool TV_format
string* sound_options
int num_sound_options

void play_media()
string to_string()

DVD

string* trailers
int num_trailers

void play_media()
string to_string()

VHS

F I G U R E 3 . 8
Class Video and Its
Base Class and Derived
Classes

8. A hospital has different kinds of patients who require different procedures for billing
and approval of procedures. Some patients have insurance and some do not. Of the
insured patients, some are on Medicare, some are in HMOs, and some have other health
insurance plans. Develop a collection of classes to model these different kinds of
patients.

9. A company has two different kinds of employees: professional and nonprofessional.
Generally, professional employees have a monthly salary, whereas nonprofessional
employees are paid an hourly rate. Similarly, professional employees have a certain num-
ber of days of vacation, whereas nonprofessional employees receive vacation hours
based on the number of hours they have worked. The amount contributed for health
insurance is also different for each kind of employee. Use an abstract class Employee to
store information common to all employees and to declare member functions for calcu-
lating weekly salary and computing health care contributions and vacation days earned
that week. Define derived classes Professional and Non_Professional. Test your
class hierarchy.

230 Chapter 3 Inheritance and Class Hierarchies

C h a p t e r O b j e c t i v e s

◆ To become familiar with the Standard Template Library (STL) and template classes
◆ To understand how to use a vector class and how to implement it using an array for

storage
◆ To understand the difference between a shallow and deep copy
◆ To introduce linked lists and study the differences between single-, double-, and

circular linked list data structures
◆ To introduce structs
◆ To understand the iterator
◆ To learn how to implement the STL list class
◆ To learn how to implement the iterator for a linked list
◆ To learn how to declare aliases and use delegation
◆ To become familiar with the STL sequential containers
◆ To introduce the functions in the algorithm header

231

Sequential Containers

C h a p t e r 4

So far we have one data structure that you can use in your programming—the
array. Giving a programmer an array and asking her to develop software sys-
tems is like giving a carpenter a hammer and asking him to build a house. In

both cases, more tools are needed. The C++ developers attempted to supply those
tools by providing a rich set of data structures written as C++ template classes. The
classes are all part of the Standard Template Library (STL). We will discuss classes
from this library in the rest of the book, starting in this chapter with the classes that
are considered sequences.

A sequence has the property that elements can be inserted or removed anywhere
in the sequence, not just at the beginning or at the end. Some sequences are indexed,

which means their elements can be accessed in arbitrary order (called random
access) using a subscript to select an element. For other sequences you must always
start at the beginning and process the elements in sequence. We will also discuss iter-
ators and their role in facilitating sequential access and random access.

In this chapter we will discuss the vector and list (linked list) classes and their
similarities and differences. We will show that these classes implement the common
interface requirements for sequential containers.

232 Chapter 4 Sequential Containers

S e q u e n t i a l C o n t a i n e r s

4.1 Template Classes and the Vector
4.2 Applications of vector
4.3 Implementation of a vector Class
4.4 The Copy Constructor, Assignment Operator, and Destructor
4.5 Single-Linked Lists and Double-Linked Lists
4.6 The list Class and the Iterator
4.7 Implementation of a Double-Linked List Class
4.8 Application of the list Class

Case Study: Maintaining an Ordered List
4.9 Standard Library Containers
4.10 Standard Library Algorithms and Function Objects

4.1 Template Classes and the Vector

Before studying our first data structure in the STL, we want to introduce the con-
cept of a template class. A template class is a class that stores and processes a col-
lection of information. The data type of this information is a parameter that is
specified when the template class is instantiated. For example, in the declaration

template<typename T>
class some_container { ... }

some_container is declared to be a template class. The parameter T is a placeholder
for the actual data type of the information to be stored in some_container. The
statements

some_container<int> call_lengths;
some_container<Person> people;

create two instances of some_container. The first, call_lengths, stores a collection
of int values, and the second, people, stores a collection of Person objects. The same
operations can be performed on both instances. At compile time, the actual data
type is substituted for the parameter T to create the desired instantiation of
some_container.

SYNTAX Instantiating a Template Class

FORM:
template-class-name<argument-list> object-name;

EXAMPLE:
some_container<int> call_lengths;
some_container<Person> people;

MEANING:

If one doesn’t already exist, a distinct copy of the template class is created by
substituting the arguments for the parameters. This is very similar to what hap-
pens when a function is called, except that this substitution occurs when the pro-
gram is being compiled. Generally the arguments are types (either built-in or
class types). In this example, two versions of the template class some_container
are created: one to hold ints and the other to hold People objects. The classes
some_container<int> and some_container<People> are distinct classes.

Vector
The first template class we will study is the vector, which is an enhancement of the
C++ array. The vector uses an array as its basic storage structure. An array is an
indexed data structure, which means you can select its elements in arbitrary order
as determined by the subscript value. You can also access the elements in sequence
using a loop that increments the subscript. However, you can’t do the following with
an array:

• Increase or decrease its length, which is fixed
• Insert an element at a specified position without writing code to shift the other

elements to make room
• Remove an element at a specified position without writing code to shift the

other elements to fill in the resulting gap

A vector is an improvement over an array in that it supports all of these operations.
Vectors are used most often when a programmer wants to be able to add new ele-
ments to the end of a list but still needs the capability to access the elements stored
in the list in arbitrary order. These are the features we needed for our telephone
directory application: New entries were added at the end, and we also needed to
find numbers for entries already in the directory. The size of a vector automatically
increases as new elements are added to it, and the size decreases as elements are
removed.

If an insertion is not at the end of the vector, the existing entries in the vector are
automatically shifted to make room for the entry being inserted. Similarly, if an ele-
ment other than the last one is removed, the other entries are automatically shifted
to close up the space that was vacated.

4.1 Template Classes and the Vector 233

A vector has a size, which is the number of elements it currently contains. This
quantity is returned by the member function size. Each vector object also has a
capacity, which is the number of elements it can store. When a vector’s size is equal
to its capacity, the capacity is automatically increased.

vector is a template class, so you can declare vector objects to hold objects of any
other type. To declare my_vector to be a vector containing strings, you would use
the declaration

vector<string> my_vector;

E X A M P L E 4 . 1 The statement
vector<string> my_vector;

allocates storage for a vector object my_vector whose elements are string objects.
Initially my_vector is empty. The statements

my_vector.push_back("Bashful");
my_vector.push_back("Awful");
my_vector.push_back("Jumpy");
my_vector.push_back("Happy");

add four strings as shown in the top diagram of Figure 4.1. The final value of
my_vector.size() is 4.

The middle diagram of Figure 4.1 shows vector my_vector after the insertion of
"Doc" at the element with subscript 2:

my_vector.insert(2, "Doc");

The new size is 5. The strings formerly referenced with subscripts 2 and 3 are now
referenced by the subscripts 3 and 4. This is the same as what happens when some-
one cuts into a line of people waiting to buy tickets; everyone following the person
who cuts in moves back one position in the line.

F I G U R E 4 . 1
Insertion into a vector Object

234 Chapter 4 Sequential Containers

After insertion of "Doc" before the third element

After insertion of "Dopey" at the end

Original List

"Bashful"

my_vector[0] [1] [2] [3]

"Awful" "Jumpy" "Happy"

"Bashful" "Awful" "Jumpy" "Happy"

"Bashful" "Awful" "Jumpy" "Happy""Doc"

"Doc" "Dopey"

my_vector[0] [1] [2] [3] [4]

my_vector[0] [1] [2] [3] [4] [5]

4.1 Template Classes and the Vector 235

The last diagram in Figure 4.1 shows the effect of the statement
my_vector.push_back("Dopey");

which adds "Dopey" at the end of the vector. The size of my_vector is now 6.

Similarly, if you remove an element from a vector object, the size automatically
decreases, and the elements following the one removed shift over to fill the vacated
space. This is the same as when someone leaves a ticket line; the people in back all
move forward. Here is object my_vector after using the statement

my_vector.erase(1);

to remove the element with subscript 1. Notice that the strings formerly referenced
by subscripts 2 through 5 are now referenced by subscripts 1 through 4 (in the
darker color), and the size has decreased by 1.

A vector is an indexed container; you can access its elements using a subscript. For
example, the statement

string dwarf = my_vector[2];

stores the string object "Jumpy" in variable dwarf, without changing my_vector.

You would use the statement
my_vector[2] = "Sneezy";

to replace the string "Jumpy" in my_vector with the string "Sneezy". However, vari-
able dwarf would still contain the string "Jumpy".

Specification of the vector Class
The vector class is part of the standard library and is specified in the header <vec-
tor>. Because it is a template class, the parameter Item_Type represents the actual
type of the objects to be stored in the vector. As shown above, the actual item type
is specified when a template class is instantiated. In the C++ standard library there
is a second template parameter, called the allocator. The library provides a default
value for this parameter that is adequate for most purposes. We will discuss the use
of the allocator in Appendix A.

Table 4.1 shows a subset of the functions defined in the vector class. Because
Item_Type is determined when the vector is created, the actual argument types and
return types for these functions may be different for different instantiations of the
vector class. Recall that the size_t type is an unsigned int. We use it here because
all vector indexes must be nonnegative.

After replacing "Jumpy" with "Sneezy"

"Bashful" "Sneezy" "Happy""Doc" "Dopey"

my_vector[0] [1] [2] [3] [4]

After removal of "Awful"

"Bashful" "Jumpy" "Happy""Doc" "Dopey"

my_vector[0] [1] [2] [3] [4]

TA B L E 4 . 1
Member Functions of Class vector

236 Chapter 4 Sequential Containers

Member Function Behavior

const Item_Type& operator[](size_t Returns a reference to the element at position index that can
index) const be used on the right-hand side of an assignment.

Item_Type& operator[](size_t index) Returns a reference to the element at position index that can
be used as the target of an assignment.

const Item_Type& at(size_t index) The same as operator[] except that the index is validated. If
const; the index is not valid, the out_of_range exception is thrown.

Item_Type& at(size_t index)

bool empty() const Returns true if the vector is empty.

size_t size() const Returns the number of items stored in the vector.

void resize(size_t new_size) Changes the size of the vector to new_size. If new_size is
smaller than the current size, then items are removed from the
end. If new_size is larger than the current size, then default-
valued items are added to the end. The default-valued item is
the value returned by the default (no-argument) constructor.
For built-in types the default value is zero.

void swap(vector<Item_Type>& other) Exchanges the contents of this vector with the contents of the
other vector.

void push_back(const Item_Type& Adds a copy of the_value at the end of this vector.
the_value)

void insert(size_t index, const Adds a copy of the_value, inserting it before the item at
Item_Type& the_value) position index. Note this is not the form of the function as

defined by the standard library. We will describe the actual
form of this function in a later section.

void erase(size_t index) Removes the item at position index and shifts the items that
follow it to fill the vacated space. Note that this is not the form
of the function as defined by the standard library. We will
describe the actual form of this function in a later section.

void pop_back() Removes the last item from the vector.

The functions insert and erase are defined differently in the standard library, but
the form shown is what we will implement in Section 4.3. At the end of this chap-
ter we will briefly revisit the vector and discuss how to modify our sample imple-
mentation to be like the standard one.

Function at and the Subscripting Operator
There are two entries in Table 4.1 for the subscripting operator [] and two for the
member function at. The first entry for each returns the value of the specified vec-
tor element (indicated by the keyword const at the beginning and end of these
entries); this value can’t be changed. The second entry for each is a reference to an
element of the vector; its value can be changed.

E X A M P L E 4 . 2 Both of the following statements retrieve and display the value of element 2 of
vector<int> v.

cout << v[2];
cout << v.at(2);

Both of the following statements add 6 to the value of element 2 of vector v and
assign that sum to element 3 of vector v.

v[3] = v[2] + 6;
v.at(3) = v.at(2) + 6;

In these statements, the reference to element 2 retrieves a value of vector v that is
not changed. In contrast, both references to element 3 change its value.

4.1 Template Classes and the Vector 237

P R O G R A M S T Y L E

Use of operator[] versus at
As discussed in Chapter 2, the fact that C++ does not perform range checking on array
bounds has led to many problems, including many security holes in modern operating
systems. Unlike function at, the standard vector subscripting operator does not perform
range checking, leaving the door open for these problems. Although the subscripting
operator is more error prone, it is also more convenient to use, so most programmers use
it rather than member function at. In the next section, we show how you to redefine the
subscripting operator to perform range checking.

E X E R C I S E S F O R S E C T I O N 4 . 1

S E L F - C H E C K

1. Describe the effect of each of the following operations on object my_vector as
shown at the bottom of Figure 4.1. What is the value of my_vector.size() after
each operation? Assume that function find returns the index of its second argu-
ment in the vector that is passed as the first argument. Assume that the function
to_upper returns a string that converts each letter in its argument to uppercase
but leaves other characters unchanged.
my_vector.push_back("Pokey");
my_vector.push_back("Campy");
int i = find(my_vector, "Happy");
my_vector[i] = "Bouncy";
my_vector.erase(my_vector.size() - 2);
string temp = my_vector[1];
my_vector[1] = to_upper(temp);

P R O G R A M M I N G

1. Write the following function:
/** Finds the first occurrence of target in a_vector.

@return The index of the first occurrence of the target
or size if the target is not found

*/
int find(const vector<string>& a_vector,

const string& target);

2. Write the following function:
/** Replaces each occurrence of old_item in a_vector

with new_item.
*/
void replace(vector<string>& a_vector,

const string& old_item,
const string& new_item);

3. Write the following function:
/** Deletes the first occurrence of target in a_vector. */
template<typename Item_Type>
void delete(vector<Item_Type>& a_vector,

const Item_Type& target);

4.2 Applications of vector

We illustrate some applications of vectors next.

E X A M P L E 4 . 3 The following statements store a collection of int values in vector some_ints.
vector<int> some_ints;
int nums[] = {5, 7, 2, 15};
for (int i = 0; i < 4; i++)
some_ints.push_back(nums[i]);

After the loop finishes, vector element some_ints[i] and array element nums[i] (for
all i in range) will contain the same value. The following fragment finds and dis-
plays the sum of the int values in some_ints.

int sum = 0;
for (size_t i = 0; i < some_ints.size(); i++) {
sum += some_ints[i];

}
cout << "sum is " << sum << endl;

Although it may seem wasteful to carry out these operations when you already have
an array of ints, the purpose of this example is to illustrate the steps needed to
process a collection of int values in a vector.

238 Chapter 4 Sequential Containers

The Phone Directory Application Revisited
In Chapter 1 we introduced a phone directory case study. Our solution involved
building an array of phone directory entries that expanded as new directory entries
were added. Basically we constructed an expandable array that was a data field of
class Phone_Directory (see Listing 1.9, Array_Based_PD.h, and the implementations
that follow it). We could accomplish the same operations much more easily using a
vector to store the phone directory:

vector<Directory_Entry> the_directory;

We used function add to insert a new entry at the end of the array. If the array was
full, this function called the reallocate function. By using a vector we merely need
to create a new Directory_Entry object and then call push_back to insert it into the
vector.

L I S T I N G 4 . 1
Function add

/** Adds a new entry.
@param name The name of the person being added
@param new_number The new number to be assigned

*/
void add(string name, string new_number) {
Directory_Entry new_entry(name, new_number);
the_directory.push_back(new_entry);

}

E X E R C I S E S F O R S E C T I O N 4 . 2

S E L F - C H E C K

1. What does the following code fragment do?
vector<double> my_vector;
my_vector.push_back(3.456);
my_vector.push_back(5);
double result = my_vector[1] + my_vector[0];
cout << "Result is " << result;

P R O G R A M M I N G

1. Write the lookup_entry function of the Array_Based_PD.cpp class to use vector
the_directory.

2. Write the remove_entry function of Array_Based_PD.cpp class to use vector
the_directory.

3. Write the save function of Array_Based_PD.cpp class to use vector the_directory.

4.2 Applications of vector 239

4.3 Implementation of a vector Class

We will implement a simplified version of the vector class, which we will encapsu-
late in the namespace KW; thus our vector will be called KW::vector to distinguish it
from the standard vector, std::vector. We use a C++ array internally to contain the
data of a KW::vector, as shown in Figure 4.2. The physical size of the array is indi-
cated by the data field current_capacity (type size_t because it must be non-neg-
ative). The number of data items stored is indicated by the data field num_items. The
elements between num_items and current_capacity are available for the storage of
new items.

namespace KW {

template<typename Item_Type>
class vector {

private:
// Data fields

/** The initial capacity of the array */
static const size_t INITIAL_CAPACITY = 10;

/** The current capacity of the array */
size_t current_capacity;

/** The current num_items of the array */
size_t num_items;

/** The array to contain the data */
Item_Type* the_data;

public:
// Member Functions
...

};
};

The Default Constructor
Next, we discuss how to implement the constructors and member functions for the
vector class. Because this is a template class, all of the code must be in the header
or in a file included by the header. Constructors should be defined inline using ini-
tialization expressions.

The default constructor initializes the values of num_items and current_capacity
and allocates the initial data array.

/** Constructs an empty vector with the default
initial capacity.

*/
vector<Item_Type>() : current_capacity(INITIAL_CAPACITY),
the_data(new Item_Type[INITIAL_CAPACITY]), num_items(0) { }

240 Chapter 4 Sequential Containers

SYNTAX Defining a Template Class

FORM:
template<formal-parameter-list> class class-name { ... }

EXAMPLE:
template<typename Item_Type> class vector { ... }
template<class Item_Type> class bag { ... }
template<typename Item_Type, size_t MAX_SIZE> class bounded_list {
...

}

MEANING:

The class class-name is defined to take one or more template parameters. A tem-
plate parameter follows the same syntax as a function parameter.

type-name parameter-name

where type-name is the name of the parameter’s type, and parameter-name is the
identifier that is used to designate this parameter. Generally you use the keyword
typename or the keyword class for type-name. This indicates that the parameter-
name is to be treated as a type within the body of the template class. You can
also declare additional parameters for the template class that are built-in types or
previously defined class types (see the last example above).

Note: The original C++ syntax used class to designate either classes or built-in
types as template parameters, but the C++ standard introduced the alternative
usage of typename as being a more accurate term. While typename is the preferred
usage for new applications, the C++ standard uses class.

The swap Function
The swap function exchanges the value of this vector object with another vector
object. It does this by swapping the values of the data fields using the standard tem-
plate function swap. The details of how the swap function works are discussed in a
later section.

4.3 Implementation of a vector Class 241

Space occupied
by data

Space available
for new items

0
num_items current_capacity

.

F I G U R E 4 . 2
Internal Structure of vector

/** Exchanges the contents of this vector with another.
@param other The other vector

*/
void swap(vector<Item_Type>& other) {
std::swap(num_items, other.num_items);
std::swap(current_capacity, other.current_capacity);
std::swap(the_data, other.the_data);

}

The Subscripting Operator
As discussed earlier, two forms of the subscripting operator are provided: one to
return a modifiable reference to an item in the vector, and the other to return a non-
modifiable reference. The declaration for the former is:

Item_Type& operator[](size_t index) {

and the declaration for the latter is:
const Item_Type& operator[](size_t index) const {

In the second form, notice that the modifier const appears both before the return
type and after the function signature. The first const tells the compiler that the
return value is a constant reference to an Item_Type, and the second const tells the
compiler that invoking this function will not change the value of the vector object
to which it is applied. The compiler will invoke the const version whenever the sub-
scripting operator is applied on the right-hand side of an assignment operation, and
it will invoke the non-const version when the subscripting operator is applied on the
left-hand side of an assignment. The body of the code for both forms of the func-
tion is identical:

Item_Type& operator[](size_t index) {
// Verify that the index is legal.
if (index < 0 || index >= num_items) {
throw std::out_of_range
("index to operator[] is out of range");

}
return the_data[index];

}

Also, observe that in our implementation we validate the value of the index, index.
In the standard vector, the subscripting operator does not do this. Our implementa-
tion is equivalent to the standard vector function at.

Bjarne Stroustrup, the inventor of C++, suggests in his book, The C++ Programming
Language, 3rd Edition, that programmers can easily define their own vector class
that overcomes this limitation as follows.

template<typename Item_Type>
class my_vector : public std::vector<Item_Type> {
Item_Type& operator[](int index) {return at(index);}
const Item_Type& operator[](int index) const {
return at(index);}

}
}

The new template class my_vector is defined as an extension of the standard vector
class. The subscript operators in the standard class are overridden with ones that
apply function at.

242 Chapter 4 Sequential Containers

F I G U R E 4 . 3
Adding an Element to the End of a vector

4.3 Implementation of a vector Class 243

The push_back Function
The push_back function appends an item to the end of a vector. If num_items is less
than current_capacity, then, to append a new item:

a. Insert the new item at the position indicated by the value of num_items.
b. Increment the value of num_items.

This sequence of operations is illustrated in Figure 4.3. The old value of num_items
is in gray; its new value is in color.

If num_items is already equal to current_capacity, we must first allocate a new
array to hold the data and then copy the data to this new array. The member func-
tion reserve (explained shortly) does this. The code for the push_back member func-
tion follows.

void push_back(const Item_Type& the_value) {
// Make sure there is space for the new item.
if (num_items == current_capacity) {
reserve(2 * current_capacity); // Allocate an expanded array

}
// Insert the new item.
the_data[num_items] = the_value;
num_items++;

}

P R O G R A M S T Y L E

Using the Postfix (or Prefix) Operator with a Subscript
Some programmers prefer to combine the last two statements in the push_back function
and write them as

the_data[num_items++] = the_value;

This is perfectly valid. C++ uses the current value of num_items as the subscript for array
access and then increments it. The only difficulty is the fact that two operations are
written in one statement and are carried out in a predetermined order. If you are unsure
of the order, you might select prefix increment when you needed postfix increment, or
vice versa.

Space occupied
by data

Space available
for new items

New value
inserted

0

num_items

.

num_items current_capacity

The insert Function
To insert an item into the middle of the array (anywhere but the end), the values that
are at the insertion point and beyond must be shifted over to make room. In Figure
4.4, the arrow with label 1 shows the first element moved, the arrow with label 2
shows the next element moved, and so on. This data move is done using the fol-
lowing loop:

for (size_t i = num_items; i > index; i--) {
the_data[i] = the_data[i - 1];

}

Notice that the array subscript starts at num_items and moves toward the beginning
of the array (down to index + 1). If we had started the subscript at index + 1
instead, we would copy the value at index into each element of the array with a
larger subscript. Before we execute this loop, we need to be sure that num_items is
not equal to current_capacity. If it is, we must call reserve.

After increasing the capacity (if necessary) and moving the other elements, we can
then add the new item. The complete code is as follows:

void insert(size_t index, const Item_Type& the_value) {
// Validate index.
if (index > num_items) {
throw std::out_of_range
("index to insert is out of range");

}
// Ensure that there is space for the new item.
if (num_items == current_capacity) {
reserve(2 * current_capacity); // Allocate an expanded array

}
// Move data from index to num_items - 1 down.
for (size_t i = num_items; i > index; i--) {
the_data[i] = the_data[i - 1];

}
// Insert the new item.
the_data[index] = the_value;
num_items++;

}

The erase Function
To remove an item, the items that follow it must be moved forward to close up the
space. In Figure 4.5, the arrow with label 1 shows the first element moved, the

244 Chapter 4 Sequential Containers

k k–1 k–2 k–3 7 6 5 4 3 2 1

index

.

num_items
num_items

F I G U R E 4 . 4
Making Room to Insert an Item into an Array

arrow with label 2 shows the next element moved, and so on. This data move is
done using the following loop:

for (size_t i = index + 1; i < num_items; i++) {
the_data[i - 1] = the_data[i];

}

The complete code for the erase function follows.
void erase(size_t index) {
// Validate index.
if (index > num_items) {
throw std::out_of_range
("index to insert is out of range");

}
// Move items below the removed one up.
for (size_t i = index + 1; i < num_items; i++) {
the_data[i - 1] = the_data[i];

}
num_items--;

}

The reserve Function
The reserve function creates a new array that is at least twice the size of the current
array and then copies the contents of the current array into the new one. The pointer
variable the_data is then set to point to this new array. The code is as follows:

void reserve(size_t new_capacity) {
if (new_capacity > current_capacity) {
if (new_capacity > 2 * current_capacity)
current_capacity = new_capacity;

else
current_capacity *= 2; // Double the capacity.

Item_Type* new_data = new Item_Type[current_capacity];
// Copy the data over.
for (size_t i = 0; i < num_items; i++)
new_data[i] = the_data[i];

// Free the memory occupied by the old copy.
delete[] the_data;
// Now point to the new data.
the_data = new_data;

}
}

4.3 Implementation of a vector Class 245

 k–2 k–1 k1 2 3 4

.

index

num_items
num_items

F I G U R E 4 . 5
Removing an Item from an Array

The statement
delete[] the_data;

releases the memory allocated to the array pointed to by the_data. The reason we
do this is to prevent memory leaks.

The reason for doubling is to spread out the cost of copying. Doubling an array of
size n allows us to add n more items before we need to do another array copy. There-
fore, we can add n new items after we have copied over n existing items. Although
each reallocation is O(n), we only have to do a reallocation after n items are added.
This averages out to 1 copy per add, so reallocation is effectively an O(1) operation.
Another way of saying this is that insertion is performed in amortized constant time.
Recall that it will take only about 20 reserve operations to create an array that can
store over a million references (220 is greater than 1,000,000).

Performance of the KW::vector
The functions operator[] and at are each a few lines of code and contain no loops.
Thus we say that these functions execute in constant time, or O(1).

If we insert into (or remove from) the middle of a KW::vector, then at most n items
have to be shifted. Therefore, the cost of inserting or removing an element is O(n).

What if we have to reallocate before we can insert? Recall that we spread out the
cost of copying so that effectively it is an O(1) operation, so the insertion is still
O(n). Even if we don’t spread out the cost of copying, the copy operation would still
be O(n), so the worst case would just double the cost.

E X E R C I S E S F O R S E C T I O N 4 . 3
S E L F - C H E C K

1. Trace the execution of the following:
int an_array[] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 3; i < 7; i++)
an_array[i + 1] = an_array[i];

and the following:
int an_array[] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 7; i > 3; i--)
an_array[i] = an_array[i – 1];

What are the contents of an_array after the execution of each loop?
2. Write statements to remove the middle object from a vector and place it at the

end.

P R O G R A M M I N G

1. Provide a constructor for class KW::vector that accepts a size_t argument, which
represents the initial array size, and an initial value. Fill the array with copies of
this value.

246 Chapter 4 Sequential Containers

4.4 The Copy Constructor, Assignment Operator, and Destructor

Copying Objects and the Copy Constructor
Often, we need to make a copy of an object. When we do this, both the original and
the copy will initially store the same information. We want the copy to be an inde-
pendent copy, which means we should be able to modify one of the objects without
affecting the other.

Copying of primitive types is straightforward—the values are duplicated and placed
in the target location. For class types, copying is done by what is appropriately
known as the copy constructor. Every class has a default copy constructor with the
following signature:

class-name(const class-name&);

The purpose of the copy constructor is to create an independent copy of an object.
It is automatically invoked:

1. When an object is passed to a function by value
2. When an object is returned from a function
3. When an object is initialized with another object of the same class

Shallow Copy versus Deep Copy
In Section 4.3 we defined the KW::vector class as follows:

namespace KW {

template<typename Item_Type>
class vector {

private:
// Data fields

/** The initial capacity of the array */
static const size_t INITIAL_CAPACITY = 10;

/** The current capacity of the array */
size_t current_capacity;

/** The current num_items of the array */
size_t num_items;

/** The array to contain the data */
Item_Type* the_data;

public:
// Member Functions
...

};
};

4.4 The Copy Constructor, Assignment Operator, and Destructor 247

E X A M P L E 4 . 4 In the statement
vector<int> v2(v1);

vector v1 is passed as a const reference argument to the vector copy constructor,
so v1 can’t be changed, and the variable v2 is then initialized to a copy of the vector
v1. Each data field will be copied, and any changes made later to v2 should not
affect v1.

The default copy constructor will make a copy of each data field’s value. This is fine
for the type size_t fields current_capacity and num_items. However, it is not what
we want for the pointer variable the_data. When the value in v1.the_data is copied
over, both v1.the_data and v2.the_data will point to the same array (see Figure 4.6).

Because v1.the_data and v2.the_data point to the same object, the statement
v1[2] = 10;

also changes v2[2] as shown in Figure 4.7. For this reason, v2 is considered a shal-
low copy of v1.

The statement
v1.push_back(20);

will insert 20 into v1[5] and will change v1.num_items to 6, but will not change
v2.num_items. as shown in Figure 4.8. As you can see, some changes to v1 will be
reflected in v2, but others will not.

What we need to do is create an independent copy of the underlying array so that
both v1.the_data and v2.the_data point to different arrays (see Figure 4.9).
Because it is now an independent copy, the resulting vector v2 is a deep copy of vec-
tor v1.

The following code fragment shows a copy constructor that accomplishes this. The
constructor initializes the two size_t data fields by copying over the corresponding
values from vector parameter other. A new array is allocated and pointed to by
data field the_data. Next, the for statement copies each array element value from
the original array (other.the_data[i]) to the new array (the_data[i]).

248 Chapter 4 Sequential Containers

F I G U R E 4 . 6
Shallow Copy of a
Vector

kw::vector<int> v1

= 5
= 10
=

num_items
current_capacity

int* the_data

kw::vector<int> v2

= 5
= 10
=

num_items
current_capacity

int* the_data

1

2

3

4

5

4.4 The Copy Constructor, Assignment Operator, and Destructor 249

F I G U R E 4 . 8
Shallow Copy after
v1.push_back(20)

F I G U R E 4 . 7
Shallow Copy After
Changing v1[2]

kw::vector<int> v1

= 5
= 10
=

num_items
current_capacity

int* the_data

kw::vector<int> v2

= 5
= 10
=

num_items
current_capacity

int* the_data

1

2

10

4

5

F I G U R E 4 . 9
Deep Copy of a Vector

kw::vector<int> v1

= 6
= 10
=

num_items
current_capacity

int* the_data

kw::vector<int> v2

= 5
= 10
=

num_items
current_capacity

int* the_data

1

2

10

4

5

20

kw::vector<int> v1

= 5
= 10
=

num_items
current_capacity

int* the_data

1

2

3

4

5

kw::vector<int> v2

= 5
= 10
=

num_items
current_capacity

int* the_data

1

2

3

4

5

/** Make a copy of a vector.
@param other The vector to be copied

*/
vector<Item_Type>(const vector<Item_Type>& other) :
current_capacity(other.capacity), num_items(other.num_items),

the_data(new Item_Type[other.current_capacity]) {
for (size_t i = 0; i < num_items; i++)
the_data[i] = other.the_data[i];

}

Assignment Operator
The purpose of assignment is also to create an independent copy of an object.
Assignment of primitive types is straightforward—the values are duplicated and
placed in the target location (the variable on the left hand side of the assignment).
For class types, assignment is done by what is appropriately known as the assign-
ment operator. Thus, if v1 and v2 are vector objects, the statement

v2 = v1;

is executed as if it were written
v2.operator=(v1);

Every class has a default assignment operator. The default assignment operator
makes a copy of each data field of the source object (v1 above) and places it into the
corresponding data field of the target object (v2 above). If the data field is a class
type, that class’s assignment operator is used. The default assignment operator will
make a shallow copy of an object, so we must override it if we want truly inde-
pendent copies.

As we have shown so far, we have a function in our vector class that makes a copy
of a vector object: the copy constructor. It is generally a poor design practice to have
two functions that do very similar things, because they may do them differently by
mistake. Therefore, we take the following approach: First we copy the source data
(parameter other) into a temporary object (the_copy) using the copy constructor.
Then we swap the target value and the temporary object value, and return the mod-
ified target (*this). Upon return, the destructor for the temporary object is auto-
matically invoked by the compiler, thus deleting the old data. We will describe
function swap in Section 4.11 and discuss the destructor next.

/** Assign the contents of one vector to another.
@param other The vector to be assigned to this vector
@return This vector with a copy of the other vector's

contents
*/
vector<Item_Type>& operator=(const vector<Item_Type>& other) {
// Make a copy of the other vector.
vector<Item_Type> the_copy(other);
// Swap contents of self with the copy.
swap(the_copy);
// Return -- upon return the copy will be destroyed.
return *this;

}

250 Chapter 4 Sequential Containers

The variable this is a pointer to the object to which a member function is applied.
Normally we do not need to use it inside a member function, since the current
object’s data fields and member functions are implicitly referenced. The semantics for
the assignment operator are such that the result of the assignment has the value of
the modified target object. This is obtained by dereferencing the pointer using the *
operator. Thus we exit the assignment operator using the strange-looking statement

return *this;

The return by reference does not use the copy constructor.

The Destructor
The purpose of the destructor is to undo what the constructor does. The construc-
tor takes a block of uninitialized memory and sets it to a known state, thus creating
an object. When the destructor is finished, the object is no longer considered to be
in a valid state, and the memory it occupies can be reused for creating other objects.
Unless this is done properly, the program will have memory leaks.

There is a default destructor, which effectively invokes the destructor for each data
field. For primitive types, the destructor does nothing, and this is fine. However, a
pointer is a primitive type that stores a memory address as its “value.” Thus, if a
class contains a pointer, the default destructor does not do anything with it either.
However, if the pointer references a dynamically allocated object (such as the array
referenced by pointer the_data), the memory allocated to that object must be freed
as well. Therefore, we need to provide a destructor that does this when the object is
destroyed.

The destructor for the vector class is defined as
~vector() {
delete[] the_data;

}

The symbol ~ indicates that a destructor is being defined. The destructor body
releases the memory occupied by the dynamically allocated array.

SYNTAX Defining the Destructor

FORM:
~class-name() {body}

EXAMPLE:
~vector() {delete[] the_data;}

INTERPRETATION:

The function named ~class-name is the destructor for the class class-name. The
purpose of the destructor is to supplement any actions taken by the default
destructor. Specifically, it is to release any resources owned by the object, such as
dynamically allocated memory.

4.4 The Copy Constructor, Assignment Operator, and Destructor 251

E X E R C I S E S F O R S E C T I O N 4 . 4

S E L F - C H E C K

1. What is the difference between a shallow copy and a deep copy?
2. Why is it not a problem to have a shallow copy of a primitive-type data field?
3. Show what happens in Figure 4.6 (shallow copy) when the following statement

executes:
v2.pop_back();

4. Answer Exercise 3 for Figure 4.9 (deep copy).

4.5 Single-Linked Lists and Double-Linked Lists

The vector has the limitation that the insert and erase functions operate in linear
(O(n)) time, because they require a loop to shift elements in the underlying array. In
this section we introduce a data structure, the linked list, that overcomes this limi-
tation by providing the ability to add or remove items anywhere in the list in con-
stant (O(1)) time. A linked list is useful when you need to insert and remove
elements at arbitrary locations (not just at the end) and when you will do frequent
insertions and removals.

One example would be maintaining an alphabetized list of students in a course at
the beginning of a semester while students are adding and dropping courses. If you
were using a vector, you would have to shift all names that follow the new person’s
name down one position before you could insert a new student’s name. Figure 4.10

252 Chapter 4 Sequential Containers

P I T F A L L

Failure to Define the Assignment Operator, Copy Constructor,
and Destructor
If a class dynamically allocates a resource such as dynamically allocated memory, then
it must define the assignment operator, copy constructor, and destructor. This is known
are the “rule of three.” Generally, if you define one of these three functions in a class,
you must define all three of them, since they have to work consistently. If you define the
assignment operator and not the copy constructor, then copies made by one may not be
the same as copies made by the other. For example, the default copy constructor and
assignment operator make shallow copies. If you define only a copy constructor that
makes a deep copy, it will not work consistently with the default assignment operator. If
you omit the destructor, then there is a potential for a memory leak.

shows this process. The names in gray were all shifted down when Barbara added
the course. Similarly, if a student drops the course, the names of all students after
the one who dropped (in gray in Figure 4.11) would be shifted up one position to
close up the space.

Another example would be maintaining a list of students who are waiting to regis-
ter for a course. Instead of having the students waiting in an actual line, you can
give each student a number, which is the student’s position in the line. If someone
drops out of the line, everyone with a higher number gets a new number that is 1
lower than before. If someone cuts into the line because they “need the course to
graduate,” everyone after this person gets a new number that is 1 higher than
before. The person maintaining the list is responsible for giving everyone their new
number after a change. Figure 4.12 illustrates what happens when Alice is inserted
and given the number 1: Everyone whose number is � 1 gets a new number. This
process is analogous to maintaining the names in a vector; each person’s number is
that person’s position in the list, and some names in the list are shifted after every
change.

A better way to do this would be to give each person the name of the next person
in line, instead of his or her own position in the line (which can change frequently).
To start the registration process, the person who is registering students calls the per-
son who is at the head of the line. After she finishes registration, the person at the
head of the line calls the next person, and so on. Now what if person A lets person

4.5 Single-Linked Lists and Double-Linked Lists 253

F I G U R E 4 . 1 0
Inserting a Student
into a Class List

F I G U R E 4 . 1 1
Removing a Student
Who Dropped

F I G U R E 4 . 1 2
Inserting into a
Numbered List of
Students Waiting to
Register

Before adding Browniten, Barbara
Abidoye, Olandunni
Boado, Annabelle
Butler, James
Chee, Yong-Han
Debaggis, Tarra...

After adding Browniten, Barbara
Abidoye, Olandunni
Boado, Annabelle
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra...

Before dropping Boado, Annabelle
Abidoye, Olandunni
Boado, Annabelle
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra...

After dropping Boado, Annabelle
Abidoye, Olandunni
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra...

Before inserting Alice at position 1
0. Warner, Emily
1. Dang, Phong
2. Feldman, Anna
3. Barnes, Aaron
4. Torres, Kristopher...

After inserting Alice at position 1
0. Warner, Emily
1. Franklin, Alice
2. Dang, Phong
3. Feldman, Anna
4. Barnes, Aaron
5. Torres, Kristopher...

B cut into the line before him? Because B has taken A’s position in line, A will reg-
ister after B, so person B must have A’s name. Also, the person in front of the new
person must know to call B instead of A. Figure 4.13 illustrates what happens when
Alice is inserted in the list. Only the two entries shown in color need to be changed
(Emily must call Alice instead of Phong, and Alice must call Phong). Although Alice
is shown at the bottom of Figure 4.13, she is really the second student in the list.
The first four students in the list are Emily Warner, Alice Franklin, Phong Dang, and
Anna Feldman.

What happens if someone drops out of our line? In this case, the name of the per-
son who follows the one that drops out must be given to the person who comes
before the one who drops out. Figure 4.14 illustrates this. If Aaron drops out, only
one entry needs to be changed (Anna must call Kristopher instead of Aaron).

Using a linked list is analogous to the process just discussed and illustrated in
Figures 4.13 and 4.14 for storing our list of student names. Insertion and removal
are done in constant time, and no shifts are required. Each element in a linked list,
called a node, stores information and a link to the next node in the list. For exam-
ple, for our list of students in Figure 4.14, the information "Warner, Emily" would
be stored in the first node, and the link to the next node would reference a node
whose information part was "Franklin, Alice". Here are the first three nodes of
this list:

We discuss how to represent and manipulate a linked list next.

"Warner, Emily" "Franklin, Alice" "Dang, Phong"

254 Chapter 4 Sequential Containers

F I G U R E 4 . 1 4
Removing a Student
from a List Where Each
Student Knows Who Is
Next

F I G U R E 4 . 1 3
Inserting into a
Numbered List Where
Each Student Knows
Who Is Next

Before inserting Alice

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher

...

Person to call
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
...

...

After inserting Alice

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher

...

 Franklin, Alice

Person to call
Franklin, Alice
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
...

...

 Dang, Phong

Before dropping Aaron

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher

...

 Franklin, Alice

Person to call
Franklin, Alice
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
...

...

 Dang, Phong

After dropping Aaron

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher

...

 Franklin, Alice

Person to call

Franklin, Alice
Feldman, Anna
Torres, Kristopher
Torres, Kristopher
...

...

 Dang, Phong

A List Node
A node is a data structure that contains a data item and one or more links. A link
is a pointer to a node. A UML diagram of this relationship is shown in Figure 4.15.
This shows that a Node contains a data field named data of type Item_Type and a
pointer to a Node. The name of the pointer is next, as shown on the line from the
Node to itself. Figure 4.16 shows four Nodes linked together to form the list [Tom,
Dick, Harry, Sam]. In this figure Item_Type is string.

We can define a Node as a C++ struct. (A struct is a data structure that contains
data fields and possibly constructors. It is like a class, except that it has no opera-
tors.) The definition of the struct Node is shown in Listing 4.2.

L I S T I N G 4 . 2
Node.h

#ifndef NODE_H_
#define NODE_H_

/** A Node is the building block for a single-linked list. */
struct Node {
// Data Fields
/** The data */
Item_Type data;
/** The pointer to the next node. */
Node* next;

// Constructor
/** Creates a new Node that points to another Node.

@param data_item The data stored
@param next_ptr Pointer to the Node that is

pointed to by the new Node
*/
Node(const Item_Type& data_item, Node* next_ptr = NULL) :
data(data_item), next(next_ptr) {}

};
#endif

A Node is defined inside of a class, making it an inner class. The outer class is a tem-
plate class that has the template parameter Item_Type.

The Node will be defined in the private part of the outer class, thus keeping the
details private from the outer class’s clients. The reason for defining it as a struct is
that a struct’s data members are public by default, thus accessible to the functions
of the outer class.

The constructor initializes the values of data and next. We provide NULL as a default
value for next.

4.5 Single-Linked Lists and Double-Linked Lists 255

F I G U R E 4 . 1 5
Node and Link

F I G U R E 4 . 1 6
Nodes in a Linked List

Node

Item_Type data

next

Node

next =
data =

Node Node Node

next = NULL
data =

next =
data =

next =
data ="Tom" "Dick" "Harry" "Sam"

Connecting Nodes
We can construct the list shown in Figure 4.16 using the following sequence of state-
ments:

Node* tom = new Node("Tom");
Node* dick = new Node("Dick");
Node* harry = new Node("Harry");
Node* sam = new Node("Sam");
tom->next = dick;
dick->next = harry;
harry->next = sam;

The statement
tom->next = dick;

stores a pointer (link) to the node with data "Dick" in the data field next of the node
pointed to by tom.

Generally we do not have individual pointers to each of the nodes. Instead, we have
a pointer to the first node in the list and work from there. Thus we could build the
list shown in Figure 4.16 as follows:

Node* head = new Node("Tom");
head->next = new Node("Dick");
head->next->next = new Node("Harry");
head->next->next->next = new Node("Sam");

In the foregoing fragment, we grew the list by adding each new node to the end of
the list so far. The node referenced by head was always the first node in the list (data
is "Tom"). We can also grow a list by adding nodes to the front of the list. The fol-
lowing fragment creates the same list, but each new node is added to the front of
the list so far. After each addition, head references a different node. The first node
referenced by head (data is "Sam") will be the last node in the final list.

Node* head = new Node("Sam");
head = new Node("Harry", head);
head = new Node("Dick", head);
head = new Node("Tom", head);

256 Chapter 4 Sequential Containers

P R O G R A M S T Y L E

Use of struct
The keywords class and struct are effectively synonymous in C++. The only difference
is that members of classes are private by default, whereas members of structs are pub-
lic by default. Most C++ programmers have adopted the practice of using struct only to
define a grouping of data that is to be publicly accessible. The only member functions
defined are simple constructors that initialize the data. Such structs are known as
“Plain Old Data” (POD) and can be used as function parameters to functions written in
other programming languages such as C.

4.5 Single-Linked Lists and Double-Linked Lists 257

Node Node Node Node

next =
data = "Tom"

next =
data = "Dick"

next =
data = "Harry"

next = NULL
data = "Sam"

Node

next =
data = "Bob"

Step 1

Step 2

Each statement of the form
head = new Node(a_name, head);

creates a new node, whose data component is a_name and whose next component
is the list so far. Then head is reset to point to this new node. This has the effect of
adding the new node to the front of the existing list.

Inserting a Node in a List
We can insert a new node, "Bob", into the list after "Harry" as follows:

Node* bob = new Node("Bob");
bob->next = harry->next; // Step 1
harry->next = bob; // Step 2

The linked list now is as shown in Figure 4.17. We show the number of the step that
created each link alongside it.

Removing a Node
If we have a pointer, tom, to the node that contains "Tom", we can remove the node
that follows "Tom":

Node* ptr = tom->next; // Pointer to Node to be deleted
tom->next = tom->next->next; // Remove Node from list
delete ptr; // Delete Node to free storage

The list is now as shown in Figure 4.18. Notice that we did not start with a pointer
to "Dick" but instead started with a pointer to "Tom". To remove a node, we need to
point to the node that precedes it, not the node being removed. (Recall from our reg-
istration list example that the person in front of the one dropping out of line must
be told to call the person who follows the one who is dropping out.) Note that we
use the statement

delete ptr;

to release the memory allocated to the node we removed. We do this to avoid mem-
ory leaks.

F I G U R E 4 . 1 7
After Inserting "Bob"

F I G U R E 4 . 1 8
After Removing Node Following "Tom"

258 Chapter 4 Sequential Containers

NodeNode Node Node Node

next =
data = "Tom"

next =
data = "Dick"

next =
data = "Harry"

next = NULL
data = "Sam"

next =
data = "Bob"

Traversing a Linked List
Traversing a linked list is a fairly simple process.

1. Set node_ptr to point to the first node.
2. while node_ptr is not NULL
3. Do something with node pointed to by node_ptr.
4. Set node_ptr to node_ptr->next.

This is illustrated by the following fragment, which displays the information in our
example linked list:

node_ptr = tom; // tom points to the first node
while (node_ptr != NULL) {
cout << node_ptr->data;
if (node_ptr->next != NULL) {
cout << " ==> ";

}
node_ptr = node_ptr->next;

}
cout << endl;

As new values are assigned to variable node_ptr by the statement
node_ptr = node_ptr->next;

node_ptr walks down the list, pointing to each of the list nodes in turn. The value
of node_ptr is NULL when the traversal is finished.

Traversing the list shown in Figure 4.18, the loop produces the following output:
Tom ==> Harry ==> Bob ==> Sam

Double-Linked Lists
Our single-linked list data structure has some limitations:

• We can insert a node only after a node we have a pointer to. For example, to
insert "Bob" to arrive at Figure 4.17 we needed a pointer to the node contain-
ing "Harry". If we wanted to insert "Bob" before "Sam" but did not have a
pointer to "Harry", we would have to start at the beginning of the list and
search until we found a node whose next node was "Sam".

• We can remove a node only if we have a pointer to its predecessor node. For
example, to remove "Dick" to arrive at Figure 4.18 we needed a pointer to the
node containing "Tom". If we wanted to remove "Dick" without having this
pointer, we would have to start at the beginning of the list and search until we
found a node whose next node was "Dick".

• We can traverse the list only in the forward direction, whereas with a vector
we can move forward (or backward) by incrementing (or decrementing) the
index.

We can overcome these limitations by adding a pointer prev to each node as shown
in the UML class diagram in Figure 4.19. The lines indicate that both prev and next
are pointers whose values can be changed. Our new, double-linked list is shown in
Figure 4.20.

4.5 Single-Linked Lists and Double-Linked Lists 259

P I T F A L L

Falling Off the End of a List
If node_ptr is at the last list element and you execute the statement
node_ptr = node_ptr->next;

node_ptr will be set to NULL, and you will have fallen off the end of the list. This is not
an error. However, if you execute this statement again, you will probably get a run-time
error. The exact error message is operating system dependent, as discussed in Chapter 2.

F I G U R E 4 . 1 9
Double-Linked List
Node UML Diagram

F I G U R E 4 . 2 0
A Double-Linked List

DNode

Item_Type data

nextprev

DNode DNode DNode DNode

next =
prev = NULL
data = "Tom"

next =
prev =
data = "Dick"

next =
prev =
data = "Harry"

next = NULL
prev =
data = "Sam"

The DNode Class
The DNode class for a double-linked list has references to the data and to the next
and previous nodes. Listing 4.3 shows the declaration of this class (as a struct).

L I S T I N G 4 . 3
DNode.h

#ifndef DNODE_H_
#define DNODE_H_

/** A DNode is the building block for a double-linked list. */
struct DNode {
/** A copy of the data */
Item_Type data;
/** A pointer to the next DNode */
DNode* next;
/** A pointer to the previous DNode */
DNode* prev;
DNode(const Item_Type& the_data,

DNode* prev_val = NULL, DNode* next_val = NULL) :
data(the_data), next(next_val), prev(prev_val) {}

};
#endif

Inserting into a Double-Linked List
If sam is a pointer to the node containing "Sam", we can insert a new node contain-
ing "Sharon" into the list before "Sam" using the following statements. Before the
insertion, we can refer to the predecessor of sam as sam->prev. After the insertion,
this node will be pointed to by sharon->prev.

DNode* sharon = new DNode("Sharon");
// Link new DNode to its neighbors.
sharon->next = sam; // Step 1
sharon->prev = sam->prev; // Step 2
// Link old predecessor of sam to new predecessor.
sam->prev->next = sharon; // Step 3
// Link to new predecessor.
sam->prev = sharon; // Step 4

The three DNodes affected by the insertion are shown in Figures 4.21 and 4.22. The
old links are shown in gray, and the new links are shown in color. Next to each link
we show the number of the step that creates it. Figure 4.21 shows the links after
Steps 1 and 2, and Figure 4.22 shows the links after Steps 3 and 4.

Removing from a Double-Linked List
If we have a pointer, harry, to the node that contains "Harry", we can remove that
node without having a named pointer to its predecessor:

harry->prev->next = harry->next; // Step 1
harry->next->prev = harry->prev; // Step 2
delete harry;

The list is now as shown in Figure 4.23.

260 Chapter 4 Sequential Containers

4.5 Single-Linked Lists and Double-Linked Lists 261

F I G U R E 4 . 2 1
Steps 1 and 2 in
Inserting sharon

F I G U R E 4 . 2 2
After Inserting sharon
before sam

F I G U R E 4 . 2 3
Removing harry from a Double-Linked List

DNode

next =
prev =
data = "Sharon"

Step 1

Step 2

DNode

next = NULL
prev =
data = "Sam"

sam =

DNode

next =
prev =
data = "Harry"

From
predecessor

To
predecessor

sharon =

DNode

next =
prev =
data = "Sharon"

sharon =
Step 4

Step 3

DNode

next = NULL
prev =
data = "Sam"

sam =

DNode

next =
prev =
data = "Harry"

From
predecessor

To
predecessor

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next =
prev =
data = "Sharon"

Step 1

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

harry =

Creating a Double-Linked List Object
So far we have shown just the internal DNodes for a linked list. A double-linked list
object would consist of a separate object with data fields head (a pointer to the first
list DNode), tail (a pointer to the last list DNode), and num_items (the number of inter-
nal DNodes). See Figure 4.24.

Circular Lists
We can carry the development of the single-linked list to the double-linked list one
step further and create a circular list by linking the last node to the first node (and
the first node to the last one). If head references the first list node and tail refer-
ences the last list node, the statements

head->prev = tail;
tail->next = head;

would accomplish this (Figure 4.25).

You could also create a circular list from a single-linked list by executing just the
statement

tail->next = head;

This statement connects the last list element to the first list element. If you keep a
pointer to only the last list element, tail, you can access the last element and the
first element (tail->next) in O(1) time.

One advantage of a circular list is that you can continue to traverse in the forward
(or reverse) direction even after you have passed the last (or first) list node. This
enables you to visit all the list elements from any starting point. In a list that is not
circular, you would have to start at the beginning or at the end if you wanted to visit
all the list elements. A second advantage of a circular list is that you can never fall
off the end of the list. There is a disadvantage: You must be careful not to set up an
infinite loop.

F I G U R E 4 . 2 5
Circular Linked List

262 Chapter 4 Sequential Containers

list

head =
tail =
num_items =

F I G U R E 4 . 2 4
A Double-Linked
List Object

circ_list

head =
tail =
num_items = 4

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next =
prev =
data = "Sam"

DNode

next =
prev =
data = "Tom"

E X E R C I S E S F O R S E C T I O N 4 . 5
S E L F - C H E C K

1. Draw a single-linked list of int values containing the integers 5, 10, 7, and 30
and referenced by head. Complete the following fragment, which adds all int val-
ues in a list. Your fragment should walk down the list, adding any integers to sum
and ignoring any objects in the list that are not int objects.
int sum = 0;
Node* node_ptr = _________________;
while (node_ptr != NULL) {

sum += ___________;
}
node_ptr = __________________;
}

2. Answer the following questions about lists.
a. Each node in a single-linked list has a pointer to ______.
b. In a double-linked list each node has a pointer to ______, and ______.
c. To remove an item from a single-linked list you need a pointer to ______.
d. To remove an item from a double-linked list you need a pointer to ______.

3. For the single-linked list in Figure 4.16, assume you have a pointer variable head
(type Node*) that references the first node. Explain the effect of each statement in
the following fragments.
a. head = new Node("Shakira", head->next);

b. Node* node_ptr = head->next;
node_ptr->next = node_ptr->next->next;

c. Node* node_ptr = head;
while (node_ptr->next != NULL)

node_ptr = node_ptr->next;
node_ptr->next = new Node("Tamika");

d. Node* node_ptr = head;
while (node_ptr != NULL && node_ptr->data != "Harry")

node_ptr = node_ptr->next;
if (node_ptr != NULL) {

node_ptr->data = "Sally";
node_ptr->next = new Node("Harry", node_ptr->next->next);

}

4. For the double-linked list in Figure 4.20, explain the effect of each statement in
the following fragments.
a. DNode* node_ptr = tail->prev;

node_ptr->prev->next = tail;
tail->prev = node_ptr->prev;

b. DNode* node_ptr = head;
head = new DNode("Tamika");
head->next = node_ptr;
node_ptr->prev = head;

c. DNode* node_ptr = new DNode("Shakira");
node_ptr->prev = head;
node_ptr->next = head->next;
head->next->prev = node_ptr;
head->next = node_ptr;

4.5 Single-Linked Lists and Double-Linked Lists 263

P R O G R A M M I N G

1. Using the single-linked list shown in Figure 4.16, and assuming that head refer-
ences the first Node and tail references the last Node, write statements to do each
of the following.
a. Insert "Bill" before "Tom".
b. Remove "Sam".
c. Insert "Bill" before "Tom".
d. Remove "Sam".

2. Repeat Exercise 1 using the double-linked list shown in Figure 4.20.

4.6 The list Class and the Iterator

The list Class
The list class, part of the C++ standard library defined in header <list>, imple-
ments a double-linked list. A selected subset of the functions of this class are shown
in Table 4.2. Because the list class, like the vector class, is a sequential container,
it contains many of the functions found in the vector class as well as some addi-
tional functions.

Several functions use an iterator (or const_iterator) as an argument or return an
iterator as a result. We discuss iterators next.

The Iterator
Let’s say we want to process each element in a list. We cannot use the following
loop to access the list elements in sequence, starting with the one at index 0.

// Access each list element and process it.
for (size_t index = 0; index < a_list.size(); index++) {
// Do something with next_element, the element at
// position index
Item_Type next_element = a_list[index]; // Not valid
...

}

This is because the subscripting operator (operator[]) is not defined for the list as
it is for the vector. Nor is the at function defined for a list, because the elements of
a list are not indexed like an array or vector.

Instead, we can use the concept of an iterator to access the elements of a list in
sequence. Think of an iterator as a moving place marker that keeps track of the
current position in a particular linked list, and therefore, the next element to process
(see Fig. 4.26). An iterator can be advanced forward (using operator++) or back-
ward (using operator--).

264 Chapter 4 Sequential Containers

TA B L E 4 . 2
Selected Functions Defined by the Standard Library list Class

4.6 The list Class and the Iterator 265

Function Behavior

iterator insert(iterator pos, Inserts a copy of item into the list at position pos. Returns
const Item_Type& item) an iterator that references the newly inserted item.

iterator erase(iterator pos) Removes the item from the list at position pos. Returns an
iterator that references the item following the one erased.

void remove(const Item_Type& item) Removes all occurrences of item from the list.

void push_front(const Item_Type& item) Inserts a copy of item as the first element of the list.

void push_back(const Item_Type& item) Adds a copy of item to the end of the list.

void pop_front() Removes the first item from the list.

void pop_back() Removes the last item from the list.

Item_Type& front(); Gets the first element in the list. Both constant and modifiable
const Item_Type& front() const versions are provided.

Item_Type& back(); Gets the last element in the list. Both constant and modifiable
const Item_Type& back() const versions are provided.

iterator begin() Returns an iterator that references the first item of the list.

const_iterator() begin const Returns a const_iterator that references the first item of
the list.

iterator end() Returns an iterator that references the end of the list (one
past the last item).

const_iterator end() const Returns a const_iterator that references the end of the list
(one past the last item).

void swap(list<Item_Type> other) Exchanges the contents of this list with the other list.

bool empty() const Returns true if the list is empty.

size_t size() const Returns the number of items in the list.

You use an iterator like a pointer. The pointer dereferencing operator (operator*)
returns a reference to the field data in the DNode object at the current iterator posi-
tion. Earlier, in Section 4.5, we showed program fragments where the variable
node_ptr was used to point to the nodes in a linked list. The iterator provides us
with the same capabilities but does so while preserving information hiding. The
internal structure of the DNode is not visible to the clients. Clients can access or mod-
ify the data and can move from one DNode in the list to another, but they cannot
modify the structure of the linked list, since they have no direct access to the prev
or next data fields.

Table 4.2 shows four functions that manipulate iterators. Function insert (erase)
adds (removes) a list element at the position indicated by an iterator. The insert

function returns an iterator to the newly inserted item, and the erase function
returns an iterator to the item that follows the one erased. Function begin returns
an iterator positioned at the first element of the list, and function end returns an
iterator positioned just past the last list element.

E X A M P L E 4 . 5 Assume iter is declared as an iterator object for list a_list. We can use the fol-
lowing fragment to process each element in a_list instead of the one shown at the
beginning of this section.

// Access each list element and process it.
for (list<Item_Type>::iterator iter = a_list.begin();

iter != a_list.end(); ++iter) {

// Do something with the next element (*iter)
Item_Type next_element = *iter;
...

}

In this for statement, we use iter much as we would use an index to access the ele-
ments of a vector. The initialization parameter

list<Item_Type>::iterator iter = a_list.begin()

declares and initializes an iterator object of type list<Item_Type>::iterator.
Initially this iterator is set to point to the first list element, which is returned by
a_list.begin(). The test parameter

iter != a_list.end()

causes loop exit when the iterator has passed the last list element. The update
parameter

++iter

advances the iterator to its next position in the list.

266 Chapter 4 Sequential Containers

F I G U R E 4 . 2 6
Double-Linked List with KW::list<Item_Type>::iterator

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

KW::list

head =
tail =
num_items = 4

KW::list::iterator iter

current =
parent =

We stated that using an iterator to access elements in a list is similar to using a
pointer to access elements in an array. In fact, an iterator is a generalization of a
pointer. The following for statement accesses each element in the array declared as
int an_array[SIZE].

for (int* next = an_array; next != an_array + SIZE; ++next) {
// Do something with the next element (*next)
int next_element = *next;
...

}

The for statements just discussed have a different form than what we are used to.
These differences are discussed in the Program Style display above.

Common Requirements for Iterators
Each container in the STL is required to provide both an iterator and a
const_iterator type. The only difference between the iterator and the const_iter-
ator is the return type of the pointer dereferencing operator (operator*). The iter-
ator returns a reference, and the const_iterator returns a const reference.

Table 4.3 lists the operators that iterator classes may provide. The iterator classes
do not have to provide all of the operations listed. There is a hierarchical organiza-
tion of iterator classes shown in Figure 4.27. For example, the figure shows a
bidirectional_iterator as a derived class of a forward_iterator. This is to show
that a bidirectional_iterator provides all of the operations of a forward_iterator
plus the additional ones defined for the bidirectional_iterator. For example, you
can use the decrement operator with a bidirectional_iterator to move the itera-
tor back one item. The random_access_iterator (at the bottom of the diagram)

4.6 The list Class and the Iterator 267

P R O G R A M S T Y L E

Testing Whether There Are More List Nodes to Process
When testing whether there are more elements of an array or vector to process, we eval-
uate an expression of the form index < array_size, which will be true or false.
However, we test whether there are more nodes of a list to process by comparing the
current iterator position (iter) with a_list.end(), the iterator position just past the
end of the list. We do this by evaluating the expression iter != a_list.end() instead
of iter < a_list.end(). The reason we use != instead of < is that iterators effec-
tively are pointers to the individual nodes and the physical ordering of the nodes within
memory is not relevant. In fact, the last node in a linked list may have an address that is
smaller than that of the first node in the list. Thus, using iter < a_list.end() would
be incorrect because the operator < compares the actual memory locations (addresses)
of the list nodes, not their relative positions in the list.

The other thing that is different is that we use prefix increment (++iter) instead of
postfix increment with iterators. This results in more efficient code.

must provide all the operators in Table 4.3. A random_access_iterator can be
moved forward or backward and can be moved past several items.

There are two forms shown in Table 4.3 for the increment and decrement operators.
The prefix operator has no parameter. The postfix operator has an implicit type int
parameter of 1.

Alhough we draw Figure 4.27 as a UML diagram, this is slightly misleading. Each
of the iterator types represents what is called a concept. A concept represents a com-
mon interface that a generic class must meet. Thus a class that meets the require-
ments of a random_access_iterator is not necessarily derived from a class that
meets the requirements of a bidirectional_iterator.

TA B L E 4 . 3
The iterator Operators

268 Chapter 4 Sequential Containers

F I G U R E 4 . 2 7
Iterator Hierarchy

‹‹concept››
forward_iterator

‹‹concept››
input_iterator

‹‹concept››
output_iterator

‹‹concept››
bidirectional_iterator

‹‹concept››
random_access_iterator

Function Behavior Required for Iterator Type

const Item_Type& operator* Returns a reference to the object referenced All except output_iterator
by the current iterator position that can be
used on the right-hand side of an assign-
ment. Required for all iterators except
output_iterators.

Item_Type& operator* Returns a reference to the object referenced All except input_iterator
by the current iterator position that can be
used on the left-hand side of an assign-
ment. Required for all iterators except
input_iterators.

iterator& operator++() Prefix increment operator. Required for All iterators
all iterators.

iterator operator++(int) Postfix increment operator. Required for All iterators
all iterators.

Removing Elements from a List
You can use an iterator to remove an element from a list as you access it. You use
the iterator that refers to the item you want to remove as an argument to the
list<Item_Type>.erase function. The erase function will return an iterator that
refers to the item after the one removed. You use this returned value to continue tra-
versing the list. You should not attempt to increment the iterator that was used in
the call to erase, since it no longer refers to a valid list DNode.

E X A M P L E 4 . 6 Assume that we have a list of int values. We wish to remove all elements that are
divisible by a particular value. The following function will accomplish this:

/** Remove items divisible by a given value.
pre: a_list contains int values.
post: Elements divisible by div have been removed.

*/
void remove_divisible_by(list<int>& a_list, int div) {
list<int>::iterator iter = a_list.begin();
while (iter != a_list.end()) {
if (*iter % div == 0) {
iter = a_list.erase(iter);

} else {
++iter;

}
}

}

The expression *iter has the value of the current int value referenced by the iter-
ator. The function call in the statement

iter = a_list.erase(iter);

4.6 The list Class and the Iterator 269

Function Behavior Required for Iterator Type

iterator& operator--() Prefix decrement operator. Required for all bidirectional_iterator and
bidirectional and random-access iterators. random_access_iterator

iterator operator--(int) Postfix decrement operator. Required for all bidirectional_iterator and
bidirectional and random-access iterators. random_access_iterator

iterator& operator+=(int) Addition-assignment operator. Required for random_access_iterator
all random-access iterators.

iterator operator+(int) Addition operator. Required for all random- random_access_iterator
access iterators.

iterator operator-=(int) Subtraction-assignment operator. Required random_access_iterator
for all random-access iterators.

iterator operator-(int) Subtraction operator. Required for all random_access_iterator
random-access iterators.

TA B L E 4 . 3 (cont.)

removes the element referenced by iter and then returns an iterator that references
the next element; thus, we do not want to increment iter if we call erase, but
instead set iter to the value returned from the erase function. If we want to keep
the value referenced by iter (the else clause), we need to increment the iterator
iter so that we can advance past the current value. Note that we use the prefix
increment operator because we do not need a copy of the iterator prior to incre-
menting it.

270 Chapter 4 Sequential Containers

P I T F A L L

Attempting to Reference the Value of end()
The iterator returned by the end function represents a position that is just past the
last item in the list. It does not reference an object. If you attempt to dereference an
iterator that is equal to this value, the results are undefined. This means that your
program may appear to work, but in reality there is a hidden defect. Some C++ library
implementations test for the validity of an iterator, but such verification is not
required by the C++ standard. When we show how to implement the list iterator, we
will show an implementation that performs this validation.

E X A M P L E 4 . 7 Assume that we have a list of string values. We wish to locate the first occurrence
of a string target and replace it with the string new_value. The following function
will accomplish this:

/** Replace the first occurrence of target with new_value.
pre: a_list contains string values.
post: The first occurrence of target is replaced by new_value.

*/
void find_and_replace(list<string>& a_list,

const string& target,
const string& new_value) {

list<string>::iterator iter = a_list.begin();
while (iter != a_list.end()) {
if (*iter == target) {
*iter = new_value;
break; // Exit the loop.

}
else {
++iter;

}
}

}

E X E R C I S E S F O R S E C T I O N 4 . 6

S E L F - C H E C K

1. The function find, one of the STL algorithms, returns an iterator that references
the first occurrence of the target (the third argument) in the sequence specified by
the first two arguments. What does the following code fragment do?
list<string>::iterator to_sam = find(my_list.begin(),

my_list.end(), "Sam");
--to_sam;
my_list.erase(to_sam);

where my_list is shown in the following figure:

2. In Question 1, what if we change the statement
--to_sam;

to
++to_sam;

3. In Question 1, what if we omit the statement
--to_sam;

P R O G R A M M I N G

1. Write the function find_first by adapting the code shown in Example 4.7 to
return an iterator that references the first occurrence of an object.

2. Write the function find_last by adapting the code shown in Example 4.7 to
return an iterator that references the last occurrence of an object.

3. Write a function find_min that returns an iterator that references the minimum
item in a list<Item_Type>, assuming that Item_Type implements the less-than
operator.

4.7 Implementation of a Double-Linked List Class

We will implement a simplified version of the list class, which we will encapsulate
in the namespace KW; thus our list will be called KW::list to distinguish it from the
standard list, std::list. We will not provide a complete implementation, because
we expect you to use the standard list class provided by the C++ standard library
(in header <list>). The data fields for the KW::list class are shown in Table 4.4.

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

4.7 Implementation of a Double-Linked List Class 271

TA B L E 4 . 4
Data Fields for the KW::list Class

272 Chapter 4 Sequential Containers

Data Field Attribute

DNode* head A pointer to the first item in the list.

DNode* tail A pointer to the last item in the list.

int num_items A count of the number of items in the list.

Implementing the KW::list Functions
We need to implement the functions shown earlier in Table 4.2 for the list class.

namespace KW {

template<typename Item_Type>
class list {
private:
// Insert definition of nested class DNode here.
#include "DNode.h"

public:
// Insert definition of nested class iterator here.
#include "list_iterator.h"
// Give iterator access to private members of list.
friend class iterator;
// Insert definition of nested class const_iterator here.
#include "list_const_iterator.h"
// Give const_iterator access to private members of list.
friend class const_iterator;

private:
// Data fields
/** A reference to the head of the list */
DNode* head;
/** A reference to the end of the list */
DNode* tail;
/** The size of the list */
int num_items;

Note that the DNode is private, but that the iterator is public. We showed the DNode
in Listing 4.3 and will describe the iterator later. Since the iterator and
const_iterator need to access and modify the private members of the list class, we
declare the iterator and const_iterator to be friends of the list class:

friend class iterator;
friend class const_iterator;

Members of friend classes, like stand-alone friend functions, have access to the pri-
vate and protected members of the class that declares them to be friends.

The Default Constructor
The default constructor initializes the values of head, tail, and num_items. Initially
the list is empty and both head and tail are NULL.

/** Construct an empty list. */
list() {
head = NULL;
tail = NULL;
num_items = 0;

}

The Copy Constructor
Like the vector, the list class will dynamically allocate memory. Therefore we need
to provide the copy constructor, destructor, and assignment operator. To make a
copy we initialize the list to be an empty list and then insert the items from the other
list one at a time.

/** Construct a copy of a list. */
list(const list<Item_Type>& other) {
head = NULL;
tail = NULL;
num_items = 0;
for (const_iterator itr = other.begin(); itr != other.end();

++itr) {
push_back(*itr);

}
}

The Destructor
The destructor walks through the list and deletes each DNode.

/** Destroy a list. */
~list() {
while (head != NULL) {
DNode* current = head;
head = head->next;
delete current;

}
tail = NULL;
num_items = 0;

}

The Assignment Operator
The assignment operator is coded the same as we did for the vector. We declare a
local variable that is initialized to the source of the assignment. This invokes the
copy constructor. We then call the swap function, which exchanges the internal con-
tent of the target with the copy. The target is now a copy of the source, and the local
variable is the original value of the destination. When the operator returns, the
destructor is called on the local variable, deleting its contents.

/** Assign the contents of one list to another. */
list<Item_Type>& operator=(const list<Item_Type>& other) {
// Make a copy of the other list.
list<Item_Type> temp_copy(other);
// Swap contents of self with the copy.
swap(temp_copy);
// Return -- upon return the copy will be destroyed.
return *this;

}

4.7 Implementation of a Double-Linked List Class 273

The push_front Function
Function push_front inserts a new node at the head (front) of the list (see Figure
4.28). It allocates a new DNode that is initialized to contain a copy of the item being
inserted. This DNode’s prev data field is initialized to NULL, and its next data field is
initialized to the current value of head. We then set head to point to this newly allo-
cated DNode. Figure 4.28 shows the list object (data fields head, tail, and num_items)
as well as the individual nodes.

void push_front(const Item_Type& item) {
head = new DNode(item, NULL, head); // Step 1
if (head->next != NULL)
head->next->prev = head; // Step 2

if (tail == NULL) // List was empty.
tail = head;

num_items++;
}

It is possible that the list was initially empty. This is indicated by tail being NULL. If
the list was empty, then we set tail to also point to the newly allocated DNode.

The push_back Function
Fuction push_back appends a new element to the end of the list. If the list is not
empty, we allocate a new DNode that is initialized to contain a copy of the item being
inserted. This DNode’s prev data field is initialized to the current value of tail, and
its next data field is initialized to NULL. The value of tail->next is then set to point
to this newly allocated node, and then tail is set to point to it as well. This is illus-
trated in Figure 4.29.

void push_back(const Item_Type& item) {
if (tail != NULL) {
tail->next = new DNode(item, tail, NULL); // Step 1
tail = tail->next; // Step 2
num_items++;

} else { // List was empty.
push_front(item);

}
}

If the list was empty, we call push_front.

The insert Function
Function insert has an iterator parameter pos that specifies where the new node
will be inserted. The insert function tests for the special cases of inserting at either
the front or the back. For these cases the push_front and push_back functions are
called, respectively. We test for these cases by accessing the current data field of iter-
ator pos. This data field references the node currently pointed to by the iterator. (We
show the iterator class and its members shortly.)

iterator insert(iterator pos, const Item_Type& item) {
// Check for special cases
if (pos.current == head) {
push_front(item);
return begin();

} else if (pos.current == NULL) { // Past the last node.
push_back(item);
return iterator(this, tail);

}

274 Chapter 4 Sequential Containers

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next =
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

DNode

next = NULL
prev =
data = "Zoe"

KW::list

Step 2

Step 1
Step 1

4

head =
tail =
num_items = /5

If neither condition is true, we are inserting a new item in the middle of the list. First
we allocate a new DNode, which is initialized to contain a copy of the item being
inserted. This DNode’s prev data field is initialized to point to the node before the
position where we are inserting, and its next data field is initialized to point to the
node at the position (pos.current) where we are inserting. This is illustrated in
Figure 4.30.

// Create a new node linked before node referenced by pos.
DNode* new_node = new DNode(item,

pos.current->prev,
pos.current); // Step 1

4.7 Implementation of a Double-Linked List Class 275

F I G U R E 4 . 2 8
Adding to the Head of the List

F I G U R E 4 . 2 9
Adding to the Tail
of the List

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev =
data = "Tom"

DNode

next =
prev = NULL
data = "Ann"

KW::list

Step 1 Step 1

Step 2

4

head =
tail =
num_items = /5

KW::list::iterator iter

current =
parent =

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

DNode

next =
prev =
data = "Sharon"

KW::list

Step 1 Step 1 Step 3

Step 2

4

head =
tail =
num_items = /5

Then the links in the neighboring nodes are updated to point to the new node.
// Update links
pos.current->prev->next = new_node; // Step 2
pos.current->prev = new_node; // Step 3

Finally, num_items is incremented, and an iterator that refers to the newly inserted
node is returned.

num_items++;
return iterator(this, new_node);

}

The pop_front Function
The pop_front function removes the first element from the list. It begins by verify-
ing that there is at least one element (head != NULL). It saves a pointer to the first
node, and then sets head to point to the node following the first node. The old first
node is then deleted. If the list is not empty, the prev field in the first node is set to
NULL, otherwise tail is set to NULL.

void pop_front() {
if (head == NULL)
throw std::invalid_argument
("Attempt to call pop_front() on an empty list");

DNode* removed_node = head;
head = head->next;

276 Chapter 4 Sequential Containers

F I G U R E 4 . 3 0
Adding to the Middle
of the List

delete removed_node;
if (head != NULL)
head->prev = NULL;

else
tail = NULL;

num_items--;
}

The pop_back Function
The pop_back function removes the last element from the list. The logic is very sim-
ilar to that of the pop_front function except that the node pointed to by tail is
removed.

void pop_back() {
if (tail == NULL)
throw std::invalid_argument
("Attempt to call pop_back() on an empty list");

DNode* removed_node = tail;
tail = tail->prev;
delete removed_node;
if (tail != NULL)
tail->next = NULL;

else
head = NULL;

num_items--;
}

The erase Function
The erase function removes the item selected by its iterator parameter pos. It
begins by verifying that the list is not empty and that pos is valid. It then computes
the iterator that references the node following the one to be removed. This iterator
is the return value of the function. Next the special cases of removing the first or
last node are delegated to the pop_front and pop_back functions. If it is not one of
these special cases, then the node to be removed is unlinked from its neighbors.

iterator erase(iterator pos) {
if (empty())
throw std::invalid_argument
("Attempt to call erase on an empty list");

if (pos == end())
throw std::invalid_argument
("Attempt to call erase of end()");

/* Create an iterator that references the position
following pos. */

iterator return_value = pos;
++return_value;
// Check for special cases.
if (pos.current == head) {
pop_front();
return return_value;

} else if (pos.current == tail) {
pop_back();
return return_value;

4.7 Implementation of a Double-Linked List Class 277

} else { // Remove a node in the interior of the list.
// Unlink current node.
DNode* removed_node = pos.current;
removed_node->prev->next = removed_node->next;
removed_node->next->prev = removed_node->prev;
delete removed_node;
return return_value;

}
}

Implementing the iterator
Table 4.5 describes the data members of class iterator. An iterator object must
store a pointer to the current item and a pointer to the KW::list object for which it
is an iterator.

Figure 4.31 shows an example of a KW::list object and a KW::list::iterator object
iter. The iterator currently references the node that contains "Harry". Thus, the
expression *iter gives us a reference to the string "Harry". We can use this on either side
of an assignment operator. Therefore we can change "Harry" to "Henry" by the statement

*iter = "Henry";

The expression *--iter (equivalent to *(--iter)) would move the iterator back-
ward so that it references the node containing "Dick" and then return a reference to
that string.

TA B L E 4 . 5
Data Fields of the KW::list<Item_Type>::iterator Class

278 Chapter 4 Sequential Containers

Data Field Attribute

DNode* current A pointer to the current item.

list<Item_Type>* parent A pointer to the list of which this iterator is a member.

F I G U R E 4 . 3 1
Double-Linked List with KW::list<Item_Type>::iterator

KW::list::iterator iter

current =
parent =

DNode

next =
prev =
data = "Dick"

DNode

next =
prev =
data = "Harry"

DNode

next = NULL
prev =
data = "Sam"

DNode

next =
prev = NULL
data = "Tom"

KW::list

head =
tail =
num_items = 4

Declaring the Class iterator
We show the definition of the iterator class in Listing 4.4. In the following declaration

typename list<Item_Type>::DNode* current;

the keyword typename indicates that DNode is the name of a class that is nested within
class list<Item_Type>. The keyword typename is required when the parent class is a
template class. The identifier current is declared to be a pointer to a DNode object.
We describe the iterator functions in the sections following the listing.

L I S T I N G 4 . 4
The Nested Class iterator

#ifndef LIST_ITERATOR_H_
#define LIST_ITERATOR_H_

// Nested class iterator.
class iterator {
// Give the parent class access to this class.
friend class list<Item_Type>;
private:
// Data fields
/** A reference to the parent list */
list<Item_Type>* parent;
/** A pointer to the current DNode */
typename list<Item_Type>::DNode* current;
// Member functions
/** Constructs an iterator that references a specific DNode.

Note: this constructor is private. Only the list class
can create one from scratch.
@param my_parent A reference to the list
@param position A pointer to the current DNode

*/
iterator(list<Item_Type>* my_parent, DNode* position) :
parent(my_parent), current(position) {}

public:
/** Returns a reference to the currently referenced item.

@return A reference to the currently referenced item
@throws std::invalid_argument if this iterator is at end

*/
Item_Type& operator*() const {
if (current == NULL)
throw std::invalid_argument("Attempt to dereference end()");

return current->data;
}

/** Returns a pointer to the currently referenced item.
Item_Type must be a class or struct. This restriction
is enforced by the compiler.
@return A pointer to the currently referenced item
@throws std::invalid_argument If this iterator is at end

*/
Item_Type* operator->() const {
if (current == NULL)
throw std::invalid_argument("Attempt to dereference end()");

return &(current->data);
}

4.7 Implementation of a Double-Linked List Class 279

/** Advances the iterator forward.
@return A modified version of this iterator that now

references the next forward position
@throws std::invalid_argument If this iterator is at end

*/
iterator& operator++() {
if (current == NULL)
throw std::invalid_argument("Attempt to advance past end()");

current = current->next;
return *this;

}

/** Moves the iterator backward.
@return A modified version of this iterator that

now references the previous position
@throws std::invalid_argument If this iterator is at begin

*/
iterator& operator--() {
if (current == parent->head)
throw std::invalid_argument("Attempt to move before begin()");

if (current == NULL) // Past last element.
current = parent->tail;

else
current = current->prev;

return *this;
}

/** Postfix increment operator.
@return A copy of this iterator before being advanced

*/
iterator operator++(int) {
// Make a copy of the current value.
iterator return_value = *this;
// Advance self forward.
++(*this);
// Return old value.
return return_value; /* Return the value prior to

increment */
}

/** Postfix decrement operator.
@return A copy of this iterator before moving backward

*/
iterator operator--(int) {
// Make a copy of the current value.
iterator return_value = *this;
// Move self backward.
--(*this);
// Return old value.
return return_value; /* Return the value prior to

decrement */
}

// Compare for equality.
bool operator==(const iterator& other) {
return current == other.current;

}

280 Chapter 4 Sequential Containers

// Not equal
bool operator!=(const iterator& other) {
return !operator==(other);

}
}; // End iterator

#endif

SYNTAX Accessing a Type Defined Inside a Template Class from
Within a Template Class

FORM:
typename template-class::the-type-name

EXAMPLE:
typename std::list<Item_Type>::const_iterator

MEANING:

The identifier the-type-name is the name of a type and not the name of a data
field or member function. Under some circumstances within a template class or
function, the compiler cannot tell whether a reference to another template class
identifier is a type name or an identifier that names a data field or function.
Placing the keyword typename in front of such references resolves the ambiguity.
Even where there is no ambiguity, the standard requires you to use the keyword
typename. On the other hand, outside of template classes and functions there is
no potential ambiguity, so the use of typename is illegal.

4.7 Implementation of a Double-Linked List Class 281

P I T F A L L

Misusing typename
If you fail to use the keyword typename where it is required, you may get a warning or
error message. The g++ compiler, for example, gives the message:
warning: 'typename KW::list<Item_Type>::const_iterator is implicitly a
typename
warning: implicit typename is deprecated, please see the documentation
for details

Different compilers will have different error messages and may not issue a message
under the same circumstances.

On the other hand, if you use the keyword typename outside of a template class or func-
tion, you will get an error message.

The Constructor
The KW::list::iterator constructor takes as a parameter a pointer to the DNode at
which the iteration is to begin. This constructor is defined in the private part so that
clients cannot create arbitrary iterators. Instead, the KW::list class will create and
return iterator objects as needed. We can do this in the KW::list class because we
declare it to be a friend of the KW::list::iterator class.

iterator(list<Item_Type>* my_parent, DNode* position) :
parent(my_parent), current(position) {}

The Dereferencing Operator
The dereferencing operator (operator*) simply verifies that the current pointer is
valid and then returns a reference to the data field in the DNode that it points to.

Item_Type& operator*() const {
if (current == NULL)
throw std::invalid_argument("Attempt to dereference end()");

return current->data;
}

Member Access Operator
Since iterators can be used like pointers, the member access operator (operator->)
is also defined. It also verifies that the current pointer is valid and then returns a
pointer to (address of) the data field in the DNode that it points to.

Item_Type* operator->() const {
if (current == NULL)
throw std::invalid_argument("Attempt to dereference end()");

return &(current->data);
}

The Prefix Increment and Decrement Operators
After validating the current pointer, the prefix increment operator sets current to
current->next, and the prefix decrement operator sets current to current->prev.
The modified object is then returned to the caller by dereferencing the this pointer.
If the node referenced by current is the last list node, then the prefix increment
operator sets current to NULL.

iterator& operator++() {
if (current == NULL)
throw std::invalid_argument("Attempt to advance past end()");

current = current->next;
return *this;

}

iterator& operator--() {
if (current == parent->head)
throw std::invalid_argument("Attempt to move before begin()");

if (current == NULL) // Past last element.
current = parent->tail;

else
current = current->prev;

return *this;
}

282 Chapter 4 Sequential Containers

The Postfix Increment and Decrement Operators
The postfix increment and decrement operators first make a copy of the current iter-
ator value. Then the corresponding prefix operator is applied and the copy is
returned. If the node referenced by current is the last list node, then the postfix
increment operator sets current to NULL.

iterator operator++(int) {
// Make a copy of the current value.
iterator return_value = *this;
// Advance self forward.
++(*this);
// Return old value.
return return_value; /* Return the value prior to

increment */
}

iterator operator--(int) {
// Make a copy of the current value.
iterator return_value = *this;
// Move self backward.
--(*this);
// Return old value.
return return_value; /* Return the value prior to

decrement */
}

The const_iterator
The const_iterator is identical to the iterator, with two exceptions. The derefer-
encing operator returns a const reference, and the member access operator returns
a const pointer. Even though the operators are defined in the same way as their cor-
responding operators in class iterator, the const in the operator heading means
that the item referenced cannot be changed. The compiler will ensure that any
attempt to do so will result in an error. The complete code for class const_iterator
is available on the website. The member functions and data members are identical
to those for class iterator (Listing 4.4) except for the two functions shown below.

/** Return a reference to the currently referenced item.
@return A reference to the currently referenced item
@throws std::invalid_argument If this const_iterator

is at end
*/
const Item_Type& operator*() const {
if (current == NULL)
throw std::invalid_argument
("Attempt to dereference end()");

return current->data;
}

/** Return a pointer to the currently referenced item.
Item_Type must be a class or struct. This restriction
is enforced by the compiler.
@return A pointer to the currently referenced item
@throws std::invalid_argument If this const_iterator

is at end

4.7 Implementation of a Double-Linked List Class 283

*/
const Item_Type* operator->() const {
if (current == NULL)
throw std::invalid_argument
("Attempt to dereference end()");

return &(current->data);
}

You need to use the const_iterator when a list is passed as a const. For example,
the following function prints the contents of a list of ints.

void print_list(const list<int>& a_list) {
list<int>::const_iterator iter = a_list.begin();
while (iter != a_list.end()) {
cout << *iter;
++iter;
if (iter != a_list.end())
cout << " ==> ";

}
cout << '\n';

}

284 Chapter 4 Sequential Containers

P I T F A L L

Failure to Use const_iterator to Reference a const List
If we declared iter to be an iterator instead of a const_iterator, the function
print_list would fail to compile, with an error message equivalent to:
test_list.cpp: In function 'void print_list(const KW::list<int>&)':
test_list.cpp:122: conversion from 'KW::list<int>::const_iterator' to

non-scalar type 'KW::list<int>::iterator' requested

This is the error message produced by the g++ compiler. Other C++ compilers will
produce similar error messages. If we were allowed to use an iterator (instead of a
const_iterator), we could then use it to change the contents of the list that was
passed as a parameter to the function print_list.

E X E R C I S E S F O R S E C T I O N 4 . 7

S E L F - C H E C K

1. Explain why we need both an iterator and a const_iterator.
2. Indicate whether you should use an iterator or a const_iterator as a parame-

ter in new functions for the list class that would perform each of these opera-
tions. Also, provide a heading for each function.
a. Insert a new element at the current iterator position.
b. Replace the data stored in the currently selected item.

4.8 Application of the list Class 285

c. Retrieve the data stored in the currently selected item.
d. Insert a new element before the currently selected item.

3. Assume the list object in Figure 4.31 is named a_list and the iterator is
named pos_a. Describe the effect of each statement in the following fragment on
object a_list and the data field current of pos_a. Assume that the statements are
executed in sequence.
++pos_a;
a_list.insert(pos_a, "Jane");
++pos_a;
++pos_a;
a_list.insert(pos_a, "Kim");
a_list.erase(pos_a);

P R O G R A M M I N G

1. Implement the front function.
2. Implement the pop_back function.
3. Implement the begin function.
4. Implement the erase function.

4.8 Application of the list Class

In this section we introduce a case study that uses the C++ list class to solve a com-
mon problem: maintaining an ordered list.

CASE STUDY Maintaining an Ordered List

Problem As discussed in Section 4.5, we can use a linked list to maintain a list of students
who are registered for a course. We want to maintain this list so that it will be in
alphabetical order even after students have added and dropped the course.

Analysis Instead of solving this problem just for a list of students, we will develop a general
Ordered_List class that can be used to store any group of objects that can be com-
pared using the less-than operator.

We can either extend the C++ list class to create a new class Ordered_List or cre-
ate an Ordered_List class that uses a list to store the items. If we implement our
Ordered_List class as an extension of list, a client will be able to use functions in
the list class that can insert new elements or modify existing elements in such a
way that the items are no longer in order. Therefore, we will use a list as a com-
ponent of the Ordered_List.

286 Chapter 4 Sequential Containers

Design The class diagram in Figure 4.32 shows the relationships between the Ordered_List
class and the list class. The filled diamond indicates that the list is a component
of the Ordered_List.

Because we want to be able to make insertions and deletions in the ordered list, we
must implement insert and remove functions. We also provide a const_iterator
class and the functions begin and end to provide the user with the ability to access
all of the elements in sequence efficiently. Note that we do not want to provide an
iterator class, because it could be used to change the values in the list in such a way
that order is no longer preserved. Because the list’s erase function takes an iter-
ator parameter and not a const_iterator, and because there is no efficient way to
convert from a const_iterator to an iterator, we will not implement the erase
function for the Ordered_List, even though erasing an element does not violate the
ordering of the other elements. However, the remove function can be used to delete
items from an ordered list. Table 4.6 shows the functions in class Ordered_List.

TA B L E 4 . 6
Class Ordered_List

F I G U R E 4 . 3 2
Ordered_List Class Diagram

Ordered_List<Item_Type>

insert(const Item_Type&)
remove(const Item_Type&)
const_iterator begin()
const_iterator end()

list<Item_Type>a_list

Data Field Attribute

std::list<Item_Type> a_list A linked list to contain the data.

Function Behavior

void insert(const Item_Type& item) Inserts item into the list preserving the list’s order.

const_iterator begin() const Returns a const_iterator to the beginning of the list.

const_iterator end() const Returns a const_iterator to a position just past the end of
the list.

public size_t size() const Returns the size of the list.

public void remove(const Removes item from the list.
Item_Type& item)

4.8 Application of the list Class 287

F I G U R E 4 . 3 3
Inserting "Bill"
before "Caryn" in
an Ordered List

DNode

next =
prev =
data = "Andrew"

DNode

next =
prev =
data = "Caryn"

DNode

next =
prev =
data = "Sharon"

...

...

DNode

next =
prev = NULL
data = "Alice"

iterator
position

Implementation Defining the const_iterator Type
Because our functions return values of type const_iterator, we must define this
type. We want the const_iterator to be the same as the const_iterator defined by
the list class. This is done with the declaration:

typedef typename std::list<Item_Type>::const_iterator
const_iterator;

The typedef keyword is used to declare the Ordered_List::const_iterator to be an
alias for the list::const_iterator.

The insert Function
Let’s say we have an ordered list that contains the data "Alice", "Andrew", "Caryn",
and "Sharon", and we want to insert "Bill" (see Figure 4.33). If we start at the
beginning of the list and access "Alice", we know that "Bill" must follow "Alice",
but we can’t insert "Bill" yet. If we access "Andrew", we know that "Bill" must fol-
low "Andrew", but we can’t insert "Bill" yet. However, when we access "Caryn", we
know we must insert "Bill" before "Caryn". Therefore, to insert an element in an
ordered list, we need to access the first element whose data value is larger than the
value of the data in the element to be inserted. Once we have accessed the successor
of our new node, we can insert a new node just before it.

Algorithm for Insertion
The algorithm for insertion is

1. Find the first item in the list that is greater than or equal to the item to be
inserted.

2. Insert the new item before this one.

We can refine this algorithm as follows:

1.1 Create an iterator that starts at the beginning of the list.
1.2 while the iterator is not at the end and the item at the iterator position is

less than the item to be inserted
1.3 Advance the iterator.
2. Insert the new item before the current iterator position.

288 Chapter 4 Sequential Containers

A straightforward coding of the insertion algorithm would be the following:
void insert(const Item_Type& an_item) {
typename std::list<Item_Type>::iterator itr = a_list.begin();
while (itr != a_list.end() && *itr < an_item)
++itr;

// itr points to the first item >= an_item or the end.
a_list.insert(itr, an_item);

}

Using Delegation for the Other Functions
The remaining functions in Table 4.6 are implemented via delegation to the list
class. They merely call the corresponding function in the list. For example, the
remove function is coded as follows.

void remove(const Item_Type& item) {
a_list.remove(item);

}

We can define the begin function as follows:
const_iterator begin() const {
return a_list.begin();

}

The complete implementation is shown in Listing 4.5.

P R O G R A M S T Y L E

Delegation Pattern
Delegation is a programming technique or OOD pattern that is used frequently. Through
delegation, you can easily implement a new class that has an existing class as a compo-
nent. If the new class and old class have similar functions, then you can implement the
new class functions by delegation to the functions in the existing class.

L I S T I N G 4 . 5
Ordered_List.h

#ifndef ORDERED_LIST_H_
#define ORDERED_LIST_H_
#include <list>

/** The ordered list maintains a list of objects ordered by
their less-than operator.

*/
template<typename Item_Type>
class Ordered_List {

private:
/** A list to contain the ordered list */
std::list<Item_Type> a_list;

4.8 Application of the list Class 289

public:
// Typedefs
typedef typename std::list<Item_Type>::const_iterator
const_iterator;

// Functions
/** Insert a new item into the ordered list, maintaining order.

@param an_item The item to be inserted
*/
void insert(const Item_Type& an_item) {
typename std::list<Item_Type>::iterator itr = a_list.begin();
while (itr != a_list.end() && *itr < an_item)
++itr; // itr points to the first item >= an_item

// or the end
a_list.insert(itr, an_item);

}

/** Remove an item from the ordered list.
@param item The value to be removed

*/
void remove(const Item_Type& item) {
a_list.remove(item);

}

/** Return an iterator to the beginning. */
const_iterator begin() const {
return a_list.begin();

}

/** Return an iterator to the end. */
const_iterator end() const {
return a_list.end();

}
};

#endif

SYNTAX Defining an Alias for a Type

FORM:
typedef original-type-name new-type-name;

EXAMPLE:
typedef typename std::list<Item_Type>::const_iterator

const_iterator;
typedef Item_Type item_type;

MEANING:

The identifier new-type-name may be used as a type name, and it will have the
same meaning as original-type-name. In many compilers this is done by a
straightforward text substitution. Thus error messages that make reference to
new-type-name will be shown using original-type-name.

290 Chapter 4 Sequential Containers

Testing You can test the Ordered_List class by storing a collection of randomly generated
positive integers in an Ordered_List. You can then insert a negative integer and an
integer larger than any integer in the list. This tests the two special cases of insert-
ing at the beginning and at the end of the list. You can then create an iterator and
use it to traverse the list, displaying an error message if the current integer is smaller
than the previous integer. You can also display the list during the traversal so that
you can inspect it to verify that it is in order. Finally, you can remove the first ele-
ment and the last element. Listing 4.6 shows a program that performs this test.

Function traverse_and_show traverses an ordered list passed as an argument using
iterator iter to access the list elements. The if statement displays an error message
if the previous value is greater than the current value (prev_item > this_item is
true).

The main function calls traverse_and_show after all elements are inserted and after
the three elements are removed. In function main, the loop

for (int i = 0; i < START_SIZE; i++) {
int an_integer = rand() % MAX_INT;
test_list.insert(an_integer);

}

fills the ordered list with randomly generated values between 0 and MAX_INT - 1.
The function rand (defined in the header <cstdlib>) generates a random integer
between 0 and the maximum value RAND_MAX. However, if it is not initialized, rand
will generate exactly the same sequence of random numbers every time. The func-
tion srand is used to initialize the random number generator. A common practice to
get different results each time a program is run is to initialize the random number
generator to the current time of day in milliseconds since January 1, 1970. This is
the value returned by the call to time(0). The function time is defined in the header
<ctime>.

L I S T I N G 4 . 6
Program test_ordered_list.cpp

#include "Ordered_List.h"
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <ostream>
using std::cout;
using std::rand;
using std::srand;
using std::time;

/** Traverses the ordered list and displays each element.
Displays an error message if an element is out of order.
pre: The list elements are all positive and the list is

not empty.
@param test_list An ordered list

4.8 Application of the list Class 291

*/
void traverse_and_show(const Ordered_List<int>& test_list) {
Ordered_List<int>::const_iterator iter = test_list.begin();
int prev_item = *iter;
// Traverse ordered list and display any value that
// is out of order.
++iter;
while (iter != test_list.end()) {
int this_item = *iter++;
cout << prev_item << '\n';
if (prev_item > this_item) {
cout << "*** FAILED, value is "

<< this_item << '\n';
}
prev_item = this_item;

}
cout << prev_item << '\n';

}

int main() {
Ordered_List<int> test_list;
const int MAX_INT = 500;
const int START_SIZE = 100;
// Initialize random number generator
srand(time(0));
// Create a random number generator.
for (int i = 0; i < START_SIZE; i++) {
int an_integer = rand() % MAX_INT;
test_list.insert(an_integer);

}

// Add to beginning and end of list.
test_list.insert(-1);
test_list.insert(MAX_INT + 1);
cout << "Original list\n";
traverse_and_show(test_list); // Traverse and display.

// Remove first, last, and middle elements.
int first = *(test_list.begin());
test_list.remove(first);
cout << "After removing first item\n";
traverse_and_show(test_list); // Traverse and display.
int last = *(--test_list.end());
test_list.remove(last);
cout << "After removing last item\n";
traverse_and_show(test_list);
return 0;

}

E X E R C I S E S F O R S E C T I O N 4 . 8
S E L F - C H E C K

1. Why don’t we implement the Ordered_List by extending list?
2. What other functions in the list class could we include in the Ordered_List class?

292 Chapter 4 Sequential Containers

dequevector list multimapset multiset

‹‹concept››
sequence

‹‹concept››
container

‹‹concept››
associative_container

map

P R O G R A M M I N G

1. Write the code for the other functions of the Ordered_List class that are shown
in Table 4.6.

2. Rewrite the Ordered_List.insert function to start at the end of the list and iter-
ate using the const_iterator decrement operator (operator--()).

4.9 Standard Library Containers

The vector and the list are examples of what the C++ standard calls a sequential
container. You may have observed that the interfaces (i.e., the sets of public mem-
bers) are similar. As you will see when we revisit the vector in this section, they are
more similar than we have presented them.

The C++ standard uses the term container to represent a class that can contain
objects. It defines a common interface for all containers. It then splits the set of con-
tainers into sequential containers and associative containers. Common requirements
unique to these subsets are also defined. Finally, the individual containers have their
own additional requirements. This hierarchy is shown in Figure 4.34. Note that, like
the iterator hierarchy discussed previously, this is not an inheritance hierarchy.
Again, the term concept is used to represent the set of common requirements for the
container, sequence, or associative_container. Although a list and a vector may
have several member functions in common, they may not be used polymorphically.
However, as we will discuss in the next section, both vectors and lists, as well as
other sequences, can be used interchangeably by generic algorithms.

The basic difference between a sequence and an associative container is that items
in a sequence (for example, a vector or a list) follow some linear arrangement. At
any given time each element has a particular position relative to the other items in
the container. In an associative container, on the other hand, there is no particular
position for each item in the container. Items are accessed by value, rather than their
position.

F I G U R E 4 . 3 4
Container Class
Hierarchy

Common Features of Containers
The C++ standard lists several requirements that are common to all containers.
There are a few features that can be considered fundamental:

• Containers grow as needed.
• Containers hold objects.

Table 4.7 shows selected typedefs and functions that are required for all containers.
We have already seen and discussed some of these in the discussions of the vector
and list. The iterator provides a common way to access all of the elements in a
container.

TA B L E 4 . 7
Common Requirements for Containers

4.9 Standard Library Containers 293

typedefs Meaning

value_type The type of the objects stored in the container. Can be used by a template
function that takes a container as a parameter without knowing the actual
type of the objects in the container.

iterator An iterator appropriate for the container.

const_iterator A const_iterator appropriate for the container.

Constructors Purpose

X() Default constructor where X is the container type.

X(a) Copy constructor where X is the container type and a is an object of this
type.

Functions Behavior

void ~X() Destructor.

X& operator=(const X& a) Assignment operator.

bool operator==(const X& a) Equality operator. Containers must be of the same size and all correspon-
ding objects must be equal.

bool operator!=(const X& a) Negation of equal.

bool operator<(const X& a) Less-than operator. Lexicographical comparison of each item in this con-
tainer to the other container. Objects in the container must implement the
less-than operator.

bool operator>(const X& a); The other comparison operators are defined similarly to the less-than
bool operator<=(const X& a); operator.
bool operator>=(const X& a)

void swap(X& a) Exchanges the contents of this container with another container of the
same type. Note that this operation must be done in constant time.

iterator begin(); Returns an iterator or const_iterator to the first item in the
const_iterator begin() const container.

Sequences
The objects in a sequence are organized in a linear arrangement. Other than the first
and last objects, each object has a predecessor and a successor. The ordering of the
objects is determined by the user of the container. Table 4.8 shows some of the addi-
tional requirements common to sequences.

Optional Requirements for Sequences
The C++ standard defines three sequential containers: vector, list, and deque. We
have seen the first two and will discuss the deque in Chapter 6. Implementors may
define additional sequences. Table 4.9 shows some requirements that are common
to some, but not all, sequences. The last column shows which sequences must define
each function.

TA B L E 4 . 8
Common Requirements for Sequences

294 Chapter 4 Sequential Containers

TA B L E 4 . 7 (cont.)

Functions Behavior

iterator end(); Returns an iterator or const_iterator that is just past the last item in
const_iterator end() const the container.

size_t size() const Returns the number of objects in the container.

bool empty() const Returns true if the container is empty.

Constructors Purpose

X(int num, const Item_Type& initial) Constructs the container of type X containing num copies of
initial.

X(const_iterator start, Constructs the container of type X containing a copy of the items
const_iterator stop) starting with the object referenced by the iterator start up to,

but not including the iterator stop.

Functions Behavior

iterator insert(iterator pos, Insert a copy of item into the container before the position
const Item_Type& item) referenced by the iterator pos. Return an iterator that references

the newly inserted item. For some containers other iterators may
no longer be valid.

iterator erase(iterator pos) Remove the item from the container referenced by the iterator
pos. Return an iterator that references the object (or position)
following pos. For some containers other iterators may no longer
be valid.

TA B L E 4 . 9
Requirements Applicable to Some, but Not All, Sequences

4.9 Standard Library Containers 295

Function Purpose Required by

Item_Type& front(); Returns a reference to the first item in the vector, list,
const Item_Type& front() const container. deque

Item_Type& back(); Returns a reference to the last item in the vector, list,
const Item_Type& back() const container. deque

void push_front(const Item_Type& item) Inserts a new item as the first item in the list, deque
container.

void push_back(const Item_Type& item) Inserts a new item as the last item in the vector, list,
container. deque

void pop_front() Removes the first item from the container. list, deque

void pop_back() Removes the last item from the container. vector, list,
deque

Item_Type& operator[](int index); Randomly accesses an item in the vector, deque
const Item_Type& operator[](int index) container via an index.

const

Item_Type& at(int index); Randomly accesses an item in the container vector, deque
const Item_Type at(int index) const via an index. The value of the index is

validated.

You may wonder why the standard does not require all of these functions for all
sequences. The authors of the standard chose to require only those functions that
could be implemented in constant time, or at least amortized constant time. Thus
push_back is required for all sequences, but push_front is not required for the vec-
tor, where it would be O(n) because all elements currently in the vector would have
to be shifted. Likewise, the subscripting operator is not required for the list
because it would need to traverse the list starting at the beginning.

Associative Containers
The associative containers are designed for fast retrieval of data based on a unique
value stored in each item, called its key. There are four associative containers: set,
multiset, map, and multimap. The set and multiset store only keys, while the map
and multimap associate a key with a value. We will discuss these containers in more
detail in Chapter 9.

Vector Implementation Revisited
The KW::vector class we described in Section 4.3 does not exactly meet the require-
ments for a sequential container. Specifically, the insert and erase functions were
defined in terms of an index rather than an iterator. (That was because iterators
had not yet been introduced.) We also did not implement the functions begin and end.
It is relatively easy to modify our KW::vector class so that it meets the requirements.

The vector::iterator
The simplest approach to defining the iterator and const_iterator for the vector
is to define them to be equivalent to pointers. This is done as follows:

typedef Item_Type* iterator;
typedef const Item_Type* const_iterator;

The vector functions begin and end are then implemented as follows:
iterator begin() { return the_data; }
iterator end() { return the_data + num_items; }

Recall that the vector contents are stored in array the_data, so the_data is the
address of the first element of this array and the_data + num_items is the address
just past the last element.

This is the approach taken in many implementations of the standard, and is perfectly
legal. A better approach, however, would be to define an iterator class that held
both a pointer to an item and a pointer to the parent vector. The operators * and ->
could then validate the pointers before dereferencing them. Since this is a random-
access iterator, the addition and subtraction operations must also be defined.

E X A M P L E 4 . 8 Earlier we implemented the insert function using an index rather than an iterator.
The following uses the iterator (parameter pos) rather than the index.

iterator insert(iterator pos, const Item_Type& the_value) {
// Validate pos
if ((pos - begin()) < 0 || (end() - pos) < 0) {
throw std::out_of_range
("position to insert is out of range");

}
// Ensure that there is space for the new item.
if (num_items == current_capacity) {
reserve(2 * current_capacity);

}
// Move data from pos to end() - 1 down.
for (iterator p = end(); p > pos; p--) {
*p = *(p - 1);

}
// Insert the new item.
*pos = the_value;
num_items++;

}

This code is equivalent to the version given previously if you substitute begin() +
index for pos and end() - begin() for num_items.

E X E R C I S E S F O R S E C T I O N 4 . 9

S E L F - C H E C K

1. What kind of a container is an object of type vector? set? map? list?

296 Chapter 4 Sequential Containers

2. Which container type requires more functions, vector or list? What are the
additional functions required by that container type?

P R O G R A M M I N G

1. Implement the erase function for KW::vector to take an iterator instead of an
index to indicate the item to be removed.

2. Implement an iterator class for KW::vector that validates the pointer before
dereferencing it.

4.10 Standard Library Algorithms and Function Objects

The find Function
In an earlier exercise we asked you to write a function to find a value in a vector.
Let us assume that we want to find a value in a list instead. We could write the
following:

list<int>::iterator find(list<int>& a_list, int target) {
for (list<int>::iterator itr = a_list.begin();

itr != a_list.end(); ++itr) {
if (*itr == target)
return itr;

}
return a_list.end();

}

But what if we wanted to find a string instead? We could replace int with string
and rewrite this function. Rather than writing different copies of a function to work
with different types, however, C++ allows us to define template functions. Template
functions are like template classes in that we can define template parameters (gen-
erally types) that are then replaced with actual parameters at compile time.

Using templates we might try the following:
template<typename Item_Type>
std::list<Item_Type>::iterator

find(std::list<Item_Type>& a_list,
const Item_Type& target) {

typedef typename std::list<Item_Type>::iterator iterator;
for (iterator itr = a_list.begin();

itr != a_list.end(); ++itr) {
if (*itr == target)
return itr;

}
return a_list.end();

}

4.10 Standard Library Algorithms and Function Objects 297

298 Chapter 4 Sequential Containers

Unfortunately, this is not completely general. What if we want to search a vector
instead of a list? Because the search loop is controlled by an iterator, the inventors
of the STL chose to add an iterator to the container to be searched as a template
parameter as well as the element data type. The STL template function find is effec-
tively defined as follows:

template<typename Iterator, typename Item_Type>
Iterator find(Iterator first, Iterator last,

const Item_Type& target) {
while (first != last) {
if (*first == target)
return first;

++first;
}
return first;

}

This function find has two iterator parameters (first and last). The parameter
first points to the first element in the container; the parameter last points just past
the last element in the container. The actual types of the iterators and the target are
determined at compile time. If list_1 and vec_1 are a list<int> and a
vector<string>, we can search these containers using the following function calls:

if (find(list_1.begin(), list_1.end(), 10) != list_1.end())
cout << "list 1 contains 10\n";

else
cout << "list 1 does not contain 10\n";

if (find(vec_1.begin(), vec_1.end(), "abc") != vec_1.end())
cout << "vec_1 contains \"abc\"\n";

else
cout << "vec_1 does not contain \"abc\"\n";

SYNTAX Defining a Template Function

FORM:
template<typename T1, ... , typename Tn>

return-type function-name(Ti, ... , Tj)

EXAMPLES:
template<typename Item_Type>
list<Item_Type>::iterator find(list<Item_Type>& a_list,

const Item_Type& target)

template<typename iterator, typename Item_Type>
iterator find(iterator first, iterator last,

const Item_Type& target)

MEANING:

The function function-name takes parameters of the template types T1 through
Tn. The template parameter types are listed following the keyword template and
must also be included in the function signature. The order of the parameters in
the function signature does not need to be the same as they are following the
keyword template, but each parameter type must be used at least once.

SYNTAX Calling a Template Function

FORM:
function-name(actual-parameter-list)

EXAMPLE:
find(list_1.begin(), list_1.end(), 10)

MEANING:

The types of the actual parameters are matched to the template type parameters.
The template function is then instantiated with the parameter matching specified
in the call. In our example the type of the actual argument list_1.begin() is a
list<int>::iterator, as is the type of the second argument list_1.end(). The
third parameter has the type int. Therefore, the template parameter Iterator is
bound to list<int>::iterator, and the template parameter Item_Type is bound
to int. The matching of the parameter types to template parameters is done at
compile time. This is a very powerful feature of C++ that is used by the STL to
do some fairly amazing things.

The actual types of the arguments to find do not have to be iterators defined by a
container. Recall that an iterator is a generalization of a pointer. Therefore point-
ers can be used as well. For example, we can call find by passing pointers to the
beginning and end of an array. In the following if statement, the pointer list_data
points to the first element of the array and list_data + 7 points to the element just
past the end of the array.

int list_data = {1, 4, 3, 5, 10, 8, 9};
...
if (find(list_data, list_data + 7, 10) != list_data + 7) ...

The Algorithm Library
The standard library contains several template functions defined in the header
<algorithm>. Like find, many of them work on a pair of iterators that defines the
sequence of input values. Some of them also take function objects (described later
in this section) as parameters. Table 4.10 lists some of these functions. In all cases
the range first..last represents values obtained by dereferencing an iterator start-
ing at first and proceeding up to, but not including, last.

The template functions, or algorithms, perform fairly standard operations on con-
tainers, such as applying the same function to each element (for_each), copying val-
ues from one container to another (copy), seaching a container for a target value
(find, find_if), or sorting a container (sort). Most of these algorithms are fairly
simple loops, such as the find that was just discussed. You may then ask yourself;
“Why not just code the loop when I need it?” There are two reasons: The first is to
avoid “reinventing the wheel”—the library contains validated versions of these
algorithms, whereas if you recode them yourself, you may have errors that you will
have to fix rather than avoiding them in the first place. Secondly, the compiler can
be designed to generate more efficient code when instantiating the library version of
the algorithm than if you were to hand-code the equivalent C++ code.

4.10 Standard Library Algorithms and Function Objects 299

TA B L E 4 . 1 0
Selected Template Functions from the Standard Template Library

300 Chapter 4 Sequential Containers

Function Behavior

template<typename II, typename F> Applies the function fun to each object in the sequence.
F for_each(II first, II last, F fun) The function fun is not supposed to modify its argument.

The iterator argument II is required to be an input iter-
ator. This means that the sequence is traversed only once.

template<typename II, typename T> Finds the first occurrence of target in the sequence. If not
II find(II first, II last, T target) found, last is returned.

template<typename II, typename P> Finds the first occurrence of an item in the sequence for
II find_if(II first, II last, P pred) which function pred returns true. If not found, last is

returned.

template<typename FI> Finds the min/max element in the sequence
FI min_element(FI first, FI last); first..last. FI is a forward iterator.

template<typename FI>
FI max_element(FI first, FI last)

template<typename II, typename OI> Copies the sequence first..last into result..(result
OI copy(II first, II last, OI result) + (last - first)). II is an input iterator, and OI is an

output iterator.

template<typename II, typename OI, Applies op to each element of the sequence first..last
typename OP> and places the result in result..(result + (last -

OI transform(II first, II last, first)).
OI result, OP op)

template<typename II1, typename II2, Applies bin_op to each pair of elements of the sequences
typename OI, typename BOP> first1..last1 and first2..(first2 + (last1 -

OI transform(II1 first1, II1 last1, first1)) and places the result in result..(result +
II2 first2, OI result, BOP bin_op) (last1 - first1))

template<typename T> Exchanges the contents of a and b.
void swap(T& a, T& b)

template<typename FI1, typename FI2> Exchanges the values referenced by iterators a and b.
void iter_swap(FI1 a, FI1 b)

template<typename BI> Reverses the sequence first..last. BI is a bidirectional
void reverse(BI first, BI last) iterator.

template<typename RI> Randomly rearranges the contents of first..last. RI is
void random_shuffle(RI first, RI last) a random-access iterator.

template<typename RI> Sorts the contents of first..last based on the less-than
void sort(RI first, RI last) operator applied to pairs of elements.

template<typename RI, typename COMP> Sorts the contents of first..last based on the binary
void sort(RI first, RI last, COMP comp) operator COMP (a function operator). COMP is a function

class that takes two arguments and returns a bool.

E X A M P L E 4 . 9 The following will copy the contents of a_list into a_vector.
a_vector.resize(a_list.size());
copy(a_list.begin(), a_list.end(), a_vector.begin());

The first statement sets the size of a_vector to the same as a_list. It then calls tem-
plate function copy to copy the elements from a_list to a_vector.

E X A M P L E 4 . 1 0 The following fragment will first sort the elements in vector<int> a_vector. Next
it accumulates and displays the sum of the elements. The argument 0 to the accumu-
late function provides the initial value for the sum and specifies the type—int in
this case. The first if statement displays an error message if the first element is not
the smallest after the sort. Function min_element returns an iterator to the smallest
element, which is compared to the first element in the sorted vector. Then it initial-
izes iterator iter to point to the last element of the vector. Finally, the second if
statement compares the last element with the largest element.

sort(a_vector.begin(), a_vector.end()); // Sort the vector.
// Accumulate the sum.
int sum = accumulate(a_vector.begin(), a_vector.end(), 0);
cout << "Sum is " << sum << endl;

// Check first element.
if (*a_vector.begin() !=

*min_element(a_vector.begin(), a_vector.end()))
cerr << "Error in sort\n";

// Check last element.
vector<int>::iterator iter(a_vector.end() - 1);
if (*iter != *max_element(a_vector.begin(), a_vector.end()))

cerr << "Error in sort\n";

4.10 Standard Library Algorithms and Function Objects 301

Function Behavior

template<typename II, typename T> Computes init plus the sum of the elements in
T accumulate(II first, II last, T init) first..last. Note that this function is defined in the

header <numeric>.

template<typename II1, typename II2> Compares each element in the sequence first1..last1
bool equal(II1 first1, II1 last1, to the corresponding elements in the sequence
II2 first2); first2..first2 + (last1 - first1). If they are all

template<typename II1, typename II2, equal, then this returns true. The second form uses the
typename BP> function object pred to perform the comparison.

bool equal(II1 first1, II1 last2,
II2 first2, BP pred)

TA B L E 4 . 1 0 (cont.)

The swap Function
The swap function is defined as follows:

template<typename T>
void swap(T& x, T& y) {
T temp(x); // temp is a copy of x.
x = y; // Assign y to x.
y = temp; // Assign the copy of x to y.

}

In this definition, the template parameter T is a placeholder for the type of the data
items being swapped. If we have two int variables i and j, we can call this function
using the statement:

swap(i, j);

and if we have two pointer variables p and q, we can call this function using the
statement.

swap(p, q);

In the first case the template parameter T is bound to the actual type, int, and in the
second it is bound to the pointer type.

We used template function swap in Section 4.3 to exchange the contents of two
variables:

std::swap(num_items, other.num_items);
std::swap(current_capacity, other.current_capacity);
std::swap(the_data, other.the_data);

The first two calls exchange a pair of int values; the last call exchanges the point-
ers to the two arrays.

Specializing the swap Function
But what if we have two vector variables v1 and v2 and execute the statement

swap(v1, v2);

In this case the copy constructor will be invoked to make a copy of v1 into temp.
Then the assignment operator will be called to assign v2 to v1. Next, temp is assigned
to v1 using the assignment operator again, and finally the destructor is called to
destroy temp.

Since the standard swap uses the assignment operator, which in turn uses the copy
constructor and swap member functions, we are making unnecessary copies. We can
avoid this by providing what is known as a specialization of the swap function as
follows:

template<typename Item_Type>
inline void swap(vector<Item_Type>& x, vector<Item_Type>& y) {
x.swap(y); }

By providing this function definition, the compiler will instantiate the vector::swap
member function rather than the standard function swap when it is called with argu-
ments of type vector. This function definition is placed in the vector.h file after the
class definition.

302 Chapter 4 Sequential Containers

SYNTAX Declaring inline Functions

FORM:
inline function-declaration {body}

EXAMPLE:
inline void swap(vector<Item_Type>& x, vector<Item_Type>& y) {
x.swap(y);

}

MEANING:

The compiler replaces a call to that function with the code contained in the func-
tion body. Such code executes faster. Since the compiler must be aware of the
code to be generated, inline function definitions must be placed in header files.

4.10 Standard Library Algorithms and Function Objects 303

P R O G R A M S T Y L E

Specializing the swap Function
Any class that dynamically allocates memory, or contains objects with dynamically
allocated memory—a vector, for example—should provide a swap member function and
a specialization for the swap function. The swap member function should be written
as follows:
void swap(class_name& other) {
// Use the std::swap function to swap each data field.
// . . .

}

The specialization should be defined in the declaration file (the .h file) and should be
written as follows:
inline void swap(class-name& x, class-name& y) {
x.swap(y);

}

Function Objects
One of the operators that can be overloaded by a class is the function call operator
(operator()). A class that overloads this operator is called a function class, and an
object of such a class is called a function object. As an example, we may want to
find a value divisible by another value. We can create a function class Divisible_By
whose constructor takes the divisor as an argument. Such a class is defined as
follows:

class Divisible_By {
private:
int divisor;

public:
Divisible_By(int d) : divisor(d) {}
bool operator()(int x) {
return x % divisor == 0;

}
};

Data field divisor stores the number we want to divide by. The definition of oper-
ator() specifies that the function result will be determined by testing the remainder
resulting from the division of the function agument (int x) by the value of divisor.
The expression Divisible_By(3) creates a function object that returns true if the
argument passed to it is divisible by 3. Similarly the expression Divisible_By(5) cre-
ates a function object that tests for integers divisible by 5.

Table 4.11 describes the template function find_if as follows. Template parameter
II is a placeholder for an input iterator; template parameter P is a placeholder for a
function class with an operator() that returns a bool value.

The following code fragment uses function find_if and function class
Divisible_By.

// Find first number divisible by 3 in list_1.
list<int>::iterator = iter;
iter = find_if(list_1.begin(), list_1.end(), Divisible_By(3));
if (iter != list_1.end())
cout << "The first number divisible by 3 is " << *iter

<< endl;
else
cout << "There are no numbers divisible by 3\n";

// Find first number divisible by 5 in list_1.
iter = find_if(list_1.begin(), list_1.end(), Divisible_By(5));
if (iter != list_1.end())
cout << "The first number divisible by 5 is " << *iter

<< endl;
else
cout << "There are no numbers divisible by 5\n";

The template function find_if is instantiated with an iterator bound to
list<int>::iterator and with P bound to Divisible_By. This instantiation is called
with two different function objects, but these function objects have the same type.

TA B L E 4 . 1 1
Template Function find_if

304 Chapter 4 Sequential Containers

Function Behavior

template<typename II, typename P> Find the first occurrence of an item in the sequence for
II find_if(II first, II last, P pred) which function pred returns true. If not found, last is

returned.

E X A M P L E 4 . 1 1 The function class Square_Diff saves its argument in data field mean. The function
call operator() subtracts the value saved in mean from the input value and then
returns the square of this difference.

/** Function class to compute the square of
the difference of a value from the mean.

*/
class Square_Diff {
private:
/** The mean to be subtracted from each value. */
double mean;

public:
/** Construct a Square_Diff object remembering

the value of the mean.
@param m The mean to be remembered

*/
Square_Diff(double m) : mean (m) {}

/** Subtract the mean from the input value and
return the square of the difference.
@param x The input value
@return (x - mean) squared

*/
double operator()(double x) {
double diff = x - mean;
return diff * diff;

}
};

We can use function object Square_Diff to compute the standard deviation of a col-
lection of real numbers using the formula below for standard deviation s, where m
is the mean and xi is the ith data item.

To get the mean, we first compute the sum of the data stored in container
input_data (using function accumulate) and then divide by the number of values.

// Compute the sum of the input.
double sum =

accumulate(input_data.begin(), input_data.end(), 0.0);
// Compute the mean.
double mean = sum / input_data.size();

We can use the transform algorithm (Table 4.12) with function class Square_Diff to
transform the values in input_data into a sequence of squared deviations.

The following statement applies the function call operator in function class
Square_Diff to each element of input_data. Because the third parameter is an iter-
ator that points to the first element in input_data, the result of each call is saved
back in input_data.

s

x m

n

i
i

n

=
−

−
=

−

∑()2

0

1

1

4.10 Standard Library Algorithms and Function Objects 305

// Load the square deviation values.
transform(input_data.begin(), input_data.end(),

input_data.begin(), Square_Diff(mean));

Finally we use accumulate to compute the sum of the squared deviations, and then
the standard deviation is computed.

// Compute the sum of the squared deviations.
double sum_sq_dev =
accumulate(input_data.begin(), input_data.end(), 0.0);

// Compute the standard deviation.
double stdev = sqrt(sum_sq_dev / (input_data.size() - 1.0));

TA B L E 4 . 1 2
transform Algorithm

306 Chapter 4 Sequential Containers

Function Operator

template<typename II, typename OI, Applies op to each element of the
typename OP> sequence first..last and places the .

OI transform(II first, II last, result in result..(result +
OI result, OP op) (last - first))

E X E R C I S E S F O R S E C T I O N 4 . 1 0

S E L F - C H E C K

1. Explain the effect of each statement in the following fragment.
vector<int> a_list;
vector<int>::iterator iter;
iter = min_element(a_list.begin(), a_list.end());
cout << *iter << "\n";
iter = find(a_list.begin(), a_list.end(), 95);
if (iter != a_list.end())
cout << *iter << "\n";

copy(a_list.begin(), a_list.end(), a_vector.begin());
sort(a_list.begin(), a_list.end());
reverse(a_list.begin(), a_list.end());

P R O G R A M M I N G

1. Write the body of function swap.
2. Write the body of function accumulate.

C h a p t e r R e v i e w
◆ The vector is a generalization of the array. As in the array, elements of a vector

are accessed by means of an index. Unlike the array, the vector can grow or
shrink. Items may be inserted or removed from any position. The C++ standard
library provides the vector class, which uses an array as the underlying structure.
This can be implemented by allocating an array that is larger than the number of
items in the vector. As items are inserted into the vector, the items with higher
indices are moved up to make room for the inserted item, and as items are
removed, the items with higher indices are moved down to fill in the emptied
space. When the array capacity is reached, a new array is allocated that is twice
the size, and the old array is copied to the new one. By doubling the capacity, the
cost of the copy is spread over each insertion, so that the copies can be considered
to have a constant-time contribution to the cost of each insertion.

◆ A linked-list data structure consists of a set of nodes, each of which contains its
data and a reference to the next node in the list. In a double-linked list, each node
contains a reference to both the next and the previous node in the list. Insertion
into and removal from a linked list is a constant-time operation.

◆ To access an item at a position indicated by an index in a linked list requires walk-
ing along the list from the beginning until the item at the specified index is reached.
Thus, traversing a linked list using an index would be an O(n2) operation because
we need to repeat the walk each time the index changes. The iterator provides a
general way to traverse a list so that traversing a linked list using an iterator is an
O(n) operation. The C++ standard library provides the list class, which uses a
double-linked list. We show an example of how this might be implemented.

◆ The vector and list are examples of the C++ standard library containers. The
C++ standard requires that all containers provide a common interface (set of
member functions and constructors). The containers are further organized into
sequential containers and associative containers.

◆ An iterator provides us with the ability to access the items in a container sequen-
tially. All containers must provide an iterator type and functions that return inter-
ators that reference the begining and end of the container.

◆ Iterators are organized in a hierarchy. The most restrictive iterators are the input
and output iterators that allow traversal of a sequence only once, and the most
general iterators allow for random access of the contents of a container.

◆ The C++ standard library provides a collection of algorithms that operate on
sequences defined by iterators. These algorithms can be applied to the contents
any of the containers using the iterators defined by that container.

Quick-Check Exercises
1. Elements of a vector are accessed by means of ______.
2. A vector can ______ or ______ as items are added or removed.
3. When we allocate a new array for an vector because the current capacity is exceeded,

we make the new array at least ______. This allows us to ______.

Chapter 4 Review 307

4. In a single-linked list, if we want to remove a list element, which list element do we need
to access? If node_ptr references this element, what statement removes the desired ele-
ment?

5. Suppose a single-linked list contains three DNodes with data "him", "her", and "it"
and head references the first element. What is the effect of the following fragment?
DNode* node_ptr = head->next;
node_ptr->data = "she";

6. Answer Question 5 for the following fragment.
DNode* node_ptr = head->next;
head.next = node_ptr->next;

7. Answer Question 5 for the following fragment.
head = new DNode("his", head);

8. An iterator allows us to access items of a list ______.
9. The C++ list class uses a ______.

Answers to Quick-Check Exercises
1. an index

2. grow, shrink

3. twice the size; spread out the cost of the reallocation so that it is effectively a constant-
time operation

4. The predecessor of this node.
node_ptr->next = node_ptr->next->next;

5. Replaces "her" with "she".
6. Deletes the second list element ("she").
7. Inserts a new first element containing "his".
8. sequentially

9. double-linked list

Review Questions
1. What is the difference between the size and the capacity of a vector? Why do we have

a constructor that lets us set the initial capacity?
2. When we insert an item into an vector, why do we start copying from the end?
3. What is the advantage of a double-linked list over a single-linked list? What is the

disadvantage?
4. Why is it more efficient to use an iterator to traverse a linked list?
5. What is the difference between a forward_iterator and a bidirectional_iterator?
6. What is the “rule of three”? Why is it important to follow this rule?

Programming Projects
1. Build a Single_Linked_List class. Your class should have the data members: head,

tail, and num_items. Write the following member functions, which perform the same
operations as the corresponding functions in the standard list class: push_front,
push_back, pop_front, pop_back, front, back, empty, size. Also write the follow-
ing member functions:
• void insert(size_t index, const Item_Type& item): Insert item at position
index (starting at 0). Insert at the end if index is beyond the end of the list.

308 Chapter 4 Sequential Containers

• bool remove(size_t index): Remove the item at position index. Return true if
successful; return false if index is beyond the end of the list.

• size_t find(const Item_Type& item): Return the position of the first occur-
rence of item if it is found. Return the size of the list if it is not found.

2. Write an iterator class for class Single_Linked_List. Replace the size_t parame-
ter or result in functions insert, remove, find with an iterator.

3. Develop a program to maintain a list of homework assignments. When an assignment
is assigned, add it to the list, and when it is completed, remove it. You should keep
track of the due date. Your program should provide the following services:
• Add a new assignment.
• Remove an assignment.
• Provide a list of the assignments in the order they were assigned.
• Find the assignment(s) with the earliest due date.

4. We can represent a polynomial as an ordered list of terms, where the terms are
ordered by their exponents. To add two polynomials, you traverse both lists and
examine the two terms at the current iterator position. If the exponent of one is
smaller than the exponent of the other, then insert this one into the result and advance
that list’s iterator. If the exponents are equal, then create a new term with that expo-
nent and the sum of the coefficients, and advance both iterators. For example:

3x4 + 2x2 + 3x + 7 added to 2x3 + 4x + 5 is 3x4 + 2x3 + 2x2 + 7x + 12
Write a program to read and add polynomials. You should define a class Term that
contains the exponent and coefficient. This class should implement operator< by
comparing the values of the exponents.

5. Write a program to manage a list of students waiting to register for a course as
described in Section 4.5. Operations should include adding a new student at the end of
the list, adding a new student at the beginning of the list, removing the student from
the beginning of the list, and removing a student by name.

6. A circular linked list has no need of a head or tail. Instead you only need to reference
an arbitrary item. Implement a circular linked-list class. Note that the begin() and
end() functions will return iterators that reference the same node. You will, however,
need to distinguish between them so that you can use the standard library algorithms.

7. The Josephus problem is named after the historian Flavius Josephus, who lived between
the years 37 and 100 CE. Josephus was a reluctant leader of the Jewish revolt against
the Roman Empire. When it appeared that Josephus and his band were to be captured,
they resolved to kill themselves. Josephus persuaded the group by saying, “Let us com-
mit our mutual deaths to determination by lot. He to whom the first lot falls, let him be
killed by him that hath the second lot, and thus fortune shall make its progress through
us all; nor shall any of us perish by his own right hand, for it would be unfair if, when
the rest are gone, somebody should repent and save himself” (Flavius Josephus, The
Wars of the Jews, Book III, Chapter 8, Verse 7, tr. William Whiston, 1737). Yet that is
exactly what happened; Josephus was left for last, and he and the person he was to kill
surrendered to the Romans. Although Josephus does not describe how the lots were
assigned, the following approach is generally believed to be the way it was done. People
form a circle and count around the circle some predetermined number. When this num-
ber is reached, that person receives a lot and leaves the circle. The count starts over with
the next person. Using the circular linked list developed in Exercise 6, simulate this prob-
lem. Your program should take two parameters: n, the number of people that start, and
m, the number of counts. For example, try n = 20 and m = 12. Where does Josephus need
to be in the original list so that he is the last one chosen?

Chapter 4 Review 309

8. To mimic the procedure used by Josephus and his band strictly, the person eliminated
remains in the circle until the next one is chosen. Modify your program to take this
into account. Does this change affect the outcome?

9. The correlation coefficient of two input sequences is given by

Adapt Example 4.11 to compute the correlation coefficient from a sequence of pairs of
input values from an input file. Hint: You will need to define function classes to com-
pute the square of each input value and to compute the product of two input values.
You can then use transform and accumulate to compute each of the individual terms
in the formula.

10. A two-dimensional shape can be defined by its boundary polygon, which is simply a
list of all coordinates ordered by a traversal of its outline. See the following figure for
an example:

The left picture shows the original shape; the middle picture, the outline of the shape.
The rightmost picture shows an abstracted boundary, using only the “most important”
vertices. We can assign an importance measure to a vertex P by considering its neigh-
bors L and R. We compute the distances LP, PR, and LR. Call these distances l1, l2,
and l3. Define the importance as l1 + l2 – l3.

Use the following algorithm to find the n most important points.
1. while the number of points is greater than n
2. Compute the importance of each point.
3. Remove the least significant one.
Write a program to read a set of coordinates that form an outline and reduce the list
to the n most significant ones, where n is an input value.

L

l1

P

l2

l3 R

r
n x y x y

n x x n y y

i i i i

i i i i

=
−

− ()⎡
⎣⎢

⎤
⎦⎥

− (
∑ ∑ ∑

∑ ∑ ∑ ∑2 2 2))⎡
⎣⎢

⎤
⎦⎥

2

310 Chapter 4 Sequential Containers

C h a p t e r O b j e c t i v e s

◆ To learn about the stack data type and how to use its four functions: push, pop, top,
and empty

◆ To understand how C++ implements a stack
◆ To learn how to implement a stack using an underlying array or a linked list
◆ To see how to use a stack to perform various applications, including finding palin-

dromes, testing for balanced (properly nested) parentheses, and evaluating arithmetic
expressions

311

Stacks

C h a p t e r 5

In this chapter we illustrate how to use and implement an abstract data type
known as a stack. A stack differs from a list in the following way. A client of a
list can access any element and can insert elements at any location. However, a

client of a stack can access only the element that was most recently inserted in the
stack. This may seem like a serious restriction that would make stacks not very use-
ful, but it turns out that stacks are actually one of the most commonly used data
structures in computer science. For example, during program execution a stack is
used to store information about the parameters and return addresses for all the
functions that are currently executing (you will see how this is done in Chapter 7,
“Recursion”). Compilers also use stacks to store information while evaluating
expressions. Part of the reason for the widespread use of stacks is that a stack is rel-
atively easy to implement. This was an important consideration for programming in
languages that did not provide the capability for implementing ADTs as classes.

After describing the stack ADT and providing a header file for this ADT, we will
discuss two simple applications of stacks: checking for palindromes and testing for
balanced parentheses. We will then show how to implement stacks in two ways:
using a standard container and a linked list. Finally, we will study how to use stacks
to evaluate arithmetic expressions.

312 Chapter 5 Stacks

S t a c k s

5.1 The Stack Abstract Data Type
5.2 Stack Applications

Case Study: Finding Palindromes
Case Study: Testing Expressions for Balanced Parentheses

5.3 Implementing a Stack
5.4 Additional Stack Applications

Case Study: Evaluating Postfix Expressions
Case Study: Converting from Infix to Postfix and Converting Expressions

with Parentheses

5.1 The Stack Abstract Data Type

In a cafeteria you can see stacks of dishes placed in spring-loaded containers.
Usually several dishes are visible above the top of the container, and the rest are
inside the container. You can access only the dish that is on top of the stack. If you
want to place more dishes on the stack, you can place the dishes on top of those that
are already there. The spring inside the stack container compresses under the weight
of the additional dishes, adjusting the height of the stack so that only the top few
dishes are always visible.

Another physical example of stacklike behavior is a Pez® dispenser (see Figure 5.1).
A Pez dispenser is a toy that contains candies. There is also a spring inside the dis-
penser. The top of the dispenser is a character’s head. When you tilt the head back,
a single piece of candy pops out. You can only extract one piece at a time. If you
want to eat more than one piece, you have to open the dispenser multiple times.
However, the behavior is not exactly like a stack because you can load the dispenser
by putting in many candies at once.

In programming, a stack is a data structure with the property that only the top ele-
ment of the stack is accessible. In a stack, the top element is the data value that was
most recently stored in the stack. Sometimes this storage policy is known as Last-In,
First-Out, or LIFO.

Next, we specify some of the operations that we might wish to perform on a stack.

Specification of the Stack Abstract Data Type
Because only the top element of a stack is visible, the operations performed by a
stack are few in number. We need to be able to retrieve the top element (function
top), remove the top element (function pop), push a new element onto the stack
(function push), and test for an empty stack (function empty). Table 5.1 shows a
specification for the Stack ADT, which specifies the stack operators. These are all
defined in the header file for the STL container stack, <stack>.

F I G U R E 5 . 1
A Pez® Dispenser

TA B L E 5 . 1
Specification of Stack ADT

5.1 The Stack Abstract Data Type 313

Functions Behavior

bool empty() const Returns true if the stack is empty; otherwise, returns false.

Item_Type& top(); Returns the object at the top of the stack without removing it.
const Item_Type& top() const

void pop() Removes the object at the top of the stack.

void push(const Item_Type& item) Pushes an item onto the top of the stack.

size_t size() const Returns the number of items in the stack.

Listing 5.1 shows the class definition for the class KW::stack. This class definition
implements the interface defined by Table 5.1 and is very similar to that defined by
the C++ standard library. In the private part, the declaration

std::vector<Item_Type> container;

shows that we will use the STL vector for storage of the stack data. We discuss other
approaches in Section 5.3. The line

#include "Stack.tc"

at the end of file stack.h inserts a file that implements the KW::stack member func-
tions. We also discuss this file in Section 5.3.

L I S T I N G 5 . 1
KW::stack.h

#ifndef STACK_H_
#define STACK_H_

/** Definition file for class KW::stack */
// Include directives needed by the implementation
#include <vector>

namespace KW {
/** A stack is a data structure that provides last-in first-out

access to the items that are stored in it. Only the most recently
inserted item is accessible.

*/
template<typename Item_Type>
class stack {

public:
// Constructor and member functions

/** Constructs an initially empty stack. */
stack();

/** Pushes an item onto the top of the stack.
@param item The item to be inserted

*/
void push(const Item_Type& item);

/** Returns a reference to the object at the top of the stack
without removing it.
@return A reference to the object at the top of the stack

*/
Item_Type& top();

/** Returns a const reference to the object at the at the
top of the stack without removing it.
@return A const reference to the object at the top of the stack

*/
const Item_Type& top() const;

/** Removes the top item from the stack. */
void pop();

/** Determines whether the stack is empty. */
bool empty() const;

/** Returns the number of items in the stack. */
size_t size() const;

private:
// Data fields
/** A sequential container to contain the stack items */
std::vector<Item_Type> container;

}; // End class stack

// Insert implementation of member functions here
#include "Stack.tc"

} // End namespace KW
#endif

E X A M P L E 5 . 1 A stack names (type stack<string>) contains five strings as shown in Figure 5.2(a).
The name "Rich" was placed on the stack before the other four names; "Jonathan"
was the last element placed on the stack.

We create this stack using the following statements.
stack<string> names;
names.push("Rich");
names.push("Debbie");
names.push("Robin");
names.push("Dustin");
names.push("Jonathan");

For stack names in Figure 5.2(a), the value of names.empty() is false. The statement
string last = names.top();

stores "Jonathan" in last without changing names. The statement
names.pop();

removes "Jonathan" from names. The stack names now contains four elements and
is shown in Figure 5.2(b). The statement

names.push("Philip");

314 Chapter 5 Stacks

5.2 Stack Applications 315

pushes "Philip" onto the stack; the stack names now contains five elements and is
shown in Figure 5.2(c).

F I G U R E 5 . 2
Stack names

E X E R C I S E S F O R S E C T I O N 5 . 1

S E L F - C H E C K

1. Assume that the stack names is defined as in Figure 5.2(c) and perform the fol-
lowing sequence of operations. Indicate the result of each operation and show the
new stack if it is changed.
names.push("Jane");
names.push("Joseph");
names.pop();
string next_top = names.top();

5.2 Stack Applications

In this section we will study two client programs that use stacks: a palindrome
finder and a program that verifies that the parentheses in an expression are nested
properly.

CASE STUDY Finding Palindromes

Problem A palindrome is a string that reads the same in either direction: left to right or right
to left. For example, “kayak” is a palindrome, as is “I saw I was I.” A well-known
palindrome regarding Napoleon Bonaparte is “Able was I ere I saw Elba” (the
island where he was sent in exile). We would like a program that reads a string and
determines whether it is a palindrome.

Jonathan
Dustin
Robin
Debbie
Rich

Philip
Dustin
Robin
Debbie
Rich

Dustin
Robin
Debbie
Rich

 (a) (b) (c)

316 Chapter 5 Stacks

Analysis This problem can be solved in many different ways. For example, you could set up
a loop in which you compare the characters at each end of a string as you work
towards the middle. If any pair of characters is different, the string can’t be a palin-
drome. Another approach would be to scan a string backward (from right to left)
and append each character to the end of a new string, which would become the
reverse of the original string. Then you could see whether the strings were equal.
The approach we will study here uses a stack to assist in forming the reverse of a
string. It is not the most efficient way to solve the problem, but it makes good use
of a stack.

If we scan the input string from left to right and push each character in the input
string onto a stack of characters, we can form the reverse of the string by popping
the characters and joining them together in the order that they come off the stack.
For example, the stack at left contains the characters in the string "I saw".

If we pop them off and join them together, we will get "w" + "a" + "s" + " " + "I",
or the string "was I". When the stack is empty, we can compare the string we
formed with the original. If they are the same, the original string is a palindrome.

Data Requirements

PROBLEM INPUTS

An input string to be tested

PROBLEM OUTPUTS

A message indicating whether the string is a palindrome

Design We can define a class called Palindrome_Finder (Table 5.2) with data fields for stor-
ing the input string and the stack (stack<char> char_stack). The class needs func-
tions to push all characters from the input string onto the stack (fill_stack), to
build a string by popping the characters off the stack and joining them
(build_reverse), and to compare the strings to see whether they are palindromes
(is_palindrome).

Implementation Listing 5.2 shows the class definition and Listing 5.3 shows the implementation. The
constructor calls function fill_stack to build the stack when a new
Palindrome_Finder object is created. The loop

for (size_t i = 0; i < input_string.size(); i++) {
char_stack.push(input_string[i]);

}

pushes each character in input_string onto the stack.

In function build_reverse, the loop
while (!char_stack.empty()) {
// Remove top item from stack and append it to result.
result += char_stack.top();
char_stack.pop();

}

appends the top character on the stack to result, and then pops it off the stack.

w
a
s

I

5.2 Stack Applications 317

TA B L E 5 . 2
Class Palindrome_Finder

Data Fields Attributes

string input_string The input string.

stack<char> char_stack The stack where characters are stored.

Functions Behavior

Palindrome_Finder(const string& str) Initializes a new Palindrome_Finder object, storing a copy of
the parameter str in input_string and pushing each character
onto the stack.

void fill_stack() Fills the stack with the characters in input_string.

string build_reverse() Returns the string formed by popping each character from the
stack and joining the characters. Empties the stack.

bool is_palindrome() Returns true if input_string and the string built by
build_reverse have the same contents, except for case.
Otherwise, returns false.

Function is_palindrome uses the equal algorithm to compare the input_string with
the reverse string using a function object (see Section 4.10) that compares charac-
ters in a case-insensitive manner. The iterators for input_string and reverse select
the next pair of characters to compare, starting with the first character in each
string.

return equal(input_string.begin(), input_string.end(),
reverse.begin(), Ci_Equal());

The class Ci_Equal is defined as follows:
/** Function class to perform case-insensitive comparison

of characters. */
class Ci_Equal {
public:
bool operator()(char c1, char c2) {
return toupper(c1) == toupper(c2);

}
};

The equal algorithm uses the operator() defined in class Ci_Equal to compare cor-
responding elements in strings input_string and reverse; it returns true only if all
characters being compared are equal, ignoring case.

L I S T I N G 5 . 2
Palindrome_Finder.h

#ifndef PALINDROME_FINDER_H_
#define PALINDROME_FINDER_H

#include <string>
#include <stack>

318 Chapter 5 Stacks

/** Class with functions to check whether a string is a palindrome. */
class Palindrome_Finder {

public:
/** Store the argument string in a stack of characters.

@param str String of characters to store in the stack
*/
Palindrome_Finder(const std::string& str): input_string(str) {
fill_stack();

}

/** Function to determine whether input string is a palidrome. */
bool is_palindrome();

private:
/** Function to fill a stack of characters from an input string. */
void fill_stack();

/** Function to build a string containing the characters in a stack.
post: The stack is empty.
@return The string containing the words in the stack

*/
std::string build_reverse();

/** String to store in stack. */
std::string input_string;

/** Stack to hold characters. */
std::stack<char> char_stack;

};

#endif

L I S T I N G 5 . 3
Palindrome_Finder.cpp

/** Class with functions to check whether a string is a palindrome. */

#include "Palindrome_Finder.h"
#include <cctype>
#include <algorithm>
using namespace std;

/** Function to fill a stack of characters from an input string. */
void Palindrome_Finder::fill_stack() {
for (size_t i = 0; i < input_string.size(); i++) {
char_stack.push(input_string[i]);

}
}

/** Function to build a string containing the characters in a stack.
post: The stack is empty.
@return The string containing the words in the stack

*/

5.2 Stack Applications 319

string Palindrome_Finder::build_reverse() {
string result;
while (!char_stack.empty()) {
// Remove top item from stack and append it to result.
result += char_stack.top();
char_stack.pop();

}
return result;

}

/** Function class to perform case-insensitive comparison
of characters. */

class Ci_Equal {
public:
bool operator()(char c1, char c2) {
return toupper(c1) == toupper(c2);

}
};

bool Palindrome_Finder::is_palindrome() {
string reverse = build_reverse();
return equal(input_string.begin(), input_string.end(),

reverse.begin(), Ci_Equal());
}

P R O G R A M S T Y L E

Using an Iterator as a Loop Control Variable
The string class provides two ways to access individual characters: using an iterator or
using an index. Therefore, you could write the loop in function fill_stack as follows:
for (string::const_iterator itr = input_string.begin();

itr != input_string.end(); ++itr) {
char_stack.push(*itr);

}

This is because the string class provides all of the functions required for a sequential
container. Using an iterator instead of an index is more general and would allow you to
replace the string input parameter with a list parameter.

Testing To test this class you should run it with several different strings, including both
palindromes and nonpalindromes, as follows:

• A single character (always a palindrome)
• Multiple characters in one word
• Multiple words
• Different cases
• Even-length strings
• Odd-length strings
• An empty string (considered a palindrome)

320 Chapter 5 Stacks

An application of class Palindrome_Finder should have the following main function:
int main() {
string line;
cout << "Enter a string followed by a new line\n"

<< "To quit, enter an empty line: ";
while (getline(cin, line) && (line != "")) {
cout << line;
if (Palindrome_Finder(line).is_palindrome())
cout << " is a palindrome\n\n";

else
cout << " is not a palindrome\n\n";

cout << "Enter a new string to test: ";
}

}

CASE STUDY Testing Expressions for Balanced Parentheses

Problem When analyzing arithmetic expressions, it is important to determine whether an
expression is balanced with respect to parentheses. For example, the expression

(w * (x + y) / z – (p / (r - q)))

is balanced. This problem is easy if all parentheses are the same kind—all we need
to do is increment a counter each time we scan an opening parenthesis, and decre-
ment the counter when we scan a closing parenthesis. If the counter is always
greater than or equal to zero, and the final counter value is zero, the expression is
balanced. However, if we can have different kinds of opening and closing parenthe-
ses, the problem becomes more difficult. For example,

(w * [x + y] / z – [p / {r – q}])

is balanced, but the expression
(w * [x + y) / z – [p / {r – q}])

is not, because the subexpression [x + y) is incorrect. In this expression, the set of
opening parentheses includes the symbols {, [, (, and the set of closing parentheses
includes the matching symbols },],).

Analysis An expression is balanced if each subexpression that starts with the symbol { ends
with the symbol }, and the same statement is true for the other symbol pairs.
Another way of saying this is that an opening parenthesis at position k in the
sequence {[(must be paired with the closing parenthesis at position k in the
sequence }]). We can use a stack to determine whether the parentheses are balanced
(or nested properly). We will scan the expression from left to right, ignoring all char-
acters except for parentheses. We will push each open parenthesis onto a stack of
characters. When we reach a closing parenthesis, we will see whether it matches the
open parenthesis symbol on the top of the stack. If so, we will pop it off and con-
tinue the scan. If the characters don’t match or the stack is empty, there is an error

5.2 Stack Applications 321

in the expression. If there are any characters left on the stack when we are finished,
that also indicates an error.

Data Requirements

PROBLEM INPUTS

An expression string

PROBLEM OUTPUTS

A message indicating whether the expression has balanced parentheses

Design We will write the function is_balanced to check for balanced parentheses. This
function returns a bool value indicating whether the expression is balanced. We also
need functions is_open and is_close to determine whether a character is an open-
ing or closing parenthesis. Function is_balanced implements the following
algorithm.

Algorithm for Function is_balanced
1. Create an empty stack of characters.
2. Assume that the expression is balanced (balanced is true).
3. Set index to 0.
4. while balanced is true and index < the expression’s length
5. Get the next character in the data string.
6. if the next character is an opening parenthesis
7. Push it onto the stack.
8. else if the next character is a closing parenthesis
9. Pop the top of the stack.

10. if stack was empty or its top does not match the closing
parenthesis

11. Set balanced to false.
12. Increment index.
13. Return true if balanced is true and the stack is empty.

The if statement at Step 6 tests each character in the expression, ignoring all char-
acters except for opening and closing parentheses. If the next character is an open-
ing parenthesis, it is pushed onto the stack. If the next character is a closing
parenthesis, the nearest unmatched opening parenthesis is retrieved (by popping the
stack) and compared to the closing parenthesis.

Implementation Listing 5.4 shows the Paren_Checker program. The while loop in function is_balanced
(Step 4 of the algorithm) begins by storing the next character in next_ch, starting with
the character at the beginning of expression.

string::const_iterator iter = expression.begin();
while (balanced && (iter != expression.end())) {
char next_ch = *iter;

322 Chapter 5 Stacks

Function is_open returns true if its type-char argument is in the string of opening
parentheses, string OPEN; function is_close tests for closing parentheses (string
CLOSE). If next_ch stores an opening parenthesis, the statement

s.push(next_ch);

pushes next_ch onto the stack s (a local stack<char>).

For each closing parenthesis, the top function retrieves the nearest unmatched open-
ing parenthesis from the stack:

char top_ch = s.top();

Next, we see whether top_ch is a corresponding opening parenthesis to the next_ch
closing parenthesis. This is done by comparing their positions in the list of opening
and closing parentheses using the expression

OPEN.find(top_ch) == CLOSE.find(next_ch);

The function string::find returns the position of the character argument in the
string. Thus we must be careful when defining the list of opening (OPEN) and closing
(CLOSE) parentheses that the corresponding parentheses are in the same positions.

After the while loop finishes execution, the function result is returned. The result is
true only when the expression is balanced and the stack is empty:

return balanced && s.empty();

L I S T I N G 5 . 4
Paren_Checker.cpp

/** Program to check an expression for balanced parentheses. */

#include <stack>
#include <string>
#include <iostream>
using namespace std;

// The set of opening parentheses.
const string OPEN = "([{";
// The corresponding set of closing parentheses.
const string CLOSE = ")]}";

/** Function to determine whether a character is one of the opening
parentheses (defined in constant OPEN).
@param ch Character to be tested
@return true If the character is an opening parenthesis

*/
bool is_open(char ch) {
return OPEN.find(ch) != string::npos;

}

/** Function to determine whether a character is one of the closing
parentheses (defined in constant CLOSE).
@param ch Character to be tested
@return true If the character is a closing parenthesis

5.2 Stack Applications 323

*/
bool is_close(char ch) {
return CLOSE.find(ch) != string::npos;

}

/** Test the input string to see that it contains balanced
parentheses. This function tests an input string to
see that each type of parenthesis is balanced. '(' is
matched with ')', '[' is matched with ']', and '{' is
matched with '}'.
@param expression A string containing the expression to be examined
@return true if all parentheses match

*/
bool is_balanced(const string& expression) {
// A stack for the open parentheses that haven't been matched
stack<char> s;
bool balanced = true;
string::const_iterator iter = expression.begin();
while (balanced && (iter != expression.end())) {
char next_ch = *iter;
if (is_open(next_ch)) {
s.push(next_ch);

} else if (is_close(next_ch)) {
if (s.empty()) {
balanced = false;

} else {
char top_ch = s.top();
s.pop();
balanced =
OPEN.find(top_ch) == CLOSE.find(next_ch);

}
}
++iter;

}
return balanced && s.empty();

}

/** Main function to test is_balanced. */
int main() {
cout << "Enter an expression\n";
string expression;
while (getline(cin, expression) && (expression != "")) {
cout << expression;
if (is_balanced(expression)) {
cout << " is balanced\n";

} else {
cout << " is not balanced\n";

}
cout << "Enter another expression: ";

}
return 0;

}

324 Chapter 5 Stacks

Testing A simple test driver is included in Listing 5.4. Test this program by providing a vari-
ety of input expressions and displaying the result (true or false). You should try
expressions that have several levels of nested parentheses. Also, try expressions that
would be properly nested if the parentheses were all of one type, but are not prop-
erly nested because a closing parenthesis does not match a particular opening paren-
thesis (for example, {x + y] is not balanced because] is not the correct closing
parenthesis for {). Also check expressions that have too many opening or closing
parentheses. Finally, test for some strange strings such as "{[}]", which should fail.
The string "{[a * + b]}", which is not a valid expression, should pass because its
parentheses are balanced.

P I T F A L L

Attempting to Pop an Empty Stack
If you attempt to reference the top of or to pop an empty stack, your program will prob-
ably halt and report a run-time error. The nature of the error message will depend on
the compiler and operating system. Under Linux you will probably get the message
segmentation fault, and under Windows you will get an error dialog box reporting
an illegal attempt to access memory. It is also possible that no error is reported at all.
You can guard against this error by testing for a nonempty stack before calling top
or pop.

P R O G R A M S T Y L E

Declaring Constants
We declared OPEN and CLOSE as global constants instead of declaring them locally in
the functions where they are used (is_open and is_close). There are two reasons for
this. First, it is a more efficient use of memory to declare them as constants instead of
having to allocate storage for these constants each time the function is called. Also, if a
new kind of parenthesis is introduced, it is easier to locate and update the class con-
stants instead of having to find their declarations inside a function. However, relying on
global constants makes functions less portable (less easy to drop in elsewhere), so this
dependence should be mentioned in the function’s comment header.

E X E R C I S E S F O R S E C T I O N 5 . 2

S E L F - C H E C K

1. The result returned by the palindrome finder depends on all characters in a string,
including spaces and punctuation. Discuss how you would modify the palindrome
finder so that only the letters in the input string were used to determine whether
the input string was a palindrome. You should ignore any other characters.

2. Trace the execution of function is_balanced for each of the following expres-
sions. Your trace should show the stack after each push or pop operation. Also
show the values of balanced, is_open, and is_close after each closing parenthe-
sis is processed.
(a + b * {c / [d - e]}) + (d / e)
(a + b * {c / [d - e}}) + (d / e)

P R O G R A M M I N G

1. Write a function that reads a line and reverses the words in the line (not the char-
acters) using a stack. For example, given the following input:
The quick brown fox jumps over the lazy dog.

you should get the following output:
dog. lazy the over jumps fox brown quick The

2. Three different approaches to finding palindromes are discussed in the Analysis
section of that case study. Code the first approach. You can use the string func-
tion rbegin to obtain a reverse_iterator that can be passed as an argument to
the equals function.

3. Code the second approach to finding palindromes.

5.3 Implementing a Stack

Now that you have seen how to use a stack, we will discuss how to implement the
Stack ADT. We will discuss more advanced applications afterwards. Readers who
are interested primarily in stack applications can skip ahead to Section 5.5.

You may have recognized that a stack is very similar to a vector. In fact, the stan-
dard library defines the stack as a template class that takes any of the sequential
containers as a template parameter. Thus, within the standard library a stack can be
implemented using a vector, list, or deque as a component to hold the contents of
the stack. We will describe the deque container in Chapter 6 when we discuss the
Queue ADT. We show two implementations in this section: one that uses a standard
template container and another that uses a special-purpose single-linked list.

5.3 Implementing a Stack 325

F I G U R E 5 . 3
Stack of char objects in a vector

326 Chapter 5 Stacks

size_t current_capacity = 10
 size_t num_items = 4
 Item_Type* the_data =

push_back(const Item_Type& item)
Item_Type& back()
const Item_Type& back() const
pop_back()

container

vector<char>

push(const Item_Type& item)
Item_Type& top()
const Item_Type& top() const
pop()

stack<char> s A[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

b

l

e

Figure 5.3 shows the characters of the string "Able" stored in stack<char> s. The
vector<char> container is used to store the contents, where container[3] contains
the character at the top of the stack.

Listing 5.5 (file Stack.tc) shows an implementation of the stack that is very similar
to that given by the C++ standard library. Since all of the sequential containers pro-
vide the functions empty, size, back (equivalent to stack::top), push_back (equiva-
lent to stack::push), and pop_back (equivalent to stack::pop), we could use any of
these containers. The data member container represents the particular container
object being used to store the stack elements. We discuss why we used the extension
.tc after the listing.

Adapter Classes and the Delegation Pattern
The stack class uses the delegation pattern mentioned in Chapter 4 by making the
functions in the underlying container class do its work for it. It is also said to be an
adapter class because it adapts the functions available in another class to the inter-
face its clients expect by giving different names to essentially the same operations.
For example, if a vector is used as the container object, stack::push corresponds to
vector::push_back, stack::top corresponds to vector::back, and so on.

L I S T I N G 5 . 5
Stack.tc

#ifndef STACK_TC_
#define STACK_TC_

/** Construct an initially empty stack. */
template<typename Item_Type>
stack<Item_Type>::stack() { }

/** Pushes an item onto the top of the stack.
@param item The item to be inserted

*/
template<typename Item_Type>
void stack<Item_Type>::push(const Item_Type& item) {
container.push_back(item);

}

/** Returns a reference to the object at the top of the stack
without removing it.
@return A reference to the object at the top of the stack

*/
template<typename Item_Type>
Item_Type& stack<Item_Type>::top() {
return container.back();

}

/** Returns a const reference to the object at the
top of the stack without removing it.
@return A const reference to the object at the top of the stack

*/
template<typename Item_Type>
const Item_Type& stack<Item_Type>::top() const {
return container.back();

}

/** Removes the top item from the stack.
*/
template<typename Item_Type>
void stack<Item_Type>::pop() {
container.pop_back();

}

/** Determines whether the stack is empty. */
template<typename Item_Type>
bool stack<Item_Type>::empty() const {
return container.empty();

}

/** Returns the number of items in the stack. */
template<typename Item_Type>
size_t stack<Item_Type>::size() const {
return container.size();

}
#endif

Revisiting the Definition File stack.h
If you want to implement the stack using a vector object as a container, you must
change the definition of the data member container in the private part of the class
definition (Listing 5.1):

// Data fields
/** A sequential container to contain the stack items */
std::vector<Item_Type> container;

If you prefer to use a deque for a container, substitute deque<Item_Type> for vec-
tor<Item_Type> in the declaration of container.

The member function implementations shown in Listing 5.5 should be included
after the class definition but before the end of the namespace. Template member
function implementations must be included with the class definitions. In Listing 5.1,
we used an include directive to insert the code for the member function definitions
at the end of the stack.h file:

5.3 Implementing a Stack 327

// Insert implementation of member functions here
#include Stack.tc

} // End namespace KW
#endif

The include directive completes the definition of the file stack.h and allows us to
compile file Stack.tc. The Program Style display above discusses why the definition
file and implementation files were organized in this way. Listing 5.6 shows another
way.

L I S T I N G 5 . 6
stack.h with push Member Function Inserted

#ifndef STACK_H_
#define STACK_H_
#include <vector>

namespace KW {
/** A stack is a data structure that provides last-in first-out

access to the items that are stored in it. Only the most recently
inserted item is accessible.

*/
template<typename Item_Type>
class stack {

public:
// Member functions

328 Chapter 5 Stacks

P R O G R A M S T Y L E

Reason for Including File Stack.tc in File stack.h
In earlier programming, we were able to write the definition file (extension .h) for a
class and its implementation file (extension .cpp) as separate files, and we would
include the .h file at the beginning of the .cpp file. C++ does not permit this for tem-
plate classes, however, because for each instantiation of a template class in a client
program the compiler needs to see the template to create an instantiation for those
member functions that are used in the current instantiation. Therefore, we have placed
the implementation in a separate file and given it the extension .tc to specify template
implementation files. The .tc file, while not a typical header file, is still an included
file, so it should not contain using directives or using statements.

An alternate approach would be to replace each function declaration in file stack.h
with its actual definition (see Listing 5.6). This is simpler for the case where we only
have a single implementation of an ADT; however, it does not provide a separate inter-
face file and therefore makes it a bit more difficult to provide different implementations
of the ADT.

/** Pushes an item onto the top of the stack.
@param item The item to be inserted

*/
void push(const Item_Type item) {
container.push_back(item);

}

...
private:
// Data fields
/** A sequential container to contain the stack items */
std::vector<Item_Type> container;

};
}
#endif

Implementing a Stack as a Linked Data Structure
We can also implement a stack using a single-linked list of nodes. We show the stack
containing the characters in "Able" in Figure 5.4, with the last character in the string
stored in the node at the top of the stack. File Linked_Stack.tc defines a stack class
that contains a collection of Node objects (see Section 4.5). Recall that inner class
Node has data fields data (type Item_Type) and next (type Node*).

To use this implementation we need to replace the statements at the end of file
stack.h (Listing 5.1) with the following:

private:
// Insert definition of class Node here
#include "Node.h"

/** A pointer to the top of the stack. */
Node* top_of_stack;

}; // End class stack

// Insert implementation of member functions here
#include "Linked_Stack.tc"

} // End namespace KW
#endif

Pointer variable top_of_stack (type Node*) points to the last element placed on the
stack (see Section 4.5). Because it is easier to insert and remove from the head of a
linked list, we will have top_of_stack point to the node at the head of the list.

Function push inserts a node at the head of the list. The statement
top_of_stack = new Node(item, top_of_stack);

sets top_of_stack to point to the new node; top_of_stack->next references the old
top of the stack. When the stack is empty, top_of_stack is NULL, so the attribute next
for the first object pushed onto the stack (the item at the bottom) will be NULL.

Function top will return top_of_stack->data. Function empty tests for a value of
top_of_stack equal to NULL. Function pop simply resets top_of_stack to the value
stored in the next field of the list head and then deletes the old top of the stack
(pointed to by old_top). Listing 5.7 shows the implementation file (Linked_Stack.tc).

5.3 Implementing a Stack 329

F I G U R E 5 . 4
Stack of Character Objects in a Linked List

330 Chapter 5 Stacks

 top_of_stack =

push(const Item_Type& item)
Item_Type& top()
const Item_Type& top() const
pop()

stack<char> s
Node Node Node Node

next =
data = 'e'

next =
data = 'l'

next =
data = 'b'

next = NULL
data = 'A'

L I S T I N G 5 . 7
Linked_Stack.tc

#ifndef LINKED_STACK_TC_
#define LINKED_STACK_TC_

/** Constructs an empty stack. */
template<typename Item_Type>
stack<Item_Type>::stack() : top_of_stack(NULL) {}

/** Pushes an item onto the top of the stack.
@param item The item to be inserted

*/
template<typename Item_Type>
void stack<Item_Type>::push(const Item_Type& item) {
top_of_stack = new Node(item, top_of_stack);

}

/** Returns a reference to the object at the top of the stack
without removing it.
@return A reference to the object at the top of the stack

*/
template<typename Item_Type>
Item_Type& stack<Item_Type>::top() {
return top_of_stack->data;

}

/** Returns a const reference to the object at the
top of the stack without removing it.
@return A const reference to the object at the top of the stack

*/
template<typename Item_Type>
const Item_Type& stack<Item_Type>::top() const {
return top_of_stack->data;

}

/** Removes the top item from the stack. */
template<typename Item_Type>
void stack<Item_Type>::pop() {
Node* old_top = top_of_stack;
top_of_stack = top_of_stack->next;
delete old_top;

}

/** Determines whether the stack is empty. */
template<typename Item_Type>
bool stack<Item_Type>::empty() const {
return top_of_stack == NULL;

}

/** Determines the size of the stack. */
template<typename Item_Type>
size_t stack<Item_Type>::size() const {
// Exercise

}

#endif

Comparison of Stack Implementations
The implementation shown in Listing 5.6 is very similar to the implementation pro-
vided by the C++ standard library. By delegating the operations to an underlying
sequential container, we avoid having to implement these operations ourselves. By
using the functions push_back, pop_back, and back, we are assured of constant time
(O(1)) performance, since the C++ standard requires that implementations of the
sequential containers provide these operations in (amortized) constant time.

Use of the standard containers has a space penalty, however. To achieve the amor-
tized constant performance for push_back, and so forth, the vector and deque allo-
cate additional space. As we showed in Section 4.3, the vector will allocate an array
twice the current size whenever it needs to allocate additional space. As we will see
in Chapter 6, the deque also allocates additional space. The standard list class is a
double-linked list; thus each Node contains pointers to both a next and a previous
entry. This flexibility is not needed for the stack.

We also showed how you could use your own linked data structure. This has the
advantage of using exactly as much storage as is needed for the stack. However, you
would also need to allocate storage for the links. Because all insertions and deletions
are at one end, the flexibility provided by a linked data structure is not utilized. All
stack operations using a linked data structure would be O(1).

E X E R C I S E S F O R S E C T I O N 5 . 3

S E L F - C H E C K

1. For the implementation of stack s using a linked list as the underlying data struc-
ture (see Figure 5.4), show how the underlying data structure changes after each
statement below executes. What is the value of top_of_stack? Assume the char-
acters in "C++" are stored on the stack (C pushed on first).
s.push('i');
s.push('s');
char ch1 = s.pop();
s.pop();
s.push(' ');
char ch2 = s.top();

5.3 Implementing a Stack 331

P R O G R A M M I N G

1. Write a function size for the linked stack implementation that returns the num-
ber of elements currently on the stack.

5.4 Additional Stack Applications

In this section we consider two case studies that are a bit more complicated than the
earlier ones. They both relate to evaluating arithmetic expressions. The first prob-
lem is slightly easier, and it involves evaluating expressions that are in postfix form.
The second problem discusses how to convert from infix notation (common math-
ematics notation) to postfix form.

Normally we write expressions using infix notation, in which binary operators (*,
+, and so forth) are inserted between their operands. Infix expressions present no
special problem to humans, because we can easily scan left and right to find the
operands of a particular operator. A calculator (or computer), on the other hand,
normally scans an expression string in the order that it is input (left to right).
Therefore, it is easier to evaluate an expression if the user types the operands for
each operator in before typing the operator (postfix notation). Table 5.3 shows
some examples of expressions in postfix and infix form. The braces under each post-
fix expression will help you visualize the operands for each operator.

The advantage of the postfix form is that there is no need to group subexpressions
in parentheses or even to consider operator precedence. (We talk more about post-
fix form in the second case study in this section.) The braces in Table 5.3 are for our
convenience and are not required. The next case study develops a program that eval-
uates a postfix expression.

TA B L E 5 . 3
Postfix Expressions

332 Chapter 5 Stacks

Postfix Expression Infix Expression Value

4 * 7 28

4 * (7 + 2) 36

(4 * 7) – 20 8

3 + ((4 * 7) / 2) 173 4 7 * 2 / +

4 7 * 20 -

4 7 2 + *

4 7 *

5.4 Additional Stack Applications 333

CASE STUDY Evaluating Postfix Expressions

Problem Write a class that evaluates a postfix expression. The postfix expression will be a
string containing digit characters and operator characters from the set +, –, *, /. The
space character will be used as a delimiter between tokens (integers and operators).

Analysis In a postfix expression the operands precede the operators. A stack is the perfect
place to save the operands until the operator is scanned. When the operator is
scanned, its operands can be popped off the stack (the last operand scanned, the
right operand, will be popped first). Therefore, our program will push each integer
operand onto the stack. When an operator is read, the top two operands are
popped, the operation is performed on its operands, and the result is pushed back
onto the stack. We always pop two operators because we are assuming all operators
are binary operators. Also, negative operands (indicated by unary minus) are not
allowed. The final result should be the only value remaining on the stack when the
end of the expression is reached.

Design We will write class Postfix_Evaluator to evaluate postfix expressions. The class
should define a function eval, which scans a postfix expression and processes each
of its tokens, where a token is either an operand (an integer) or an operator. We also
need a function eval_op, which evaluates each operator when it is scanned, and a
function is_operator, which determines whether a character is an operator. Table
5.4 describes the class.

The algorithm for eval follows. The stack operators perform algorithm steps 1, 5,
7, 8, 10, and 11.

Table 5.5 shows the evaluation of the third expression in Table 5.3 using this algo-
rithm. The arrow under the expression points to the character being processed; the
stack diagram shows the stack after this character is processed.

TA B L E 5 . 4
Class Postfix_Evaluator

Data Field Attribute

stack<int> operand_stack The stack of operands (int objects).

Public Functions Behavior

int eval(string expression) Returns the value of expression.

Private Functions Behavior

int eval_op(char op) Pops two operands and applies operator op to its operands, returning
the result.

bool is_operator(char ch) const Returns true if ch is an operator symbol.

334 Chapter 5 Stacks

TA B L E 5 . 5
Evaluating a Postfix Expression

Expression Action Stack

4 7 * 20 – Push 4.
↑

4 7 * 20 – Push 7.
↑

4 7 * 20 – Pop 7 and 4.
↑ Evaluate 4 * 7.

Push 28.

4 7 * 20 – Push 20.
↑

4 7 * 20 – Pop 20 and 28.
↑ Evaluate 28 – 20.

Push 8.

4 7 * 20 – Pop 8.
↑ Stack is empty.

Result is 8.

Algorithm for Function eval
1. Empty the operand stack.
2. while there are more tokens
3. Get the next token.
4. if the first character of the token is a digit
5. Push the integer onto the stack.
6. else if the token is an operator
7. Pop the right operand off the stack.
8. Pop the left operand off the stack.
9. Evaluate the operation.

10. Push the result onto the stack.
11. Pop the stack and return the result.

Implementation Listing 5.8 shows the class definition file Postfix_Evaluator.h. The data fields
include the string OPERATORS (defined in the implementation file to be "+-*/")
and the operand stack (std::stack<int> operand_stack). The include file
Syntax_Error.h, shown in Listing 5.9, defines the exception class Syntax_Error as a
derived class of the exception class std::invalid_argument.

L I S T I N G 5 . 8
Postfix_Evaluator.h

#ifndef POSTFIX_EVALUATOR_H_
#define POSTFIX_EVALUATOR_H_

4

7
4

28

20
28

8

5.4 Additional Stack Applications 335

#include <stack>
#include <string>
#include "Syntax_Error.h"

class Postfix_Evaluator {
// Public member functions
public:
/** Evaluates a postfix expression.

@param expression The expression to be evaluated
@return The value of the expression
@throws Syntax_Error if a syntax error is detected

*/
int eval(const std::string& expression);

// Private member functions
private:
/** Evaluates the current operator.

This function pops the two operands off the operand
stack and applies the operator.
@param op A character representing the operator
@throws Syntax_Error if top is attempted on an empty stack

*/
int eval_op(char op);

/** Determines whether a character is an operator.
@param ch The character to be tested
@return true if the character is an operator

*/
bool is_operator(char ch) const {
return OPERATORS.find(ch) != std::string::npos;

}

// Data fields
static const std::string OPERATORS;
std::stack<int> operand_stack;

};

#endif

L I S T I N G 5 . 9
Syntax_Error.h

#ifndef SYNTAX_ERROR_H_
#define SYNTAX_ERROR_H_
#include <stdexcept>

class Syntax_Error : public std::invalid_argument {
public:
Syntax_Error(std::string msg) : std::invalid_argument(msg) {}

};
#endif

Listing 5.10 shows the implementation of the eval and eval_op functions. Function
eval implements the algorithm shown in the design section. It begins by emptying the
operand stack. We assume that there are spaces between operands and operators, so

336 Chapter 5 Stacks

eval uses the istringstream (see The C++ Primer) to extract the individual tokens
(character sequences delimited by spaces) in string expression.

// Process each token
istringstream tokens(expression);
char next_char;
while (tokens >> next_char) {

The expression
tokens >> next_char

will read the next nonblank character into next_char. If the character in next_char
is a digit, this indicates that the next token is an integer. We put the first digit of this
integer back into the istringstream using the statement

tokens.putback(next_char);

The putback function (member of the istream class) allows us to “unread” a single
character. Now we read all the characters of the next integer into the int variable
value using the statement

tokens >> value;

If the character in next_char is not a digit, then we check to be sure it is an opera-
tor. If it is an operator, then we call the eval_op fuction. Otherwise we indicate a
syntax error by throwing the Syntax_Error exception.

Private function is_operator determines whether a character is an operator. When
an operator is encountered, private function eval_op is called to evaluate it. This
function pops the top two operands from the stack. The first item popped is the
right-hand operand, and the second is the left-hand operand.

if (operand_stack.empty())
throw Syntax_Error("Stack is empty");

int rhs = operand_stack.top();
operand_stack.pop();
if (operand_stack.empty())
throw Syntax_Error("Stack is empty");

int lhs = operand_stack.top();
operand_stack.pop();

Notice that before we call the top function, we test to be sure that the operand_stack
is not empty. If it is empty, we throw the Syntax_Error exception. If we omitted this
test and attempted to pop an empty stack, we would probably get a run-time error.

A switch statement is then used to select the appropriate expression to evaluate for
the given operator. For example, the following case processes the addition operator
and saves the sum of lhs and rhs in result.

case '+' : result = lhs + rhs;
break;

5.4 Additional Stack Applications 337

L I S T I N G 5 . 1 0
Postfix_Evaluator.cpp

/** Implementation of the postfix_evaluator. */

#include "Postfix_Evaluator.h"
#include <sstream>
#include <cctype>
using std::stack;
using std::string;
using std::istringstream;
using std::isdigit;

const std::string Postfix_Evaluator::OPERATORS = "+-*/";

/** Evaluates a postfix expression.
@param expression The expression to be evaluated
@return The value of the expression
@throws Syntax_Error if a syntax error is detected

*/
int Postfix_Evaluator::eval(const std::string& expression) {
// Be sure the stack is empty
while (!operand_stack.empty())
operand_stack.pop();

// Process each token
istringstream tokens(expression);
char next_char;
while (tokens >> next_char) {
if (isdigit(next_char)) {
tokens.putback(next_char);
int value;
tokens >> value;
operand_stack.push(value);

} else if (is_operator(next_char)) {
int result = eval_op(next_char);
operand_stack.push(result);

} else {
throw Syntax_Error("Invalid character encountered");

}
}
if (!operand_stack.empty()) {
int answer = operand_stack.top();
operand_stack.pop();
if (operand_stack.empty()) {
return answer;

} else {
throw Syntax_Error("Stack should be empty");

}
} else {
throw Syntax_Error("Stack is empty");

}
}

338 Chapter 5 Stacks

/** Evaluates the current operator.
This function pops the two operands off the operand
stack and applies the operator.
@param op A character representing the operator
@throws Syntax_Error if top is attempted on an empty stack

*/
int Postfix_Evaluator::eval_op(char op) {
if (operand_stack.empty())
throw Syntax_Error("Stack is empty");

int rhs = operand_stack.top();
operand_stack.pop();
if (operand_stack.empty())
throw Syntax_Error("Stack is empty");

int lhs = operand_stack.top();
operand_stack.pop();
int result = 0;
switch(op) {
case '+' : result = lhs + rhs;

break;
case '-' : result = lhs - rhs;

break;
case '*' : result = lhs * rhs;

break;
case '/' : result = lhs / rhs;

break;
}
return result;

}

Testing You will need to write a driver for the Postfix_Evaluator class. This driver should
create a Postfix_Evaluator object, read one or more expressions, and report the
result. It will also have to catch the Syntax_Error exception. A white-box approach
to testing would lead you to consider the following test cases. First, you want to
exercise each path in the eval_op function by entering a simple expression that uses
each operator. Then you need to exercise the paths through eval by trying different
orderings and multiple occurrences of the operators. These tests exercise the normal
cases, so you next need to test for possible syntax errors. Consider the following
cases: an operator without any operands, a single operand, an extra operand, an
extra operator, a variable name, and finally an empty string.

P R O G R A M S T Y L E

Creating Your Own Exception Class
The program would work just the same if we did not bother to declare the Syntax_Error
class and just threw a std::exception object each time an error occurred. However, we
feel that this approach gives the user a more meaningful description of the cause of an
error. Also, if other errors are possible in a client of this class, any Syntax_Error excep-
tion can be caught and handled in a separate catch clause.

5.4 Additional Stack Applications 339

CASE STUDY Converting from Infix to Postfix

We normally write expressions in infix notation. Therefore, one approach to evalu-
ating expressions in infix notation is first to convert it to postfix and then to apply
the evaluation technique just discussed. We will show in this case study how to
accomplish this conversion using a stack. An infix expression can also be evaluated
directly using two stacks. This is left as a programming project.

Problem To complete the design of an expression evaluator, we need a set of functions that
convert infix expressions to postfix form. We will assume that the expression will
consist only of spaces, operands, and operators, where the space is a delimiter char-
acter between tokens. All operands that are identifiers begin with a letter; all
operands that are numbers begin with a digit. (Although we are allowing for iden-
tifiers, our postfix evaluator can’t really handle them.)

Analysis Table 5.3 showed the infix and postfix forms of four expressions. For each expres-
sion pair, the operands are in the same sequence; however, the placement of the
operators changes in going from infix to postfix. For example, in converting

w - 5.1 / sum * 2

to its postfix form
w 5.1 sum / 2 * -

we see that the four operands (the tokens w, 5.1, sum, 2) retain their relative order-
ing from the infix expression, but the order of the operators is changed. The first
operator in the infix expression, -, is the last operator in the postfix expression.
Therefore, we can insert the operands in the output expression (postfix) as soon as
they are scanned in the input expression (infix), but each operator should be
inserted in the postfix string after its operands and in the order in which they should
be evaluated, not the order in which they were scanned. For expressions without
parentheses, there are two criteria that determine the order of operator evaluation:

• Operators are evaluated according to their precedence or rank. Higher-prece-
dence operators are evaluated before lower-precedence operators. For example,
*, /, and % (the multiplicative operators) are evaluated before +, –.

• Operators with the same precedence are evaluated in left-to-right order (left-
associative rule).

If we temporarily store the operators on a stack, we can pop them whenever we
need to and insert them in the postfix string in an order that indicates when they
should be evaluated, rather than when they were scanned. For example, if we have
the first two operators from the string "w - 5.1 / sum * 2" stored on a stack as
follows,

the operator / (scanned second) must come off the stack and be placed in the post-
fix string before the operator - (scanned first). If we have the stack as just shown and

/
-

operand_stack

340 Chapter 5 Stacks

the next operator is *, we need to pop the / off the stack and insert it in the postfix
string before *, because the multiplicative operator scanned earlier (/) should be eval-
uated before the multiplicative operator (*) scanned later (the left-associative rule).

Design Class Infix_To_Postfix contains functions needed for the conversion. The class
should have a data field operator_stack, which stores the operators. It should also
have a function convert, which does the initial processing of all tokens (operands
and operators). Function convert needs to get each token (using an istringstream
object) and process it. Each token that is an operand should be appended to the
postfix string. Function process_operator will process each operator token.
Function is_operator determines whether a token is an operator, and function
precedence returns the precedence of an operator. Table 5.6 describes class
Infix_To_Postfix.

The algorithm for function convert follows. The while loop extracts and processes
each token, calling process_operator to process each operator token. After all
tokens are extracted from the infix string and processed, any operators remaining
on the stack should be popped and appended to the postfix string. They are
appended to the end because they have lower precedence than those operators
inserted earlier.

Algorithm for Function convert
1. Initialize postfix to an empty string.
2. Initialize the operator stack to an empty stack.
3. while there are more tokens in the infix string
4. Get the next token.
5. if the next token is an operand
6. Append it to postfix.
7. else if the next token is an operator
8. Call process_operator to process the operator.
9. else

10. Indicate a syntax error.
11. Pop remaining operators off the operator stack and append them to

postfix.

Function process_operator
The real decision making happens in function process_operator. By pushing oper-
ators onto the stack or popping them off the stack (and into the postfix string), this
function controls the order in which the operators will be evaluated.

Each operator will eventually be pushed onto the stack. However, before doing this,
process_operator compares the operator’s precedence with that of the stacked oper-
ators, starting with the operator at the top of the stack. If the current operator has
higher precedence than the operator at the top of the stack, it is pushed onto the
stack immediately. This will ensure that none of the stacked operators can be
inserted into the postfix string before it.

5.4 Additional Stack Applications 341

TA B L E 5 . 6
Class Infix_To_Postfix

Data Field Attribute

stack<char> operator_stack Stack of operators.

string postfix The postfix string being formed.

Public Functions Behavior

string convert(string infix) Extracts and processes each token in infix and returns the equivalent
postfix string.

Private Functions Behavior

void process_operator(char op) Processes operator op by updating operator_stack.

int precedence(char op) const Returns the precedence of operator op.

bool is_operator(char ch) const Returns true if ch is an operator symbol.

However, if the operator at the top of the stack has higher precedence than the cur-
rent operator, it is popped off the stack and inserted in the postfix string, because it
should be performed before the current operator according to the precedence rule.
Also, if the operator at the top of the stack has the same precedence as the current
operator, it is popped off the stack and inserted into the postfix string, because it
should be performed before the current operator according to the left-associative
rule. After an operator is popped off the stack, we repeat the process of comparing
the precedence of the operator currently at the top of the stack with the precedence
of the current operator until the current operator is pushed onto the stack.

A special case is an empty operator stack. In this case, there are no stacked opera-
tors to compare with the new one, so we will simply push the current operator onto
the stack. We use function top to access the operator at the top of the stack without
removing it. Sometimes this is called peeking the stack.

Algorithm for Function process_operator
1. if the operator stack is empty
2. Push the current operator onto the stack.

else

3. if the precedence of the current operator is greater than the precedence
of stack.top()

4. Push the current operator onto the stack.
else

5. while the stack is not empty
and the precedence of the current operator is
less than or equal to the precedence of stack.top()

6. Append stack.top() to postfix and pop the stack.
7. Push the current operator onto the stack.

342 Chapter 5 Stacks

TA B L E 5 . 7
Conversion of w - 5.1 / sum * 2

Next Token Action Effect on Effect on postfix
operator_stack

w Append w to w
postfix.

– The stack is empty w
Push – onto the stack.

5.1 Append 5.1 to w 5.1
postfix.

/ precedence(/) > w 5.1
precedence(–),
Push / onto the stack.

sum Append sum to w 5.1 sum
postfix.

* precedence(*) equals w 5.1 sum /
precedence(/)
Pop / off the stack and
append to postfix.

* precedence(*) > w 5.1 sum /
precedence(–),
Push * onto the stack.

2 Append 2 to w 5.1 sum / 2
postfix.

End of input Stack is not empty, w 5.1 sum / 2 *
Pop * off the stack and
append to postfix.

End of input Stack is not empty,
Pop – off the stack and w 5.1 sum / 2 * –
append to postfix.

Table 5.7 traces the conversion of the infix expression w - 5.1 / sum * 2 to the post-
fix expression w 5.1 sum / 2 * -. The final value of postfix shows that / is per-
formed first (operands 5.1 and sum), * is performed next (operands 5.1 / sum and 2),
and - is performed last.

Although the algorithm will correctly convert a well-formed expression and will
detect some expressions with invalid syntax, it doesn’t do all the syntax checking
required. For example, an expression with extra operands would not be detected.
We discuss this further in the testing section.

-

-

-

/
-

/
-

-

*
-

*
-

5.4 Additional Stack Applications 343

Implementation Listing 5.11 shows the definition for the Infix_To_Postfix class, and Listing 5.12
shows the implementation of the convert and process_operator functions. The con-
vert function begins by initializing postfix and creating an istringsteam object
infix_tokens. The tokens are extracted and processed within a while loop. The con-
dition isalnum(next_token[0]) tests the first character of the next token to see
whether the next token is an operand (identifier or number). Function isalnum
(defined in <cctype>) returns true if next_token begins with a letter or digit. If this
condition is true, the token is appended to postfix followed by a space character.
The next condition,

(is_operator(next_token[0]))

is true if next_token is an operator. If so, function process_operator is called. If the
next token is not an operand or an operator, the Syntax_Error exception is thrown.

Once the end of the expression is reached, the remaining operators are popped off
the stack and appended to postfix. Finally, postfix is converted to a string and
returned.

P R O G R A M S T Y L E

Using #ifdef, #else to Select a Stack Implementation
We select the stack implementation and define data field operator_stack using the
#ifdef, #else compiler directive. This allows us to select either the stack implementa-
tion in the user namespace KW or the stack implementation in the standard namespace
depending on the switch USEKW. If the switch USEKW is defined, the preprocessor inserts
the following code:
#include "stack.h"
...
KW::stack<char> operator_stack;

If the switch USEKW is not defined, the preprocessor inserts the following code instead:
#include <stack>
...
std::stack<char> operator_stack;

We can define this switch when we compile the program using the -D compiler directive.
For example, to use the KW implementation using the gcc compiler, we would compile
using the following command:
g++ -DUSEKW -o Infix_To_Postfix Infix_To_Postfix.cpp
Test_Infix_To_Postfix.cpp

The -DUSEKW defines the macro symbol USEKW. The -o specifies the name given to the
executable file (Infix_To_Postfix). If this is omitted the executable file is given the
strange name a.out. Without the –DUSEKW, the switch USEKW would not be defined, and
the standard stack would be used. The various integrated development environments
also provide a way to set this compiler directive.

344 Chapter 5 Stacks

Function process_operator uses private function precedence to determine the prece-
dence of an operator (2 for *, /; 1 for +, –.). If the stack is empty or the condition

(precedence(op) > precedence(operator_stack.top()))

is true, the current operator, op, is pushed onto the stack. Otherwise, the while loop
executes, popping all operators off the stack that have the same or greater prece-
dence than op and appending them to the postfix string.

while (!operator_stack.empty()
&& (precedence(op) <= precedence(operator_stack.top()))) {

postfix += operator_stack.top();
postfix += " ";
operator_stack.pop();

}

After loop exit, the statement
operator_stack.push(op);

pushes the current operator onto the stack.

In function precedence, the statement
return PRECEDENCE[OPERATORS.find(op)];

returns the element of int array PRECEDENCE selected by the function call
OPERATORS.find(op). The precedence value returned will be 1 or 2.

L I S T I N G 5 . 1 1
Infix_To_Postfix.h

#ifndef INFIX_TO_POSTFIX_H_
#define INFIX_TO_POSTFIX_H_

#include "Syntax_Error.h"
#include <string>
#ifdef USEKW
#include "stack.h" // For KW::stack
#else
#include <stack> // For standard stack
#endif

/** Class to convert infix expressions to postfix expressions. */
class Infix_To_Postfix {
public:
/** Extracts and processes each token in infix and returns the

equivalent postfix string.
@param expression The infix expression
@return The equivalent postfix expression
@throws Syntax_Error

*/
std::string convert(const std::string& expression);

private:
/** Function to process operators.

@param op The operator
@throws Syntax_Error

*/
void process_operator(char op);

5.4 Additional Stack Applications 345

/** Determines whether a character is an operator.
@param ch The character to be tested
@return true if the character is an operator

*/
bool is_operator(char ch) const {
return OPERATORS.find(ch) != std::string::npos;

}

/** Determines the precedence of an operator.
@param op The operator
@return The precedence

*/
int precedence(char op) const {
return PRECEDENCE[OPERATORS.find(op)];

}

// Data fields
static const std::string OPERATORS;
static const int PRECEDENCE[];
#ifdef USEKW
KW::stack<char> operator_stack;
#else
std::stack<char> operator_stack;
#endif
std::string postfix;

};

#endif

L I S T I N G 5 . 1 2
Infix_To_Postfix.cpp

/** Implementation of Infix_To_Postfix. */

#include "Infix_To_Postfix.h"
#include <sstream>
#include <cctype>
using std::string;
using std::istringstream;

const string Infix_To_Postfix::OPERATORS = "+-*/";
const int Infix_To_Postfix::PRECEDENCE[] = { 1, 1, 2, 2 };

/** Extracts and processes each token in infix and returns the
equivalent postfix string.
@param expression The infix expression
@return The equivalent postfix expression
@throws Syntax_Error

*/
string Infix_To_Postfix::convert(const string& expression) {
postfix = "";
while (!operator_stack.empty())
operator_stack.pop();

istringstream infix_tokens(expression);
string next_token;

346 Chapter 5 Stacks

while(infix_tokens >> next_token) {
if (isalnum(next_token[0])) {
postfix += next_token;
postfix += " ";

} else if (is_operator(next_token[0])) {
process_operator(next_token[0]);

} else {
throw Syntax_Error("Unexpected Character Encountered");

}
} // End while
// Pop any remaining operators and append them to postfix
while (!operator_stack.empty()) {
char op = operator_stack.top();
operator_stack.pop();
postfix += op;
postfix += " ";

}
return postfix;

}

/** Function to process operators.
@param op The operator
@throws Syntax_Error

*/
void Infix_To_Postfix::process_operator(char op) {
if (operator_stack.empty()) {
operator_stack.push(op);

} else {
if (precedence(op) > precedence(operator_stack.top())) {
operator_stack.push(op);

} else {
// Pop all stacked operators with equal
// or higher precedence than op.
while (!operator_stack.empty()

&& (precedence(op) <= precedence(operator_stack.top()))) {
postfix += operator_stack.top();
postfix += " ";
operator_stack.pop();

}
// assert: Operator stack is empty or current
// operator precedence > top of stack operator
// precedence;
operator_stack.push(op);

}
}

}

Testing Listing 5.13 shows a main function that tests the Infix_To_Postfix class. When
entering a test expression, be careful to type a space character between operands
and operators.

Use enough test expressions to satisfy yourself that the conversion is correct for
properly formed input expressions. For example, try different orderings and multi-
ple occurrences of the operators. You should also try infix expressions where all
operators have the same precedence (for example, all multiplicative).

5.4 Additional Stack Applications 347

If convert detects a syntax error, it will throw the exception Syntax_Error. The
driver will catch this exception and display an error message. If an exception is not
thrown, the driver will display the result. Unfortunately, not all possible errors are
detected. For example, an adjacent pair of operators or operands is not detected. To
detect this error, we would need to add a Boolean flag whose value indicates
whether the last token was an operand. If the flag is true, the next token must be
an operator; if the flag is false, the next token must be an operand. This modifica-
tion is left as an exercise.

L I S T I N G 5 . 1 3
Main Function to Test Infix_To_Postfix

/** Program to test the infix to postfix converter. */

#include "Infix_To_Postfix.h"
#include <iostream>
#include <string>
using namespace std;

int main() {
Infix_To_Postfix infix_to_postfix;
cout <<
"Enter expressions to be converted, or press Return when done\n";

string expression;
while (getline(cin, expression)) {
if (expression == "") break;
try {
string result = infix_to_postfix.convert(expression);
cout << "== " << result << endl;

} catch (Syntax_Error& ex) {
cout << "Syntax Error: " << ex.what() << endl;

}
cout << "Enter next expression: ";

}
}

CASE STUDY Part 2: Converting Expressions with Parentheses

Problem The ability to convert expressions with parentheses is an important (and necessary)
addition. Parentheses are used to separate an expression into subexpressions.

Analysis We can think of an opening parenthesis on an operator stack as a boundary or fence
between operators. Whenever we encounter an opening parenthesis, we want to
push it onto the stack. A closing parenthesis is the terminator symbol for a subex-
pression. Whenever we encounter a closing parenthesis, we want to pop off all oper-
ators on the stack until we pop the matching opening parenthesis. Neither opening
nor closing parentheses should appear in the postfix expression. Because operators
scanned after the opening parenthesis should be evaluated before the opening paren-
thesis, the precedence of the opening parenthesis must be smaller than any other

348 Chapter 5 Stacks

operator. We also give a closing parenthesis the lowest precedence. This ensures that
a "(" can only be popped by a ")".

Design We should modify function process_operator to push each opening parenthesis
onto the stack as soon as it is scanned. Therefore, the function should begin with
the following new condition:

if (operator_stack.empty() || (op == '(')) {
if (op == ')')
throw Syntax_Error("Unmatched close parenthesis");

operator_stack.push(op);

Note, if the stack is empty and the operator is a close parenthesis, we indicate a syn-
tax error by throwing the Syntax_Error exception.

When a closing parenthesis is scanned, we want to pop all operators up to and
including the matching opening parenthesis, inserting all operators popped (except
for the opening parenthesis) in the postfix string. This will happen automatically in
the following while statement if the precedence of the closing parenthesis is smaller
than that of any other operator except for the opening parenthesis.

while (!operator_stack.empty()
&& (operator_stack.top() != '(')
&& (precedence(op) <= precedence(operator_stack.top()))) {

postfix += operator_stack.top();
postfix += " ";
operator_stack.pop();

}

A closing parenthesis is considered processed when the corresponding opening
parenthesis is popped from the stack, and the closing parenthesis is not placed on
the stack. The following if statement executes after the while loop exit:

if (op == ')') {
if (!operator_stack.empty()
&& (operator_stack.top() == '(')) {
operator_stack.pop();

} else {
throw Syntax_Error("Unmatched close parentheses");

}
}

Implementation Listing 5.14 shows file Infix_To_Postfix_Parens.cpp, that contains modified ver-
sions of the convert and process_operator functions. The changes are shown in
color. We have omitted parts that do not change.

L I S T I N G 5 . 1 4
Infix_To_Postfix_Parens.cpp

/** Implementation of Infix_To_Postfix that processes parentheses.*/

#include "Infix_To_Postfix.h"
#include <sstream>
#include <cctype>
using std::string;
using std::istringstream;

5.4 Additional Stack Applications 349

const string Infix_To_Postfix::OPERATORS = "+-*/()";
const int Infix_To_Postfix::PRECEDENCE[] = { 1, 1, 2, 2, -1, -1 };

/** Extract and process each token in infix and return the
equivalent postfix string.
@param expression The infix expression
@return The equivalent postfix expression
@throws Syntax_Error

*/
string Infix_To_Postfix::convert(const string& expression) {
postfix = "";
while (!operator_stack.empty())
operator_stack.pop();

istringstream infix_tokens(expression);
string next_token;
while(infix_tokens >> next_token) {
if (isalnum(next_token[0])) {
postfix += next_token;
postfix += " ";

} else if (is_operator(next_token[0])) {
process_operator(next_token[0]);

} else {
throw Syntax_Error("Unexpected Character Encountered");

}
} // End while
// Pop any remaining operators and append them to postfix
while (!operator_stack.empty()) {
char op = operator_stack.top();
operator_stack.pop();
if (op == '(') {
throw Syntax_Error("Unmatched open parenthesis");

}
postfix += op;
postfix += " ";

}
return postfix;

}

/** Function to process operators.
@param op The operator
@throws Syntax_Error

*/
void Infix_To_Postfix::process_operator(char op) {
if (operator_stack.empty() || (op == '(')) {
if (op == ')')
throw Syntax_Error("Unmatched close parenthesis");

operator_stack.push(op);
} else {
if (precedence(op) > precedence(operator_stack.top())) {
operator_stack.push(op);

} else {
// Pop all stacked operators with equal
// or higher precedence than op.
while (!operator_stack.empty()

&& (operator_stack.top() != '(')
&& (precedence(op) <= precedence(operator_stack.top()))) {

postfix += operator_stack.top();
postfix += " ";
operator_stack.pop();

}

350 Chapter 5 Stacks

// assert: Operator stack is empty or
// top of stack is '(' or current
// operator precedence > top of stack operator
// precedence;
if (op == ')') {
if (!operator_stack.empty()

&& (operator_stack.top() == '(')) {
operator_stack.pop();

} else {
throw Syntax_Error("Unmatched close parentheses");

}
}
else {
operator_stack.push(op);

}
}

}
}

Testing You can use the classes developed for the prior case studies to evaluate infix expres-
sions with integer operands and nested parentheses. Your driver program will
need to create instances of both classes and apply function convert to the
Infix_To_Postfix_Parens object. The argument for convert will be the infix expres-
sion. The result will be its postfix form. Next, the driver will apply function eval of
the Postfix_Evaluator object. The argument for eval will be the postfix expression
returned by convert. Make sure there is a space before and after each parenthesis.

E X E R C I S E S F O R S E C T I O N 5 . 4
S E L F - C H E C K

1. Trace the evaluation of the following expression using class Postfix_Evaluator.
Show the operand stack each time it is modified.
10 2 * 5 / 6 2 5 * + –

2. Trace the conversion of the following expressions to postfix using class
Infix_To_Postfix or Infix_To_Postfix_Parens. Show the operator stack each
time it is modified.
y – 7 * 35 + 4 / 6 - 10
(x + 15) * (3 * (4 – (5 + 7 / 2)))

P R O G R A M M I N G

1. Modify class Infix_To_Postfix to handle the exponentiation operator, indicated
by the symbol ^. The first operand is raised to the power indicated by the second
operand. Assume that a sequence of ^ operators will not occur and that prece-
dence('^') is greater than precedence('*').

2. Discuss how you would modify the infix-to-postfix convert function to detect a
sequence of two operators or two operands.

C h a p t e r R e v i e w

◆ A stack is a last-in, first-out data structure (LIFO). This means that the last item
added to a stack is the first one removed.

◆ A stack is a simple but powerful data structure. It has only four operators: empty,
top, pop, and push.

◆ Stacks are useful when we want to process information in the reverse of the order
that it is encountered. For this reason, a stack was used to implement the balanced
parenthesis checker and the palindrome finder.

◆ std::stack is implemented as an adapter of any sequential container class. The
stack object contains a container object. The functions push and pop are dele-
gated to the push_back and pop_back functions of the container, and the function
top is delegated to the back function. We showed a vector as the default container,
but the C++ standard library uses the deque. The deque is a data structure that
combines the features of both a stack and a queue. We discuss the deque and its
possible implementations in the next chapter.

◆ We showed an alternative stack implementation using a linked list as a container.

◆ Stacks can be applied in algorithms for evaluating arithmetic expressions. We
showed how to evaluate postfix expressions and how to translate infix expres-
sions with and without parentheses to postfix.

Quick-Check Exercises
1. A stack is a ______-in, ______-out data structure.
2. Draw this stack s using the implementation in file Stack.tc. How would you reference

the character at the top of the stack?

3. What is the value of s.empty() for the stack shown in Question 2?
4. What is returned by s.pop() for the stack shown in Question 2?
5. Draw the stack s for Question 2 using the implementation in file Linked_Stack.tc.

How would you reference the character at the top of the stack?
6. What would be the postfix form of the following expression?

x + y - 24 * zone – ace / 25 + c1
Show the contents of the operator stack just before each operator is processed and just
after all tokens are scanned using function Infix_To_Postfix::convert.

7. Answer Question 7 for the following expression
(x + y - 24) * (zone - ace / (25 + c1))

8. The value of the expression 20 35 - 5 / 10 7 * + is ______. Show the contents of
the operand stack just before each operator is processed and just after all tokens are
scanned.

$
*
&

Chapter 5 Review 351

Answers to Quick-Check Exercises
1. A stack is a last-in, first-out data structure.
2. Each character in the following array is type char. Use the_data* to reference the char-

acter $ at the top of the stack.

3. Function empty returns false.
4. pop returns a reference to the char object '$'.
5. Use top_of_stack–>data to reference the character $ at the top of the stack.

6. Infix: x + y - 24 * zone - ace / 25 + c1
Postfix: x y + 24 zone * - ace 25 / - c1 +

Operator stack before first + : | Empty stack (vertical bar is bottom of stack)
Operator stack before first - : | +
Operator stack before first * : | –
Operator stack before second – : | –, *
Operator stack before first / : | –
Operator stack before second + : | –, /
Operator stack after all tokens scanned: | +

7. Infix: (x + y - 24) * (zone – ace / (25 + c1))
Postfix: x y + 24 - zone ace 25 c1 + / – *

Operator stack before first (: | Empty stack (vertical bar is bottom of stack)
Operator stack before first + : | (
Operator stack before first – : | (, +
Operator stack before first) : | (, –
Operator stack before first * : | Empty stack
Operator stack before second (: | *
Operator stack before second - : | *, (
Operator stack before second / : | *, (, –
Operator stack before third (: | *, (, –, /
Operator stack before second + : | *, (, –, /, (
Operator stack before second) : | *, (, –, /, (, +
Operator stack before third) : | *, (, –, /
Operator stack after all tokens scanned: | *

8. 20 35 – 5 / 10 7 * + is 67 (–3 + 70)
Operand stack just before - : | 20, 35
Operand stack just before / : | –15, 5
Operand stack just before * : | –3, 10, 7
Operand stack just before + : | –3, 70
Operand stack after all tokens : | 67

 top_of_stack =

stack<char> s
Node Node Node

next =
data = '$'

next =
data = '*'

next = NULL
data = '&'

 Item_Type* the_data =

stack<char> s '&'[0]

[1]

[2]

'*'

'$'

352 Chapter 5 Stacks

Review Questions
1. Show the effect of each of the following operations on stack s. Assume that y (type

char) contains the character '&'. What are the final values of x and success and the
contents of the stack s?
stack<char> s;
char x;
s.push('+');
if (!s.empty()) {
x = s.top();
s.pop();
success = true;

} else {
success = false;

}
if (!s.empty()) {
x = s.top();
s.pop();
success = true;

} else {
success = false;

}
s.push('(');
s.push(y);
if (!s.empty()) {
x = s.top();
s.pop();
success = true;

} else {
success = false;

}

2. Write a copy constructor and assignment operator for file Stack.tc.
3. Write a to_string function for file Linked_Stack.tc.
4. Write a copy constructor and assignment operator for file Linked_Stack.tc.
5. Write an infix expression that would convert to the postfix expression in Quick-Check

Question 8.
6. Write a constructor for file Linked_Stack.tc that loads the stack from an iterator

range. The last element in the range should be at the top of the stack.
7. Write a client that removes all negative numbers from a stack of int objects. If the origi-

nal stack contained the integers 30, –15, 20, –25 (top of stack), the new stack should
contain the integers 30, 20.

8. Write a function next_to_top that allows you to retrieve the element just below the one
at the top of the stack without removing it. Write this function for both stack implemen-
tations. It should throw a std::out_of_range exception if the stack is empty or has
only one element.

Programming Projects
1. Add a function is_palindrome_letters_only to the Palindrome_Finder class that

bases its findings only on the letters in a string (ignoring spaces and other characters
that are not letters).

Chapter 5 Review 353

2. We showed how to implement a stack using a vector, which has an array as its underly-
ing data structure. Assume that the STL container classes are not available and write a
file Array_Stack.tc that implements a stack using an array for storage.

3. Develop an Expression Manager that can do the following operations:
Balanced Symbols Check

• Read a mathematical expression from the user.
• Check and report whether the expression is balanced or not.
• {, }, (,), [,] are the only symbols considered for the check. All other characters can

be ignored.
Infix to Postfix Conversion

• Read an infix expression from the user.
• Perform the Balanced Parentheses Check on the expression read.
• If the expression fails the Balanced Parentheses Check, report a message to the user

that the expression is invalid.
• If the expression passes the Balanced Parentheses Check, convert the infix expression

into a postfix expression and display it to the user.
• Operators to be considered are +, –, *, /, %.
Postfix to Infix Conversion

• Read a postfix expression from the user.
• Convert the postfix expression into an infix expression and display it to the user.
• Display an appropriate message if the postfix expression is not valid.
• Operators to be considered are +, –, *, /, %.
Evaluating a Postfix Expression

• Read the postfix expression from the user.
• Evaluate the postfix expression and display the result.
• Display an appropriate message if the postfix expression is not valid.
• Operators to be considered are +, –, *, /, %.
• Operands should be only integers.
Implementation

• Design a menu that requests user input to select from all the aforementioned
operations.

4. Write a client program that uses the Stack abstract data type to simulate a session with a
bank teller. Unlike most banks, this one has decided that the last customer to arrive will
always be the first to be served. Create classes that represent information about a bank
customer and a transaction. For each customer you need to store a name, current bal-
ance, and a reference to the transaction. For each transaction, you need to store the
transaction type (deposit or withdrawal) and the amount of the transaction. After every
five customers are processed, display the size of the stack and the name of the customer
who will be served next.

5. Write a program to handle the flow of widgets into and out of a warehouse. The ware-
house will have numerous deliveries of new widgets and orders for widgets. The widgets
in a filled order are billed at a profit of 50 percent over their cost. Each delivery of new
widgets may have a different cost associated with it. The accountants for the firm have
instituted a last-in, first-out system for filling orders. This means that the newest widgets
are the first ones sent out to fill an order. Also, the most recent orders are filled first.
This function of inventory can be represented using two stacks: orders-to-be-filled and
widgets-on-hand. When a delivery of new widgets is received, any unfilled orders (on the
orders-to-be-filled stack) are processed and filled. After all orders are filled, if there are

354 Chapter 5 Stacks

widgets remaining in the new delivery, a new element is pushed onto the widgets-on-
hand stack. When an order for new widgets is received, one or more objects are popped
from the widgets-on-hand stack until the order has been filled. If the order is completely
filled and there are widgets left over in the last object popped, a modified object with
the quantity updated is pushed onto the widgets-on-hand stack. If the order is not com-
pletely filled, the order is pushed onto the orders-to-be-filled stack with an updated
quantity of widgets to be sent out later. If an order is completely filled, it is not pushed
onto the stack.

Write a class with functions to process the shipments received and to process orders.
After an order is filled, display the quantity sent out and the total cost for all widgets in
the order. Also indicate whether there are any widgets remaining to be sent out at a later
time. After a delivery is processed, display information about each order that was filled
with this delivery and indicate how many widgets, if any, were stored in the object
pushed onto the widgets-on-hand stack.

6. You can combine the algorithms for converting between infix to postfix and for evaluat-
ing postfix to evaluate an infix expression directly. To do so you need two stacks: one to
contain operators and the other to contain operands. When an operand is encountered,
it is pushed onto the operand stack. When an operator is encountered, it is processed as
described in the infix-to-postfix algorithm. When an operator is popped off the operator
stack, it is processed as described in the postfix evaluation algorithm: The top two
operands are popped off the operand stack, the operation is performed, and the result is
pushed back onto the operand stack. Write a program to evaluate infix expressions
directly using this combined algorithm.

7. Write a client program that uses the Stack abstract data type to compile a simple arith-
metic expression without parentheses. For example, the expression
a + b * c - d

should be compiled according to the following table

The table shows the order in which the operations are performed (*, +, –) and operands
for each operator. The result column gives the name of an identifier (working backward
from z) chosen to hold each result. Assume that the operands are the letters a through m
and the operators are (+, –, *, /). Your program should read each character and process
it as follows: If the character is blank, ignore it. If the character is neither blank nor an
operand nor an operator, display an error message and terminate the program. If it is an
operand, push it onto the operand stack. If it is an operator, compare its precedence to
that of the operator on top of the operator stack. If the current operator has higher
precedence than the one currently on top of the stack (or if the stack is empty), it should
be pushed onto the operator stack. If the current operator has the same or lower prece-
dence, the operator on top of the operator stack must be evaluated next. This is done by
popping that operator off the operator stack along with a pair of operands from the
operand stack and writing a new line in the output table. The character selected to hold
the result should then be pushed onto the operand stack. Next, the current operator
should be compared to the new top of the operator stack. Continue to generate output

Operator Operand1 Operand2 Result

* b c z

+ a z y

- y d x

Chapter 5 Review 355

lines until the top of the operator stack has lower precedence than the current operator
or until it is empty. At this point, push the current operator onto the top of the stack
and examine the next character in the data string. When the end of the string is reached,
pop any remaining operator along with its operand pair just described. Remember to
push the result character onto the operand stack after each table line is generated.

356 Chapter 5 Stacks

C h a p t e r O b j e c t i v e s

◆ To learn how to represent a waiting line (queue) and how to use the functions in the
Queue ADT for insertion (push), for removal (pop), and for accessing the element at the
front (front)

◆ To understand how to implement the Queue ADT using a single-linked list, a circular
array, and a double-linked list

◆ To understand how to simulate the operation of a physical system that has one or
more waiting lines using queues and random number generators

◆ To introduce the standard library deque class

357

Queues and Deques

C h a p t e r 6

In this chapter we study an abstract data type, the queue, that is widely used, like
the stack, but differs from it in one important way. A stack is a LIFO (last-in,
first-out) list, because the last element pushed onto a stack will be the first ele-

ment popped off. A queue, on the other hand, is a FIFO (first-in, first-out) list,
because the first element inserted in the queue will be the first element removed.

You will learn how to use a queue to store items (for example, customers) that
will be accessed on a first-come, first-served basis. We will also show you how to
implement queues. You will also learn how to use simulation to estimate the amount
of time customers will spend waiting in a queue.

You will also learn about an abstract data type, the deque, that combines the
features of a stack and a queue. We will also show you how to implement a deque.

6.1 The Queue Abstract Data Type

The easiest way to visualize a queue is to think of a line of customers waiting for
service, as shown in Figure 6.1. Usually, the next person to be served is the one who
has been waiting the longest, and latecomers are added to the end of the line. The
Queue ADT gets its name from the fact that such a waiting line is called a queue in
English-speaking countries other than the United States.

A Queue of Customers
A queue of three customers waiting to buy concert tickets is shown in Figure 6.2. The
name of the customer who has been waiting the longest is Thome; the name of the most
recent arrival is Jones. Customer Thome will be the first customer removed from the
queue (and able to buy tickets) when a ticket agent becomes available, and customer
Abreu will then become the first one in the queue. Any new customers will be inserted
in the queue after customer Jones. We will revisit this queue in the next section.

358 Chapter 6 Queues and Deques

Q u e u e s

6.1 The Queue Abstract Data Type
6.2 Maintaining a Queue of Customers

Case Study: Maintaining a Queue
6.3 Implementing the Queue ADT
6.4 The Deque
6.5 Simulating Waiting Lines Using Queues

Case Study: Simulate a Strategy for Serving Airline Passengers

F I G U R E 6 . 1
Customers Waiting
in a Line or Queue

F I G U R E 6 . 2
A Queue of Customers

Ticket agent

Thome

Abreu

Jones

A Print Queue
In computer science, queues are used in operating systems to keep track of tasks
waiting for a scarce resource and to ensure that the tasks are carried out in the order
in which they were generated. One example is a print queue. While surfing the Web,
you may select several pages to be printed in a few seconds. Because a printer is a
relatively slow device (several seconds per page), you will often select new pages to
print faster than they can be printed. Rather than require you to wait until the cur-
rent page is finished before you can select a new one, the operating system stores
documents to be printed in a print queue (see Figure 6.3). Because they are stored
in a queue, the pages will be printed in the same order as they were selected (first-
in, first-out). The document first inserted in the queue will be the first one printed.

The Unsuitability of a “Print Stack”
Suppose your operating system used a stack (last-in, first-out) instead of a queue to
store documents waiting to print. Then the most recently selected Web page would
be the next page to print. This may not matter if only one person is using the printer.
However, if the printer is connected to a computer network, this would be a big
problem. Unless the print queue was empty when you selected a page to print (and
the page printed immediately), that page would not print until all pages selected
after it (by yourself or any other person on the network) were printed. If you were
waiting by the printer for your page to print before going to your next class, you
would have no way of knowing how long your wait might be. You would also be
very unhappy if people who started after you had their documents printed before
yours. So a print queue is a much more sensible alternative than a print stack.

Specification of the Queue ADT
Because only the front element of a queue is visible, the operations performed by a
queue are few in number. We need to be able to retrieve the front element (function
front), remove the front element (function pop), push a new element onto the queue
(function push), and test for an empty stack (function empty). Table 6.1 shows a
specification for the Queue ADT that specifies the queue operators. These are all
defined in the header file for the STL container queue, <queue>.

6.1 The Queue Abstract Data Type 359

F I G U R E 6 . 3
A Print Queue in the
Windows Operating
System

TA B L E 6 . 1
Specification of Queue ADT

360 Chapter 6 Queues and Deques

Function Behavior

bool empty() const Returns true if the queue is empty; otherwise returns false.

Item_Type& front(); Returns the object at the front of the queue without removing it.
const Item_Type& front() const

void pop() Removes the object at the front of the queue.

void push(const Item_Type&) Pushes an item onto the rear of the queue.

size_t size() const Returns the number of items in the queue.

Listing 6.1 shows the class definition for the class KW::queue. This class definition
implements the interface defined by Table 6.1 and is very similar to that defined by
the C++ standard library. The colored lines show an implementation that uses the
standard list class as a container. We will discuss this implementation and other pos-
sible implementations in Section 6.3.

L I S T I N G 6 . 1
queue.h

#ifndef QUEUE_H_
#define QUEUE_H_

// Insert necessary include directives here.
#include <list>

namespace KW {

/** A queue is a data structure that provides first-in first-out
access to the items that are stored in it. Only the least recently
inserted item is accessible.

*/
template<typename Item_Type>
class queue {

public:

// Constructor and member functions
/** Constructs an empty queue. */
queue();

/** Pushes an item onto the back of the queue.
@param item The item to be inserted

*/
void push(const Item_Type& item);

/** Returns a reference to the object at the front of the queue
without removing it.
@return A reference to the object at the front of the queue

*/
Item_Type& front();

/** Returns a const reference to the object at the
front of the queue without removing it.
@return A const reference to the object at the front of the queue

*/
const Item_Type& front() const;

/** Removes the front item from the queue. */
void pop();

/** Determines whether the queue is empty. */
bool empty() const;

/** Returns the number of items in the queue */
size_t size() const;

private:
// Insert implementation-specific data fields
std::list<Item_Type> container;

}; // End class queue

// Insert member function implementation here
#include "List_Queue.tc"

} // End namespace KW
#endif

E X A M P L E 6 . 1 The queue names contains five strings as shown in Figure 6.4(a). The name
"Jonathan" was placed in the queue before the other four names; "Rich" was the last
element placed in the queue.

For queue names in Figure 6.4(a), the value of names.empty() is false. The statement
string first = names.front();

stores "Jonathan" in first without changing names. The statement
names.pop();

removes "Jonathan" from names. The queue names now contains four elements and
is shown in Figure 6.4(b). The statement

names.push("Eliana");

adds "Eliana" to the end of the queue; the queue names now contains five elements
and is shown in Figure 6.4(c).

F I G U R E 6 . 4
Queue names

Jonathan
Dustin
Robin
Debbie
Rich

Dustin
Robin
Debbie
Rich
Eliana

Dustin
Robin
Debbie
Rich

 (a) (b) (c)

6.1 The Queue Abstract Data Type 361

362 Chapter 6 Queues and Deques

E X E R C I S E S F O R S E C T I O N 6 . 1

S E L F - C H E C K

1. Draw the queue in Figure 6.2 as it will appear after the insertion of customer
Harris and the removal of one customer from the queue. Which customer is
removed? How many customers are left?

2. Assume that my_queue is an instance of a class that implements queue<string>
and my_queue is an empty queue. Explain the effect of each of the following
operations.
my_queue.push("Hello");
my_queue.push("Bye");
cout << my_queue.front();
my_queue.pop();
my_queue.push("Welcome");
if (!my_queue.empty()) {
cout << my_queue.front();
my_queue.pop();
cout << ", new size is " << my_queue.size() << endl;
cout << "Item in front is " << my_queue.front() << endl;

}

6.2 Maintaining a Queue of Customers

In this section we present an application that maintains a queue of strings repre-
senting the names of customers waiting for service. Our goal is just to maintain the
list of names and ensure that customers are inserted and removed properly.

CASE STUDY Maintaining a Queue

Problem Write a menu-driven program that maintains a list of customers waiting for service.
This should be a first-in, first out list. The program user should be able to insert a
new customer in the line, display the customer who is next in line, remove the cus-
tomer who is next in line, and display the length of the line.

Analysis As discussed earlier, a queue is a good data structure for storing a list of customers
waiting for service, because they would expect to be served in the order in which
they arrived. We can display the menu and then perform the requested operation by
calling the appropriate queue function to update the customer list. We will input and
output via cin and cout to display the menu, enter new customer names, and dis-
play results.

6.2 Maintaining a Queue of Customers 363

Problem Inputs
The operation to be performed

The name of a customer

Problem Outputs
The effect of each operation

Design We will write a program Maintain_Queue to store the queue and control its process-
ing. Program Maintain_Queue has a queue<string> variable customers. The main
function displays a menu of choices and processes the user selection. The algorithm
for function main follows.

Algorithm for main
1. while the user is not finished
2. Display the menu and get the operation selected.
3. Perform the operation selected.

We will be able to perform each selected operation by delegating to one of the func-
tions in class queue.

Implementation Listing 6.2 shows the program.

L I S T I N G 6 . 2
Maintain_Queue.cpp

/** Program to maintain a list of customers. */

#include <queue>
#include <string>
#include <iostream>
using namespace std;

/** Performs the operations selected on queue customers.
pre: customers has been created.
post: customers is modified based on user selections.

*/
int main()
{
queue<string> customers;
string name;
int choice_num = 0;
string choices[] = {
"push", "front", "pop", "size", "quit"};

const int NUM_CHOICES = 5;

// Perform all operations selected by user.
while (choice_num < NUM_CHOICES - 1) {
// Select the next operation.
cout << "Select an operation on customer queue\n";
for (int i = 0; i < NUM_CHOICES; i++) {
cout << i << ": " << choices[i] << endl;

}

364 Chapter 6 Queues and Deques

cin >> choice_num;
switch (choice_num) {
case 0:
cout << "Enter new customer name\n";
cin >> name;
customers.push(name);
break;

case 1:
cout << "Customer " << customers.front()

<< " is next in line\n";
break;

case 2:
cout << "Customer " << customers.front()

<< " removed from line\n";
customers.pop();
break;

case 3:
cout << "Size of line is " << customers.size() << endl;
break;

case 4:
cout << "Leaving customer queue.\n"

<< "Number of customers in queue is " << customers.size()
<< endl;

break;
default:
cout << "Invalid selection\n";
break;

}
} // End while.
return 0;

}

In function main (Listing 6.2), the statements
cout << "Select an operation on customer queue\n";
for (int i = 0; i < NUM_CHOICES; i++) {
cout << i << ": " << choices[i] << endl;

}

display a menu of choices. The choice number is read into the variable choice_num.

After the selection is read into choice_num, the switch statement calls a queue func-
tion to perform the selected operation. For example, if the user clicks the push but-
ton, the statements

cout << "Enter new customer name\n";
cin >> name;
customers.push(name);

read the customer name and insert it into the queue. The implementation of each
case in the switch statement is rather straightforward.

Testing You can use program Maintain_Queue to test each of the different queue implemen-
tations discussed in the next section. You should verify that all customers are stored
and retrieved in first-in, first-out order. Thoroughly test the queue by selecting dif-
ferent sequences of queue operations.

6.3 Implementing the Queue ADT 365

E X E R C I S E S F O R S E C T I O N 6 . 2

S E L F - C H E C K

1. Write an algorithm to display all the elements in a queue using just the queue
operations. How would your algorithm change the queue?

2. Trace the following fragment for a stack<string> s and an empty queue<string> q.
string item;
while (!s.empty()) {
item = s.top();
s.pop()
q.push(item);

}
while (!q.empty()) {
item = q.front();
q.pop();
s.push(item);

}

a. What is stored in stack s after the first loop executes? What is stored in queue
q after the first loop executes?

b. What is stored in stack s after the second loop executes? What is stored in
queue q after the second loop executes?

P R O G R A M M I N G

1. Add an option to Maintain_Queue to display all of the entries in the queue.

6.3 Implementing the Queue ADT

This section discusses how to implement the Queue ADT. You may have recognized
that a queue is similar to a list in that you can insert an item at one end
(list::push_back) and remove it from the other (list::pop_front). In fact, the stan-
dard library defines the queue as a template class that takes any of the sequential
containers as a template parameter. However, the only sequential container that we
have studied so far that provides both a push_back and pop_front function is the
list. The standard library also defines an additional sequential container, called the
deque, which does provide both push_back and pop_front functions. We will discuss
the deque later in this chapter. In this section we discuss three approaches to imple-
menting a queue: using a double-linked list (i.e., the standard list class), a single-
linked list, and an array. We begin with the standard list class.

Using std::list as a Container for a Queue
Listing 6.3 (file List_Queue.tc) shows an implementation of class queue (Listing 6.1)
that is very similar to that given by the C++ standard library. In this implementa-
tion, the data member container is type std::list<Item_Type>. As discussed earlier,

file List_Queue.tc would be included after the definition of class queue, at the end
of Listing 6.1.

Like the stack class (see Chapter 5), the queue is said to be an adapter class because
it adapts the functions available in another class to the interface its clients expect by
giving different names to essentially the same operations For example, if a list is
used as the container object, queue::push would correspond to list::push_back.
Similarly, queue::front would correspond to list::front, and so on. This is
another example of delegation.

L I S T I N G 6 . 3
List_Queue.tc

#ifndef LIST_QUEUE_TC_
#define LIST_QUEUE_TC_

/** Constructs an empty queue. */
template<typename Item_Type>
queue<Item_Type>::queue() {}

/** Pushes an item onto the back of the queue.
@param item The item to be inserted

*/
template<typename Item_Type>
void queue<Item_Type>::push(const Item_Type& item) {
container.push_back(item);

}

/** Returns a reference to the object at the front of the queue
without removing it.
@return A reference to the object at the front of the queue

*/
template<typename Item_Type>
Item_Type& queue<Item_Type>::front() {
return container.front();

}

/** Returns a const reference to the object at the
front of the queue without removing it.
@return A const reference to the object at the front of the queue

*/
template<typename Item_Type>
const Item_Type& queue<Item_Type>::front() const {
return container.front();

}

/** Removes the front item from the queue. */
template<typename Item_Type>
void queue<Item_Type>::pop() {
container.pop_front();

}

/** Determines whether the queue is empty. */
template<typename Item_Type>
bool queue<Item_Type>::empty() const {
return container.empty();

}

366 Chapter 6 Queues and Deques

/** Returns the number of items in the queue. */
template<typename Item_Type>
size_t queue<Item_Type>::size() const {
return container.size();

}

#endif

Using a Single-Linked List to Implement the Queue ADT
We can implement a queue using our own single-linked list like the one shown in
Figure 6.5. File Linked_Queue.tc defines a queue class that contains a collection of
Node objects (see Figure 4.15). Recall that inner class Node has data fields data (type
Item_Type) and next (type Node*).

To use this implementation we must include the file Node.h containing the definition
of a node (see Chapter 4) in the definition file (queue.h) for class queue shown in
Listing 6.1. We must also include the header file <cstddef> which defines NULL. We
will place the include directive for <cstddef> at the beginning of file queue.h; we will
place the include directive for "Node.h" in the private part of class KW::queue, just
before the data field declarations.

// Insert necessary include directives here
#include <cstddef>

We must also replace the statements at the end of file queue.h with the following:
private:
// Insert definition of Node here
#include "Node.h"

// Data Fields
Node* front_of_queue;
Node* back_of_queue;

}; // End class queue

// Insert implementation of member functions here
#include "Linked_Queue.tc"

} // End namespace KW
#endif

Insertions are at the rear of a queue, and removals are from the front. We need a
reference to the last list node so that insertions can be performed in O(1) time; oth-
erwise, we would have to start at the list head and traverse all the way down the list

6.3 Implementing the Queue ADT 367

F I G U R E 6 . 5
A Queue as a Single-Linked List

Nodequeue

next =
data = "Thome"

3

front_of_queue =
back_of_queue =

num_items =

Node

next =
data = "Abreu"

Node

next = NULL
data = "Jones"

to do an insertion. There is a reference variable front_of_queue to the first list node
(the list head) and a reference variable back_of_queue to the last list node. There is
also a data field num_items.

The number of elements in the queue is changed by functions push and pop, so
num_items must be incremented by one in push and decremented by one in pop. The
value of num_items is tested in empty to determine the status of the queue. The func-
tion size simply returns the value of data field num_items.

Listing 6.4 shows file Linked_Queue.tc, which implements the operators for the
Queue ADT (queue.h) shown in Listing 6.1. Function push treats insertion into an
empty queue as a special case, because both front_of_queue and back_of_queue
should both reference the new node after the insertion.

back_of_queue = new Node(item, NULL);
front_of_queue = back_of_queue;

If we insert into a queue that is not empty, the new node must be linked to the old
back_of_queue, but front_of_queue is unchanged.

back_of_queue->next = new Node(item, NULL);
back_of_queue = back_of_queue->next;

If the queue is empty, function front will get a run-time error when it attempts to
dereference the NULL pointer. Otherwise, it returns the element at the front of the
queue:

return front_of_queue->data;

Function pop disconnects the node at the front of a nonempty queue and decrements
num_items. Note that we also return the removed Node to the free storage pool using
the delete statement.

Node* old_front = front_of_queue;
front_of_queue = front_of_queue->next;
if (front_of_queue == NULL) {
back_of_queue = NULL;

}
delete old_front;
num_items--;

L I S T I N G 6 . 4
Linked_Queue.tc

#ifndef LINKED_QUEUE_TC_
#define LINKED_QUEUE_TC_

/** Constructs an empty queue. */
template<typename Item_Type>
queue<Item_Type>::queue() : front_of_queue(NULL), back_of_queue(NULL),
num_items(0) {}

/** Pushes an item onto the back of the queue.
@param item The item to be inserted

368 Chapter 6 Queues and Deques

*/
template<typename Item_Type>
void queue<Item_Type>::push(const Item_Type& item) {
if (front_of_queue == NULL) {
back_of_queue = new Node(item, NULL);
front_of_queue = back_of_queue;

} else {
back_of_queue->next = new Node(item, NULL);
back_of_queue = back_of_queue->next;

}
num_items++;

}

/** Returns a reference to the object at the front of the queue
without removing it.
@return A reference to the object at the front of the queue

*/
template<typename Item_Type>
Item_Type& queue<Item_Type>::front() {
return front_of_queue->data;

}

/** Returns a const reference to the object at the
front of the queue without removing it.
@return A const reference to the object at the front of the queue

*/
template<typename Item_Type>
const Item_Type& queue<Item_Type>::front() const {
return front_of_queue->data;

}

/** Removes the front item from the queue. */
template<typename Item_Type>
void queue<Item_Type>::pop() {
Node* old_front = front_of_queue;
front_of_queue = front_of_queue->next;
if (front_of_queue == NULL) {
back_of_queue = NULL;

}
delete old_front;
num_items--;

}

/** Determines whether the queue is empty. */
template<typename Item_Type>
bool queue<Item_Type>::empty() const {
return front_of_queue == NULL;

}

/** Determines the size of the queue. */
template<typename Item_Type>
size_t queue<Item_Type>::size() const {
return num_items;

}

#endif

6.3 Implementing the Queue ADT 369

A complete definition and implementation of the queue class would include a copy
constructor, assignment operator, swap function, and destructor as required by the
“rule of three.” However, our goal is to illustrate how to code the basic queue oper-
ators in Table 6.1, not to reinvent the wheel and provide an industrial-strength
implementation, because one already exists (std::queue). Programming Project 1
asks you to provide the operators required by the “rule of three.” Note that for the
List_Queue.tc implementation, the default implementation of these functions is suf-
ficient, because they are implemented by the std::list class; however, for the
Linked_Queue.tc and Array_Queue.tc (discussed next), they are necessary because
these implementations dynamically allocate storage.

Using a Circular Array for Storage in a Queue
Although the time efficiency of using a single- or double-linked list to implement the
Queue ADT is acceptable, there is some space inefficiency. Each node of a single-
linked list contains a pointer to its successor, and each node of a double-linked list
contains pointers to its predecessor and successor. These additional pointers will
increase the storage space required.

An alternative is to use an array. If we use an array, we can do an insertion at the
rear of the array in O(1) time. However, a removal from the front will be an O(n)
process if we shift all the elements that follow the first one over to fill the space
vacated. We next discuss how to avoid this inefficiency.

Overview of the Design
File Array_Queue.tc (see Listing 6.5) defines a queue class that uses an object with
four size_t data members (capacity, num_items, front_index, rear_index), and a
pointer data member, the_data, which will point to a dynamically allocated array
that provides storage for the queue elements. To use this implementation we must
include the header file <algorithm>, which defines the swap template function, at the
beginning of file queue.h; we then include the following in the data declarations.

// Data fields
/** The initial size of the data array */
static const size_t DEFAULT_CAPACITY = 10;
/** The current capacity of the data array */
size_t capacity;
/** The number of items in the queue */
size_t num_items;
/** The index of the front of the queue */
size_t front_index;
/** The index of the rear of the queue */
size_t rear_index;
/** Pointer to the array containing the data */
Item_Type* the_data;

The size_t fields front_index and rear_index are indices to the queue elements at
the front and rear of the queue, respectively. The size_t field num_items keeps track
of the actual number of items in the queue and allows us to determine easily whether
the queue is empty (num_items is 0) or full (num_items is capacity).

370 Chapter 6 Queues and Deques

It makes sense to store the first queue item in element 0, the second queue item in
element 1, and so on. So we should set front_index to 0 and rear_index to –1 when
we create an initially empty queue. Each time we do an insertion, we should incre-
ment num_items and rear_index by 1 so that front_index and rear_index will both
be 0 if a queue has one element. Figure 6.6 shows an instance of a queue that is filled
to its capacity (size == capacity). The queue contains the characters &, *, +, /, –,
inserted in that order.

Because the queue in Figure 6.6 is filled to capacity, we cannot insert a new charac-
ter without allocating more storage. However, we can remove a queue element by
decrementing size and incrementing front to 1, thereby removing the_data[0] (the
character &) from the queue. Figure 6.7 shows the queue after removal of the first
element (it is still in the array, but not part of the queue). The queue contains the
characters *, +, /, –, in that order.

Although the queue in Figure 6.7 is no longer filled, we cannot insert a new char-
acter, because rear_index is at its maximum value. One way to solve this problem
is to shift the elements in array the_data so that the empty cells come after
rear_index and then adjust front_index and rear_index accordingly. This array
shifting must be done very carefully to avoid losing track of active array elements.
It is also an O(n) operation.

A better way to solve this problem is to represent the array field the_data as a cir-
cular array. In a circular array, the elements wrap around so that the first element
actually follows the last. This is like counting modulo num_items; the array sub-
scripts take on the values 0, 1, . . . , num_items – 1, 0, 1, and so on. This allows us
to “increment” rear_index to 0 and store a new character in the_data[0]. Figure
6.8 shows the queue after inserting a new element (the character A). After the inser-
tion, front_index is still 1 but rear_index becomes 0. The contents of the_data[0]
changes from & to A. The queue now contains the symbols *, +, /, –, A, in that order.

6.3 Implementing the Queue ADT 371

F I G U R E 6 . 6
A Queue Filled with
Characters

F I G U R E 6 . 7
The Queue after
Deletion of the First
Element

F I G U R E 6 . 8
A Queue as a Circular
Array

&
*
+
/
-

front_index = 0

rear_index = 4

num_items = 5

capacity = 5

&
*
+
/
-

front_index = 1

rear_index = 4

num_items = 4

capacity = 5

A
*
+
/
-

front_index =
0rear_index =
1

num_items =

capacity = 5

5

E X A M P L E 6 . 2 The upper half of Figure 6.9 shows the effect of removing two elements from the
queue just described. There are currently three characters in this queue (stored in
the_data[3], the_data[4], and the_data[0]). The queue now contains the symbols
/, –, A, in that order.

The lower half of Figure 6.9 shows the queue after insertion of a new character (B).
The value of rear_index is incremented to 1 and the next element is inserted in
the_data[1]. This queue element follows the character A in the_data[0]. The value
of front_index is still 3 because the character / at the_data[3] has been in the queue
the longest. the_data[2] is now the only queue element that is unused. The queue
now contains the symbols /, –, A, B in that order.

F I G U R E 6 . 9
The Effect of Two Deletions and One Insertion

372 Chapter 6 Queues and Deques

Implementing a Queue as a Circular Array
Listing 6.5 shows the file Array_Queue.tc, which implements the queue as a circu-
lar array.

The constructor sets num_items to 0 and front_index to 0 because array element
the_data[0] is considered the front of the empty queue, and rear_index is initial-
ized to capacity – 1 (instead of –1) because the queue is circular.

In function push, the statement
rear_index = (rear_index + 1) % capacity;

is used to increment the value of rear_index modulo capacity. When rear_index is
less than capacity, this statement simply increments its value by one. But when
rear_index becomes equal to capacity – 1, the next value of rear_index will be 0
(capacity mod capacity is 0), thereby wrapping the last element of the queue
around to the first element. Because the constructor initializes rear_index to capac-
ity – 1, the first queue element will be placed in the_data[0] as desired.

In function pop, front_index is incremented modulo capacity. In function front,
the element at the_data[front_index] is returned, but front_index is not changed.

A
*
+
/
-

front_index =

0rear_index =

3

num_items =

capacity = 5

3

A
B
+
/
-

front_index =

1rear_index =

3

num_items =

capacity = 5

4

When the capacity is reached, we double the capacity and copy the array into the
new one, as was done for the vector. However, we cannot simply use the reallo-
cate function we developed for the vector, because of the circular nature of the
array. We cannot copy over elements from the original array to the first half of the
expanded array. Instead, we must first copy the elements from position front_index
through the end of the original array to the beginning of the expanded array; then
copy the elements from the beginning of the original array through rear to follow
those in the expanded array (see Figure 6.10).

We begin by creating an array new_data, whose capacity is double that of the_data.
The loop

size_t j = front_index;
for (size_t i = 0; i < num_items; i++) {
new_data[i] = the_data[j];
j = (j + 1) % capacity;

}

copies num_items elements over from the_data to the first half of new_data. In the
copy operation

new_data[i] = the_data[j]

subscript i for new_data goes from 0 to num_items – 1 (the first half of new_data).
Subscript j for the_data starts at front_index. The statement

j = (j + 1) % capacity;

increments the subscript for array the_data. Therefore, subscript j goes from
front_index to capacity – 1 (in increments of 1) and then back to 0. So the elements
are copied from the_data in the sequence the_data[front_index], ... ,
the_data[capacity – 1], the_data[0], ... , the_data[rear_index], where
the_data[front_index] is stored in new_data[0] and the_data[rear_index] is
stored in new_data[num_items – 1]. After exit from the copy loop, front_index is
reset to 0 and rear_index is reset to num_items – 1 (see Figure 6.10).

6.3 Implementing the Queue ADT 373

F I G U R E 6 . 1 0
Reallocating a Circular
Array

.

.

.

.

.

.

.

.

.

front_index

front_index0
1 1

rear_index

 capacity

 2 * capacity - 1

rear_indexcapacity - 1

.

.

.

.

.

.

.

.

.

.

.

.

By choosing a new capacity that is twice the current capacity, the cost of the reallo-
cation is amortized across each insert, just as for a vector. Thus, insertion is still
considered an O(1) operation.

L I S T I N G 6 . 5
Array_Queue.tc

#ifndef ARRAY_QUEUE_TC_
#define ARRAY_QUEUE_TC_

/** Constructs an empty queue. */
template<typename Item_Type>
queue<Item_Type>::queue() : capacity(DEFAULT_CAPACITY), num_items(0),

front_index(0), rear_index(DEFAULT_CAPACITY - 1),
the_data(new Item_Type[DEFAULT_CAPACITY]) {}

/** Pushes an item onto the rear of the queue.
@param item The item to be inserted

*/
template<typename Item_Type>
void queue<Item_Type>::push(const Item_Type& item) {
if (num_items == capacity) {
reallocate();

}
num_items++;
rear_index = (rear_index + 1) % capacity;
the_data[rear_index] = item;

}

/** Returns a reference to the object at the front of the queue
without removing it.
@return A reference to the object at the front of the queue

*/
template<typename Item_Type>
Item_Type& queue<Item_Type>::front() {
return the_data[front_index];

}

/** Returns a const reference to the object at the
front of the queue without removing it.
@return A const reference to the object at the front of the queue

*/
template <typename Item_Type>
const Item_Type& queue<Item_Type>::front() const {
return the_data[front_index];

}

/** Removes the front item from the queue. */
template<typename Item_Type>
void queue<Item_Type>::pop() {
front_index = (front_index + 1) % capacity;
num_items--;

}

374 Chapter 6 Queues and Deques

/** Determines whether the queue is empty */
template<typename Item_Type>
bool queue<Item_Type>::empty() const {
return num_items == 0;

}

/** Determines the size of the queue. */
template<typename Item_Type>
size_t queue<Item_Type>::size() const {
// Exercise

}

/** Doubles the capacity and reallocates the data.
pre: The array is filled to capacity.
post: The capacity is doubled and the first half

of the expanded array is filled with data.
*/
template<typename Item_Type>
void queue<Item_Type>::reallocate() {
size_t new_capacity = 2 * capacity;
Item_Type* new_data = new Item_Type[new_capacity];
size_t j = front_index;
for (size_t i = 0; i < num_items; i++) {
new_data[i] = the_data[j];
j = (j + 1) % capacity;

}
front_index = 0;
rear_index = num_items - 1;
capacity = new_capacity;
std::swap(the_data, new_data);

delete[] new_data;
}

#endif

Comparing the Three Implementations
As mentioned earlier, all three implementations of the Queue ADT are comparable
in terms of computation time. All operations are O(1) regardless of the implemen-
tation. Although reallocating an array is an O(n) operation, it is amortized over n
items, so the cost per item is O(1).

In terms of storage requirements, both linked-list implementations require more
storage because of the extra space required for links. To perform an analysis of the
storage requirements, you need to know that C++ stores a copy of the data for a
queue element in each node in addition to the links. Therefore, a node in a single-
linked list would store a total of one pointer, a node in a double-linked list would
store a total of two pointers, and a node in a circular array would store just the data.
A circular array that is filled to capacity would require half the storage of a single-
linked list to store the same number of elements (assuming that the data type
requires the same amount of storage as a pointer). However, if the array were just
reallocated, half the array would be empty, so it would require the same storage as
a single-linked list.

6.3 Implementing the Queue ADT 375

E X E R C I S E S F O R S E C T I O N 6 . 3
S E L F - C H E C K

1. Show the new array for the queue in Figure 6.8 after the array size is doubled.
2. Redraw the queue in Figure 6.5 so that front_of_queue points to the list tail and

back_of_queue points to the list head. Show the queue after an element is inserted
and an element is removed. Explain why the approach used in the book is better.

P R O G R A M M I N G

1. Write the size function for the Array_Queue.
2. Write a to_string() function for the List_Queue that return a string with all the

elements that are in the queue. Enclose the queue elements in brackets and insert
a comma between individual elements.

3. Do Programming Exercise 2 for the Array_Queue.

6.4 The Deque

A deque (pronounced “deck” or “DEE-queue”) is an abstract data type that com-
bines the features of a stack and a queue. The word “deque” is an abbreviation for
“double-ended queue,” and it means that you can insert, access, and remove items
at either end. The C++ standard library takes this concept further and defines the
class std::deque to be a sequence that, like the vector, supports random-access iter-
ators (not supported by either the stack or the queue) in addition to constant-time
insertion and removal from either end.

Specification of the Deque
Table 6.2 shows some of the member functions defined by the std::deque class. The
deque represents a combination of a vector and a list in that it provides the con-
stant-time insertion/removal from either end that is provided by the list and the
constant-time random access provided by the vector. The deque is used by the C++
standard library as the default container for both the stack and the queue.

We now describe two approaches to implementing the deque. One is to adapt the
circular array we used to implement the queue, and the other is the approach taken
by the original Standard Template Library (the basis for the C++ standard library)
and used by most C++ implementations.

Implementing the Deque Using a Circular Array
Earlier we showed how to use a circular array to implement a queue and showed
how to implement the functions queue::push (equivalent to deque::push_back) and
queue::pop (equivalent to deque::pop_front). Implementing functions push_front
and pop_back is similar and is left as an exercise.

376 Chapter 6 Queues and Deques

TA B L E 6 . 2
Member Functions of Class deque

6.4 The Deque 377

Member Function Behavior

const Item_Type& Returns a reference to the element at position index that can
operator[](size_t index) const be used on the right-hand side of an assignment.

Item_Type& operator[](size_t index) Returns a reference to the element at position index that can
be used as the target of an assignment.

Item_Type& at(size_t index); The same as operator[] except that the index is validated. If
const Item_Type& at(size_t index) const the index is not valid, the out_of_range exception is thrown.

iterator insert(iterator pos, Inserts a copy of item into the deque at position pos. Returns
const Item_Type& item) an iterator that references the newly inserted item.

iterator erase(iterator pos) Removes the item from the deque at position pos. Returns an
iterator that references the item following the one erased.

void remove(const Item_Type& item) Removes all occurrences of item from the deque.

void push_front(const Item_Type& item) Inserts a copy of item as the first element of the deque.

void push_back(const Item_Type& item) Adds a copy of item to the end of the deque.

void pop_front() Removes the first item from the deque.

void pop_back() Removes the last item from the deque.

Item_Type& front(); Gets the first element in the deque. Both constant and
const Item_Type& front() const modifiable versions are provided.

Item_Type& back(); Gets the last element in the deque. Both constant and
const Item_Type& back() const modifiable versions are provided.

iterator begin() Returns an iterator that references the first item of the
deque.

const_iterator() begin const Returns a const_iterator that references the first item of
the deque.

iterator end() Returns an iterator that references the end of the deque
(one past the last item).

const_iterator end() const Returns a const_iterator that references the end of the
deque (one past the last item).

void swap(deque<Item_Type> other) Exchanges the contents of this deque with the other deque.

bool empty() const Returns true if the deque is empty.

size_t size() const Returns the number of items in the deque.

void resize(size_t new_size) Changes the size of the deque to new_size. If new_size is
smaller than the current size, then items are removed from the
end. If new_size is larger than the current size, then default
valued items are added to the end. The default valued item is
the value returned by the default (no argument) constructor.
For built-in types the default value is zero.

To obtain random access, consider that the ith element is at position front_index +
i, assuming that i starts at 0 and this sum is not larger than capacity. If it is larger
than capacity, we need to wrap around the end of the array using modulo arith-
metic. The implementation of the index operator is as follows:

/** Returns a reference to an item in the deque based on an index. */
Item_Type& operator[](size_t i) {
return the_data[(i + front_index) % capacity];

}

Implementation of the rest of the deque functions is left as a programming project.
As we will discuss below, a randomly accessible circular array is part of the stan-
dard deque implementation. Thus, we will refer to this implementation of the deque
as the class CArray. The C++ STL implementation of class deque is discussed next

The Standard Library Implementation of the Deque
The standard library implementation also uses a circular array, but the circular array
contains pointers to fixed-size, dynamically allocated arrays that contain the data.
This is illustrated in Figure 6.11. The first data item is located at index offset in the
first data block, and the last item is located at index (offset + num_items - 1) %

BLOCK_SIZE in the last data block. The value of offset is initially BLOCK_SIZE / 2 and
is incremented by 1 each time an element is removed from the front of the deque.

You may wonder why the original designers chose this rather elaborate implementation
rather than simply using a circular array. The reason has to do with the cost of the real-
location. Even though we amortize the cost of the reallocation so that each push_front
or push_back is a constant-time operation, the reallocation can take a significant
amount of time. This is because we make a copy of each object using the object’s assign-
ment operator. By storing only pointers in the circular array, the cost of reallocation is
significantly reduced, because copying a pointer is a simple operation. Next you may
wonder, why not just store pointers to single objects in the circular array? This would
work, but dynamically allocating small objects has a significant space overhead. Thus,
by allocating an array of objects, we minimize this space overhead and minimize the
cost of the reallocation. For large collections of large objects, the deque can be used
instead of the vector to minimize space overhead and the cost of reallocation.

378 Chapter 6 Queues and Deques

F I G U R E 6 . 1 1
Internal Structure of
Standard Implementa-
tion of deque

.

.

.

BLOCK_SIZE

offset

(offset + num_items - 1) % BLOCK_SIZE

.

.

.

TA B L E 6 . 3
deque Data Fields

6.4 The Deque 379

Data Field Attribute

static const size_t BLOCK_SIZE The number of items in each data block array

size_t offset The index of the first item in the first data block

size_t num_items The number of items in the deque

CArray<Item_Type*> the_data A circular array of pointers to the data blocks

We will leave the full implementation of the deque as a programming project, but
we will discuss the data fields and the implementation of three functions: the index
operator, push_back, and pop_front.

The Data Fields for the Deque
Table 6.3 shows the data fields for the deque class. The class CArray is the circular
array implementation of the deque discussed at the beginning of this section. We
assume that it has the operations operator[], push_front, push_back, pop_front,
pop_back, front, back, and size.

The Index Operator
You can think of the data blocks as forming a two-dimensional array, where each
row is a data block. The current capacity of the deque is defined by the size of the
circular array times the size of a data block. The 0th item is at index offset in the
0th data block. Thus, to find the appropriate row you divide (i + offset) by
BLOCK_SIZE. To find the column you compute (i + offset) % BLOCK_SIZE. The com-
plete implementation of operator[] is as follows.

/** Returns a reference to an item referenced by an index.
@param i the index
@return A reference to deque[i]

*/
template<typename Item_Type>
Item_Type& deque<Item_Type>::operator[](size_t i) {
if (i >= num_items)
throw std::out_of_range("Invalid index to deque::operator[]");

size_t block_index = (offset + i) / BLOCK_SIZE;
size_t data_index = (offset + i) % BLOCK_SIZE;
return the_data[block_index][data_index];

}

The push_back Function
The current capacity of the deque is the circular array’s size times the BLOCK_SIZE. If
the num_items plus offset is equal to the capacity, we need to increase the capacity
by adding a new block. This is done by the statement:

the_data.push_back(new Item_Type[BLOCK_SIZE]);

Once the capacity is ensured, we can insert a new item by incrementing num_items
and then storing the new item at position num_items - 1. The complete implemen-
tation of push_back follows.

/** Pushes an item onto the back of the deque.
@param item The item to be inserted

*/
template<typename Item_Type>
void deque<Item_Type>::push_back(const Item_Type& item) {
size_t capacity = the_data.size() * BLOCK_SIZE;
if ((num_items + offset) == capacity) {
the_data.push_back(new Item_Type[BLOCK_SIZE]);

}
num_items++;
(*this)[num_items - 1] = item;

}

The pop_front Function
To remove the front element, we merely need to decrement offset. If offset is now
equal to BLOCK_SIZE, then the front block also needs to be removed and offset reset
to zero. The code for pop_front is as follows:

/** Removes the front item from the deque. */
template<typename Item_Type>
void deque<Item_Type>::pop_front() {
offset++;
if (offset == BLOCK_SIZE) {
delete[] the_data.front();
the_data.pop_front();
offset = 0;

}
num_items--;

}

E X E R C I S E S F O R S E C T I O N 6 . 4

P R O G R A M M I N G

1. Code the push_front and pop_back functions for the circular array class CArray.
2. Code the push_front and pop_back functions for the STL class deque.

6.5 Simulating Waiting Lines Using Queues

Simulation is a technique used to study the performance of a physical system by
using a physical, mathematical, or computer model of the system. Through simula-
tion, the designers of a new system can estimate the expected performance of the
system before they actually build it. The use of simulation can lead to changes in the
design that will improve the expected performance of the new system. Simulation is

380 Chapter 6 Queues and Deques

6.5 Simulating Waiting Lines Using Queues 381

especially useful when the actual system would be too expensive to build or too dan-
gerous to experiment with after its construction.

System designers often use computer models to simulate physical systems. In this
section we will implement and test a computer model of an airline check-in counter
in order to compare various strategies for improving service and reducing the wait-
ing time for each passenger. We will use a queue to simulate the passenger waiting
line. A special branch of mathematics called queuing theory has been developed to
study these kinds of problems using mathematical models (systems of equations)
instead of computer models.

CASE STUDY Simulate a Strategy for Serving Airline Passengers

Problem Blue Skies Airlines (BSA) is considering redesigning its ticket counters for airline
passengers. The company would like to have two separate waiting lines: one for reg-
ular customers and one for frequent flyers. Assuming there is only one ticket agent
available to serve all passengers, the company would like to determine the average
waiting time for both types of passengers using various strategies for taking passen-
gers from the waiting lines (see Figure 6.12).

A “democratic” strategy for serving passengers would be to take turns serving pas-
sengers from both lines (that is, one frequent flyer, one regular passenger, one fre-
quent flyer, and so on). Another “democratic” strategy would be to serve the
passenger who has been waiting in line the longest, but this would be the same as
having a single queue. (Why?) An “elitist” strategy would be to serve any frequent
flyer waiting in line before serving the regular passengers.

F I G U R E 6 . 1 2
Passengers Waiting
in Lines

Ticket agent

Regular
passengers

Frequent
flyers

382 Chapter 6 Queues and Deques

Analysis Running a computer simulation is a good way to investigate the effect of different
serving strategies. To run a computer simulation, we must keep track of the current
time by maintaining a clock that is set to an initial time of zero. This clock will
increase by one time unit until the simulation is finished. During each time interval,
one or more of the following events may occur.

1. A new frequent flyer passenger arrives in line.
2. A new regular passenger arrives in line.
3. The ticket agent finishes serving a passenger and begins to serve a passenger from

the frequent flyer line.
4. The ticket agent finishes serving a passenger and begins to serve a passenger from

the regular passenger line.
5. The ticket agent is idle because there are no passengers in either line to serve.

The purpose of running the simulation is to determine statistics about the waiting
times for frequent flyers and for regular passengers. In addition to the priority given
to frequent flyers, the waiting times depend on the arrival rate of each type of pas-
senger (number of passengers arriving per minute) and the time required to serve a
passenger. There are different arrival rates for each kind of passenger. In addition to
statistics on waiting times, we can display a minute-by-minute trace of events occur-
ring during each minute of the simulation.

We can simulate different serving strategies by introducing a simulation variable
frequent_flyer_max, which must be a positive integer. This will represent the num-
ber of consecutive frequent flyer passengers served between regular passengers.
When frequent_flyer_max is 1, every other passenger served will be a regular pas-
senger (the “democratic” strategy). When frequent_flyer_max is 2, every third pas-
senger served will be a regular passenger. When frequent_flyer_max is a very large
number, any frequent flyer passenger will be served before a regular passenger (the
“elitist” strategy).

Design To begin an object-oriented design, we look at the problem description and identify
the classes. We can use the nouns in the problem statement as a starting point.
Doing this we see that we have an agent, passengers, and two passenger queues.
These are part of the simulation. This leads to the initial UML class diagram shown
in Figure 6.13. The diagram shows that Passenger_Queue has a queue component
and is itself a component of Airline_Checkin_Sim—the class that runs the simula-
tion. Also, the queue stores objects of type Passenger.

Airline_Checkin_Sim Passenger_Queue

queue<Passenger>

serves

2

Passenger

Agent

F I G U R E 6 . 1 3
Airline Check-In
Simulation: Initial UML
Class Diagram

6.5 Simulating Waiting Lines Using Queues 383

Next we develop a sequence diagram to see how the data flows between the objects
and to identify the messages passed between them. In object-oriented design, when
one object sends a message to another, this implies that the receiving object’s class
must have a function to respond to the message. The objects involved in the simu-
lation are the Airline_Checkin_Sim instance, the two passenger queues, and
Passenger objects.

Figure 6.14 shows the sequence diagram that is based on the events described in the
analysis phase. The comments in the colored boxes show conditions that must be

F I G U R E 6 . 1 4
Airline Check-In Simulation: Sequence Diagram

check_new_arrival

check_new_arrival

new

new

start_serve

empty

empty

update

time_done
get_arrival_time

get_processing_time

get_arrival_time

get_processing_time

push

push

pop

update

time_done

if my_random.next_double()
 < arrival_rate

!regular_passenger_queue.empty

if my_random.next_double()
 < arrival_rate

if clock > time_done

!frequent_flyer_queue.empty()
 && ((frequent_flyers_since_RP <= frequent_flyer_max)
 || regular_passenger_queue.empty)

Airline_Checkin_Sim frequent_flyer_queue regular_passenger_queue

Passenger

pop

Passenger

384 Chapter 6 Queues and Deques

true before a message is sent. We will explain these conditions shortly. First the
Airline_Checkin_Sim object checks to see whether a new frequent flyer passenger has
arrived, by sending the check_new_arrival message to the frequent_flyer_queue. If
a new passenger has arrived (my_random.next_double() < arrival_rate is true), the
frequent_flyer_queue then creates a Passenger object (sending the new message) and
inserts it into the queue (by sending its queue component a push message, which is
shown as a message to self). Then the Airline_Checkin_Sim object checks to see
whether a regular passenger has arrived, and the same process is performed with the
regular_passenger_queue.

Then, if the agent is free (clock > time_done), the Airline_Checkin_Sim instance
determines the next passenger to be served by the agent. To see whether either or
both of the passenger queues have passengers waiting, the Airline_Checkin_Sim
instance sends the empty message to the queues. If there is a frequent flyer waiting
and the number of frequent flyers between regular passengers has not been
exceeded, or if there are no regular passengers waiting, then we simulate the agent
serving the next frequent flyer by sending the update message to the frequent flyer
queue. Otherwise, if there is a regular passenger waiting, we simulate the agent serv-
ing the next regular passenger in the queue by sending the update message to the
regular passenger queue. The response to this message (the return value from the
function) is the time at which the agent will next be free.

Notice that the agent does not actually appear as an actor at the top of the sequence
diagram. Therefore we can infer that the agent does not participate in the simula-
tion. For the purposes of the simulation, the agent is either busy or idle and can thus
be represented by a Boolean expression. Also, the sequence diagram has identified
the functions that we need in each class. This leads to the revised UML class dia-
gram shown in Figure 6.15.

F I G U R E 6 . 1 5
Airline Check-In
Simulation: Updated
Class Diagram

+ push()
+ pop()
+ front()
+ size()
+ empty()

Passenger_Queue

queue<Passenger>

Airline_Checkin_Sim

- regular_passenger_queue

- frequent_flyer_queue

Passenger

- passenger_id
- processing_time
- arrival_time
- max_processing_time
- id_num

+ get_arrival_time()
+ get_processing_time()
+ set_max_processing_time()

- frequent_flyer_max
- max_processing_time
- total_time
- show_all
- clock
- time_done
- frequent_flyers_since_RP

- enter_data()
- run_simulation()
- start_serve()
- show_stats()
+ main()

- num_served
- total_wait
- queue_name
- arrival_rate

+ get_num_served()
+ get_total_wait()
+ check_new_arrival()
+ update()

- the_queue

6.5 Simulating Waiting Lines Using Queues 385

Class Airline_Checkin_Sim
The sequence diagram shown in Figure 6.14 represents the run_simulation function
shown in Figure 6.15 for class Airline_Checkin_Sim. Table 6.4 shows its data fields
and functions. Functions main, enter_data, and show_stats will be discussed briefly
in the implementation. As an aid to testing our implementation, we want to have
the option of printing a minute-by-minute state of the simulation and to track indi-
vidual passengers. Thus, we add a show_all attribute to the Airline_Checkin_Sim
class. If the value of show_all is true, we will essentially trace each action taken by
the program through output to cout.

Class Passenger_Queue
The Passenger_Queue class stores the passenger queue and summary data about the
queue (see Table 6.5). By encapsulating the queue within this class and having its
functions manipulate both the queue and the summary data, we ensure that
the summary data is always maintained. Specifically, when the function
check_new_arrival determines that a new passenger has arrived, it inserts the pas-
senger into the queue. When the update function removes a passenger, it updates the
number of passengers served and the total wait time.

TA B L E 6 . 4
Class Airline_Checkin_Sim

Data Field Attribute

Passenger_Queue frequent_flyer_queue The queue of frequent flyers

Passenger_Queue regular_passenger_queue The queue of regular passengers

int frequent_flyer_max The maximum number of frequent flyers to serve between
regular passengers

int max_processing_time The maximum time to serve a passenger

int total_time The total time to run the simulation

bool show_all A flag indicating whether to trace the simulation

int clock The current clock time (initially zero)

int time_done The time that the current passenger will be finished

int frequent_flyers_since_RP The number of frequent flyers served since the last regular
passenger

Function Behavior

void run_simulation() Controls the simulation. Executes the steps shown in
Figure 6.14.

void enter_data() Reads in the data for the simulation.

void start_serve() Initiates service for a passenger.

void show_stats() Displays the summary statistics.

386 Chapter 6 Queues and Deques

TA B L E 6 . 5
Class Passenger_Queue

Data Field Attribute

queue<Passenger> the_queue The queue of passengers

int num_served The number from this queue that were served

int total_wait The total time spent waiting by passengers that were in this queue

string queue_name The name of this queue

double arrival_rate The arrival rate for this queue

Function Behavior

Passenger_Queue(string queue_name) Constructs a new queue with the specified name.

void check_new_arrival(int clock, Checks whether there was a new arrival for this queue and, if so,
bool show_all) inserts the passenger into the queue.

int update(int clock, Updates the total waiting time and number of passengers served
bool show_all) when a passenger from this queue is served.

int get_total_wait() const Returns the total waiting time for passengers in this queue.

int get_num_served() const Returns the number of passengers served from this queue.

Function Behavior

Passenger(int arrival_time) Constructs a new passenger, assigns it a unique ID and the specified
arrival time. Computes a random processing time in the range 1 to
max_processing_time.

int get_arrival_time() const Returns the value of arrival_time.

int get_processing_time() const Returns the value of processing_time.

static void Sets the max_processing_time used to generate the random
set_max_processing_time(int processing time.
max_process_time)

The Passenger Class
The Passenger class stores the following information about a passenger:

• A unique ID number
• The time the passenger arrived
• The actual processing time
• The maximum processing time

The ID number is used to identify passengers when the simulation is traced. It starts
at 0 and is incremented by 1 each time a new Passenger object is created. Table 6.6
shows the class functions.

TA B L E 6 . 6
Functions of the Passenger Class

6.5 Simulating Waiting Lines Using Queues 387

Implementation Coding the Airline_Checkin_Sim Class
The class and data field declarations for the Airline_Checkin_Sim class follow:

#ifndef AIRLINE_CHECKIN_SIM_H_
#define ARRLINE_CHECKIN_SIM_H_

#include "Passenger_Queue.h"

/** Simulates the check-in process of an airline. */
class Airline_Checkin_Sim {

public:

Airline_Checkin_Sim () : frequent_flyer_queue("Frequent Flyer Queue"),
regular_passenger_queue("Regular Passenger Queue"), clock(0),
time_done(0) {}

/** Run the simulation. */
void run_simulation();

/** Function to show the statistics. */
void show_stats();

/** Function to read the simulation parameters. */
void enter_data();

private:

/** Function to start serving a passenger. */
void start_serve();

// Data Fields
/** Queue of frequent flyers. */
Passenger_Queue frequent_flyer_queue;

/** Queue of regular passengers. */
Passenger_Queue regular_passenger_queue;

/** Maximum number of frequent flyers to be served
before a regular passenger gets served. */

int frequent_flyer_max;

/** Maximum time to serve a passenger. */
int max_processing_time;

/** Total simulated time. */
int total_time;

/** If set true, print additional output. */
bool show_all;

/** Simulated clock. */
int clock;

/** Time that the agent will be done with the current passenger. */
int time_done;

388 Chapter 6 Queues and Deques

/** Number of frequent flyers served since the
last regular passenger was served. */

int frequent_flyers_since_RP;

};

#endif

The main Function
The main function constructs an Airline_Checkin_Sim object, calls enter_data to
read the input data, and then calls run_simulation to perform the simulation. After
the simulation is complete, the show_stats function displays the summary results.

int main() {
Airline_Checkin_Sim simulation;
simulation.enter_data();
simulation.run_simulation();
simulation.show_stats();

}

The enter_data Function
The enter_data function (not shown) gets the input values shown in Table 6.7.

The run_simulation Function
The run_simulation function executes a loop once for each minute of simulated
time. During each iteration, it calls function check_new_arrival on both the fre-
quent_flyer_queue and the regular_passenger_queue to see whether any new pas-
sengers have arrived. Variable show_all is passed in both function calls. If the clock

Internal Variable Attribute Conversion

double frequent_flyer_queue.arrival_rate Expected number of Divide input by 60 to
frequent flyer arrivals obtain arrivals per minute.
per hour.

double regular_passenger_queue.arrival_rate Expected number of Divide input by 60 to obtain
regular passenger arrivals per minute.
arrivals per hour.

int max_processing_time Maximum service time None.
in minutes.

int total_time Total simulation time None.
in minutes.

bool show_all Flag. If true, display Input beginning with 'Y' or
minute-by-minute trace 'y' will set this to true;
of simulation. other inputs will set it to

false.

TA B L E 6 . 7
Airline Simulation Input Parameters

6.5 Simulating Waiting Lines Using Queues 389

has advanced past the value of time_done, then the current passenger is finished with
the ticket agent, so function start_serve is called to start the next passenger. Data
field time_done is reset to the time the current passenger will be finished, which is
the current clock time plus the service time.

void Airline_Checkin_Sim::run_simulation() {
for (clock = 0; clock < total_time; clock++) {
frequent_flyer_queue.check_new_arrival(clock, show_all);
regular_passenger_queue.check_new_arrival(clock, show_all);
if (clock >= time_done) {
start_serve();

}
}

}

The start_serve Function
The start_serve function selects a queue and then calls that queue’s update func-
tion to remove the next passenger and update the simulation variables.

If the frequent flyer queue is not empty, it is selected if either of the two following
conditions is true:

• The number of frequent flyers who have been served since the last regular pas-
senger is less than or equal to frequent_flyer_max.

• The regular passenger queue is empty.

Otherwise, start_serve selects the regular passenger queue. If both queues are
empty, and show_all is true, start_serve prints a message that the agent is idle.

After selecting a queue, start_serve increments frequent_flyers_since_RP or sets
it to zero, depending upon the passenger type being served.

void Airline_Checkin_Sim::start_serve() {
if (!frequent_flyer_queue.empty ()

&& ((frequent_flyers_since_RP <= frequent_flyer_max)
|| regular_passenger_queue.empty())) {

// Serve the next frequent flyer.
frequent_flyers_since_RP++;
time_done = frequent_flyer_queue.update(clock, show_all);

}
else if (!regular_passenger_queue.empty()) {
// Serve the next regular passenger.
frequent_flyers_since_RP = 0;
time_done = regular_passenger_queue.update(clock, show_all);

}
else if (show_all) {
cout << "Time is " << clock

<< ": Server is idle\n";
}

}

The show_stats Function
The show_stats function displays the total number of each kind of passenger and
their average waiting time. It also displays the number of passengers left in each
queue at the end of the simulation.

390 Chapter 6 Queues and Deques

/** Function to show the statistics. */
void Airline_Checkin_Sim::show_stats() {
cout << "\nThe number of regular passengers served was "

<< regular_passenger_queue.get_num_served() << endl;
double average_waiting_time =
double(regular_passenger_queue.get_total_wait())
/ double(regular_passenger_queue.get_num_served());

cout << " with an average waiting time of "
<< average_waiting_time << endl;

cout << "The number of frequent flyers served was "
<< frequent_flyer_queue.get_num_served() << endl;

average_waiting_time =
double(frequent_flyer_queue.get_total_wait())
/ double(frequent_flyer_queue.get_num_served());

cout << " with an average waiting time of "
<< average_waiting_time << endl;

cout << "Passengers in frequent flyer queue: "
<< frequent_flyer_queue.size() << endl;

cout << "Passengers in regular passenger queue: "
<< regular_passenger_queue.size() << endl;

}

Coding Class Passenger_Queue
The class definition for Passenger_Queue follows. The constructor saves the name of
the queue so that it can be displayed when the show_all flag is set to show the
minute-by-minute trace of the simulation.

#ifndef PASSENGER_QUEUE_H
#define PASSENGER_QUEUE_H

#include <string>
#include <queue>
#include "Passenger.h"

/** Class to simulate a queue of passengers. */
class Passenger_Queue {

public:

// Constructor
/** Constructs a Passenger_Queue with the given name.

@param my_name The name of this queue
*/
Passenger_Queue(std::string my_name) : num_served(0), total_wait(0),
queue_name(my_name) {}

/** Returns the number of passengers served.
@return The number of passengers served

*/
int get_num_served() const {
return num_served;

}

6.5 Simulating Waiting Lines Using Queues 391

/** Returns the total wait time.
@return The total wait time

*/
int get_total_wait() const {
return total_wait;

}

/** Returns the queue name.
@return The queue name

*/
std::string get_queue_name() const {
return queue_name;

}

/** Sets the arrival rate.
@param new_arrival_rate The value to set

*/
void set_arrival_rate(double new_arrival_rate) {
arrival_rate = new_arrival_rate;

}

/** Determines whether the passenger queue is empty.
@return true if the passenger queue is empty

*/
bool empty() const {
return the_queue.empty();

}

/** Determines the size of the passenger queue.
@return the size of the passenger queue

*/
size_t size() const {
return the_queue.size();

}

/** Checks whether a new arrival has occurred.
@param clock The current simulated time
@param show_all Flag to indicate that detailed

data should be output
*/
void check_new_arrival(int clock, bool show_all);

/** Updates statistics.
pre: The queue is not empty.
@param clock The current simulated time
@param show_all Flag to indicate whether to show detail
@return Time passenger is done being served

*/
int update(int clock, bool show_all);

private:

// Data Fields
/** The queue of passengers. */
std::queue<Passenger> the_queue;

392 Chapter 6 Queues and Deques

/** The number of passengers served. */
int num_served;

/** The total time passengers were waiting. */
int total_wait;

/** The name of this queue. */
std::string queue_name;

/** The average arrival rate. */
double arrival_rate;

};

#endif

The function check_new_arrival is the most interesting part of the simulation pro-
gram. Its purpose is to determine whether a new arrival occurs during a given time
unit and, if so, to insert it in the appropriate passenger queue. During each time unit,
check_new_arrival is applied to each passenger queue.

/** Checks whether a new arrival has occurred.
@param clock The current simulated time
@param show_all Flag to indicate that detailed

data should be output
*/
void Passenger_Queue::check_new_arrival(int clock, bool show_all) {
if (my_random.next_double() < arrival_rate) {
the_queue.push(Passenger(clock));
if (show_all) {
cout << "Time is "

<< clock << ": "
<< queue_name
<< " arrival, new queue size is "
<< the_queue.size() << endl;

}
}

}

The arrival of passengers is considered a “random event” because we cannot pre-
dict with certainty the time at which passengers arrive. The arrival rate tells us the
average rate at which passengers will arrive. For example, an arrival rate of 0.25
means that on average 0.25 passengers will arrive every minute or, stated another
way, one passenger will arrive every four minutes. However, this does not mean that
passengers will arrive precisely at clock times 0, 4, 8, 12, and so on. A group of pas-
sengers may arrive in consecutive time units, and then we may not see another
arrival for several more minutes. All we know is that if the simulation runs long
enough, the number of passenger arrivals should be pretty close to the total simula-
tion length times 0.25. In statistical terms, an arrival rate of 0.25 means that the
probability of a passenger arrival in any given minute is 0.25, or 25 percent. To
obtain the arrival rate, we divide the number of passengers expected per hour (a
data item) by 60 because our clock increments every minute. If we expect more than
60 passengers per hour, we need to run the simulation with a smaller clock incre-
ment so that the arrival rate used by check_new_arrival is less than one.

6.5 Simulating Waiting Lines Using Queues 393

We can use a pseudorandom number generator to determine whether a passenger
has arrived in a given minute of the simulation. The C++ standard library includes
the function rand that generates a random integer between 0 and RAND_MAX. As dis-
cussed in a subsequent section, we have encapsulated the function in the class
Random and provided a function that returns a double value between 0 and 1. A
global instance of the Random class (variable my_random) was defined in the file
Airline_Checkin_Sim.cpp. The condition

my_random.next_double() < arrival_rate

compares the pseudorandom number generated to the value of arrival_rate.
Because the values being compared are in the range 0.0–1.0, the probability that this
condition will be true is proportional to the value of arrival_rate, as desired. If
arrival_rate is 0.25, this condition should be true 25 percent of the time.

The update function removes a passenger from the queue, computes that passenger’s
waiting time (clock time – arrival time), and adds it to the total wait time. Next,
update increments the count of passengers from this queue who have been served
since the simulation began. Function update also computes the time that the agent
will be finished with this passenger and returns the time to the caller.

/** Update statistics.
pre: The queue is not empty.
@param clock The current simulated time
@param show_all Flag to indicate whether to show detail
@return Time passenger is done being served

*/
int Passenger_Queue::update(int clock, bool show_all) {
Passenger next_passenger = the_queue.front();
the_queue.pop();
int time_stamp = next_passenger.get_arrival_time();
int wait = clock - time_stamp;
total_wait += wait;
num_served++;
if (show_all) {
cout << "Time is " << clock

<< ": Serving "
<< queue_name
<< " with time stamp "
<< time_stamp << endl;

}
return clock + next_passenger.get_processing_time();

}

Coding the Passenger Class
Data field id_num is the sequence number associated with a passenger. It is static
because the same variable is used for all passengers and we don’t want it reset to
zero when a new passenger is created. Since the max_processing_time applies to all
instances of Passenger, this is a static attribute, and the function set_max_process-
ing_time is also static.

We will assume that the processing time is uniformly distributed between 1 and the
max_processing_time. We call function next_int (member of the class Random) to
generate a random int value between 0 and max_processing_time - 1. We compute

394 Chapter 6 Queues and Deques

the processing_time in the constructor. Listing 6.6 shows the Passenger class defi-
nition, and Listing 6.7 shows the implementation file Passenger.cpp. The imple-
mentation file contains the implementation of the constructor and definitions of the
static members.

L I S T I N G 6 . 6
Passenger.h

#ifndef PASSENGER_H_
#define PASSENGER_H_

/** A class to represent a passenger. */
class Passenger {
public:

/** Creates a new passenger.
@param arrive_time The time this passenger arrives */

Passenger(int arrive_time);

/** Gets the arrival time.
@return The arrival time */

int get_arrival_time() {
return arrival_time;

}

/** Gets the processing time.
@return The processing time */

int get_processing_time() {
return processing_time;

}

/** Gets the passenger ID.
@return The passenger ID */

int get_id() {
return passenger_id;

}

/** Sets the maximum processing time.
@param max_process_time The new value */

static void set_max_processing_time(int max_process_time) {
max_processing_time = max_process_time;

}

private:

// Data Fields
/** The ID number for this passenger. */
int passenger_id;

/** The time needed to process this passenger. */
int processing_time;

/** The time this passenger arrives. */
int arrival_time;

6.5 Simulating Waiting Lines Using Queues 395

/** The maximum time to process a passenger. */
static int max_processing_time;

/** The sequence number for passengers. */
static int id_num;

};

#endif

L I S T I N G 6 . 7
Passenger.cpp

/** Implementation of the Passenger class. */

#include "Passenger.h"
#include "Random.h"
extern Random my_random; // Declared in Airline_Checkin_Sim.cpp

/** Creates a new passenger.
@param arrive_time The time this passenger arrives */

Passenger::Passenger(int arrive_time) {
arrival_time = arrive_time;
processing_time = 1 + my_random.next_int(max_processing_time);
passenger_id = id_num++;

}

// Definition of static members.
/** The maximum time to process a passenger. */
int Passenger::max_processing_time;

/** The sequence number for passengers. */
int Passenger::id_num = 0;

Generating Pseudorandom Numbers
When you need a random number, as when playing a game, you can perform some
procedure, such as spinning a wheel, in which imperceptibly small variations in the
physical circumstances (hand position and force, condition of the bearings) all have
large enough effects on the result to make it unpredictable.

When a computer needs a random number, it uses a mathematical process that is
analogous to spinning a wheel, but because the computer is a machine designed to
produce consistent results regardless of variations in its physical circumstances, the
“wheel” is spun a controlled number of clicks each time, so the results are not truly
random. However, if the size of the “wheel” and the algorithms for determining the
number of clicks are chosen properly, the results can be made to appear to be ran-
dom. We say that they appear to be random because they pass statistical tests. Such
numbers are pseudorandom numbers, though they are often called “random.”

The C++ standard library contains the function rand (declared in header <cstdlib>)
that it inherits from the C standard library. This function returns a pseudorandom
int value between 0 and RAND_MAX. There is also the function srand that is used to
set the seed (starting value for first random number computation) of the random
number generator. You should call this function once in any program that uses the

396 Chapter 6 Queues and Deques

random number generator so that the sequence generated is different each time the
program is run. A common practice is to use the current date and time (expressed
as milliseconds since January 1, 1970) as the seed to the random number generator.

Listing 6.8 shows the class Random, which encapsulates the C++ standard random
number generator. The constructor calls the srand function to initialize the genera-
tor. The function next_double converts the value returned by rand into a double
value between 0 and 1, and the function next_int returns an int in the range 0
through n, where n is the parameter.

L I S T I N G 6 . 8
The Class Random

#ifndef RANDOM_H_
#define RANDOM_H_

#include <cstdlib>
#include <ctime>

/** Class to encapsulate the standard random number generator. */
class Random {

public:

/** Initializes the random number generator using the time
as the seed.

*/
Random() {
std::srand(std::time(0));

}

/** Initializes the randon mumber generator using a
supplied seed.

*/
Random(int seed) {
std::srand(seed);

}

/** Returns a random integer in the range 0 – n. */
int next_int(int n) {
return int(next_double() * n);

}

/** Return a random double in the range 0 – 1. */
double next_double() {
return double(std::rand()) / RAND_MAX;

}

};

#endif

Testing Figure 6.16 shows a sample run of the simulation program with the trace turned on.
To test the simulation program, you should run it a number of times with the trace
turned on and verify that passengers in the frequent flyer queue have the specified

priority over regular passengers. Function enter_data should display the data val-
ues so that you can interpret the simulation results in a meaningful way. Also, make
sure that the “server is idle” message is displayed only when both queues are empty.
If both arrival rates are the same, check that the waiting times reflect the priority
given to frequent flyers. Also see what happens when both kinds of passengers are
treated equally (frequent_flyer_since_RP is 1).

When running the program, make sure that you use integer values for the total sim-
ulation time and for the service time. It is also a good idea to choose values for
arrival rates and service time that keep the system from becoming saturated. The
system will become saturated if the arrival rates are too large and passengers arrive
more quickly than they can be served. This will result in very long queues and large
waiting times. The system will become saturated if the total number of arrivals per
minute (frequent flyer arrival rate + regular passenger arrival rate) is greater than
the number of passengers being served in a minute: [1 / (max_processing_time / 2)].

After you are certain that the program runs correctly, you should turn off the trace
and focus on the summary statistics. It is interesting to see how these values change
for a particular set of arrival rates and service times. Remember, passenger arrivals
are a random event, so the results should vary from one run to the next even if all
input data stay the same.

F I G U R E 6 . 1 6
Sample Run of Airline Check-In Simulation

6.5 Simulating Waiting Lines Using Queues 397

C:\C++Book\programs\CH06>Airline_Checkin_Sim
Expected number of frequent flyer arrivals per hour: 15
Expected number of regular passenger arrivals per hour: 30
Enter the maximum number of frequent flyers
served between regular passengers 5
Enter the maximim service time in minutes 4
Enter the total simulation time in minutes 10
Display minute-by-minute trace of simulation (Y or N) y
Time is 0: Frequent Flyer Queue arrival, new queue size is 1
Time is 0: Serving Frequent Flyer Queue with time stamp 0
Time is 3: Server is idle
Time is 4: Frequent Flyer Queue arrival, new queue size is 1
Time is 4: Regular Passenger Queue arrival, new queue size is 1
Time is 4: Serving Regular Passenger Queue with time stamp 4
Time is 5: Regular Passenger Queue arrival, new queue size is 1
Time is 6: Regular Passenger Queue arrival, new queue size is 2
Time is 7: Frequent Flyer Queue arrival, new queue size is 2
Time is 7: Serving Frequent Flyer Queue with time stamp 4
Time is 8: Regular Passenger Queue arrival, new queue size is 3
Time is 9: Regular Passenger Queue arrival, new queue size is 4

The number of regular passengers served was 1
with an average waiting time of 0
The number of frequent flyers served was 2
with an average waiting time of 1.5
Passengers in frequent flyer queue: 1
Passengers in regular passenger queue: 4

398 Chapter 6 Queues and Deques

E X E R C I S E S F O R S E C T I O N 6 . 5
S E L F - C H E C K

1. Show the output that would be generated by running the simulation program
for 20 minutes with the following passenger arrivals when show_all is true and
frequent_flyer_max is 1.
A frequent flyer passenger arrives at clock = 0 and service time is 2
A regular passenger arrives at clock = 0 and service time is 1
A frequent flyer passenger arrives at clock = 1 and service time is 1
A regular passenger arrives at clock = 1 and service time is 1
A regular passenger arrives at clock = 2 and service time is 1
A frequent flyer passenger arrives at clock = 3 and service time is 3
A regular passenger arrives at clock = 3 and service time is 1
A regular passenger arrives at clock = 4 and service time is 2
A frequent flyer passenger arrives at clock = 5 and service time is 2

2. Answer Self-Check Exercise 1 when frequent_flyer_max is 2.
3. Function run_simulation begins with the statements

frequent_flyer_queue.check_new_arrival(clock, show_all);
regular_passenger_queue.check_new_arrival(clock, show_all);

Would exchanging the order of these statements change the result? Explain your
answer.

P R O G R A M M I N G

1. Run the Airline_Checkin_Sim program with a variety of inputs to determine the
maximum passenger arrival rate for a given average processing time and the
effect of the frequent flyer service policy.

2. Modify the Airline_Checkin_Sim program to simulate every second of simulated
time. Does this affect the results?

3. Write function enter_data.

C h a p t e r R e v i e w
◆ The queue is an abstract data type with a first-in, first-out, or FIFO, structure.

This means that the item that has been in the queue the longest will be the first
one removed. Queues can be used to represent reservation lists and waiting lines
(from which the data structure gets its name “queue”).

◆ The C++ standard queue declares functions push to insert an item at the back, pop
to remove an item from the front, and front to access the item at the front.

◆ We discussed three ways to implement the Queue ADT: as a double-linked list, a
single-linked list, and a circular array. All three implementations support insertion
and removal in O(1) time; however, there will be a need for reallocation in the cir-
cular array implementation (amortized O(1) time).

◆ To avoid the cost of building a physical system or running an actual experiment,
computer simulation can be used to evaluate the expected performance of a sys-
tem or operational strategy. We showed how to do this using a pair of queues to
simulate passengers waiting for service at an airline ticket counter. We used
pseudorandom numbers to determine whether a particular event occurs.

◆ The C++ standard deque combines the features of a stack, queue, vector, and
linked list. It provides for constant-time insertion and removal from ether end,
and random access. The STL implementation is designed to reduce the cost of
reallocation and the space overhead that is encountered with large vectors of large
objects. The C++ standard library uses the deque as the default container to imple-
ment both the stack and the queue.

Quick-Check Exercises
1. A queue is a _____-in, _____-out data structure.
2. Would a compiler use a stack or a queue in a program that converts infix expressions

to postfix?
3. Would an operating system use a stack or a queue to determine which print job should

be handled next?
4. Assume that a queue q of capacity 6 (circular array for storage) contains the five char-

acters +, *, –, &, and #, where + is the first character inserted. Assume that + is stored
in the first position in the array. What is the value of q.front_index? What is the
value of q.rear_index?

5. Remove the first element from the queue in Exercise 4 and insert the characters \ and
then %. Draw the new queue. What is the value of q.front_index? What is the value
of q.rear_index?

6. If a single-linked list were used to implement the queue in Question 5, the character
______ would be at the head of the list and the character ______ would be at the tail
of the list.

7. For a nonempty queue implemented as a single-linked list, the statement ______ would
be used inside function push to store a new node whose data field is referenced by
item in the queue; the statement ______ would be used to disconnect a node after its
data was retrieved from the queue.

8. Pick the queue implementation (circular array, single-linked list, double-linked list,
deque) that is most appropriate for each of the following conditions.
a. Storage must be reallocated when the queue is full.
b. This implementation is normally most efficient in use of storage.
c. This is an existing class in the C++ STL.

9. Write an if statement that uses a pseudorandom number to assign "heads" or
"tails" to a variable coin_flip. The probability of each should be 0.5. Assume the
declaration Random my_random;.

10. Write a statement that uses a pseudorandom number to assign a value of 1 through 6
to a variable die, where each number is equally likely. Assume the declaration Random
my_random;.

Answers to Quick-Check Exercises
1. first, first
2. stack
3. queue
4. q.front_index is 0; q.rear_index is 4.

Chapter 6 Review 399

5.

q.front_index is 1; q.rear_index is 0.
6. '*', '%'
7. For insertion: back_of_queue->next = new Node(item, NULL);

To disconnect the node to be removed: front_of_queue = front_of_queue->next;
8. a. Circular array

b. Single-linked list
c. Deque

9. if (my_random.next_double() < 0.5)
coin_flip = "heads";

else
coin_flip = "tails";

10. die = 1 + 6 * my_random.next_int();

Review Questions
1. Show the effect of each of the following operations on queue q. Assume that y (type

char) contains the character '&'. What are the final values of x and success (type
bool) and the contents of queue q?
queue<char> q;
bool success = true;
char x;
q.push('+');
x = q.pop();
x = q.pop();
success = true;
q.push('(');
q.push(y);
x = q.pop();
success = true;

2. Write a new queue function called move_to_rear that moves the element currently at
the front of the queue to the rear of the queue. The element that was second in line will
be the new front element. Do this using functions push, front, and pop.

3. Answer Question 2 without using functions push or pop for a single-linked list imple-
mentation of queue. You will need to manipulate the queue internal data fields directly.

4. Answer Question 2 without using functions push or pop for a circular array implemen-
tation of queue. You will need to manipulate the queue internal data fields directly.

5. Write a new queue function called move_to_front that moves the element at the rear of
the queue to the front of the queue, while the other queue elements maintain their relative
positions behind the old front element. Do this using functions push, front, and pop.

6. Answer Question 5 without using push and pop for a single-linked list implementation
of the queue.

7. Answer Question 5 without using functions push or pop for a circular array implemen-
tation of the queue.

%
*
-
&
#
\

q.rear_index

q.front_index

400 Chapter 6 Queues and Deques

Programming Projects
1. Complete the definition file for class KW::queue by providing declarations for the copy

constructor, assignment operator, destructor, and swap member function. Also define a
specialization for the swap function following the class definition. Implement these oper-
ators as needed in files Linked_Queue.tc and Array_Queue.tc. Test your industrial-
strength queue by adding extra operations to Maintain_Queue such as calls to destroy
the queue and copy the queue.

2. Redo Project 6 from Chapter 5, assuming that widgets are shipped using a first-in, first-
out inventory system.

3. Complete the implementation of the CArray class and the deque class.
4. Write a program that simulates the operation of a busy airport that has only two run-

ways to handle all takeoffs and landings. You may assume that each takeoff or landing
takes 15 minutes to complete. One runway request is made during each five-minute time
interval, and the likelihood of a landing request is the same as for a takeoff request.
Priority is given to planes requesting a landing. If a request cannot be honored, it is
added to a takeoff or landing queue.

Your program should simulate 120 minutes of activity at the airport. Each request
for runway clearance should be time-stamped and added to the appropriate queue. The
output from your program should include the final queue contents, the number of take-
offs completed, the number of landings completed, and the average number of minutes
spent in each queue.

5. An operating system assigns jobs to print queues based on the number of pages to be
printed (less than 10 pages, less than 20 pages, or more than 20 pages but less than 50
pages). You may assume that the system printers are able to print 10 pages per minute.
Smaller print jobs are printed before larger print jobs, and print jobs of the same prior-
ity are queued up in the order in which they are received. The system administrators
would like to compare the time required to process a set of print jobs using 1, 2, or 3
system printers.

Write a program that simulates processing 100 print jobs of varying lengths using 1,
2, or 3 printers. Assume that a print request is made every minute and that the number
of pages to print varies from 1 to 50 pages.

The output from your program should indicate the order in which the jobs were
received, the order in which they were printed, and the time required to process the set
of print jobs. If more than one printer is being used, indicate which printer each job was
printed on.

6. Write a menu-driven program that uses an array of queues to keep track of a group of
executives as they are transferred from one department to another, get paid, or become
unemployed. Executives within a department are paid based on their seniority, with the
person who has been in the department the longest receiving the most money. Each per-
son in the department receives $1000 in salary for each person in her department having
less seniority than she has. Persons who are unemployed receive no compensation.

Your program should be able to process the following set of commands:

Chapter 6 Review 401

Join <person> <department> <person> is added to <department>.

Quit <person> <person> is removed from his or her department.

Change <person> <department> <person> is moved from old department to
<department>.

Payroll Each executive’s salary is computed and displayed
by department in decreasing order of seniority.

Hint: You might want to include a table that contains each executive’s name and infor-
mation and the location of the queue that contains his or her name, to make searching
more efficient.

7. Simulate the operation of a bank. Customers enter the bank, and there are one or more
tellers. If a teller is free, that teller serves the customer. Otherwise the customer enters
the queue and waits until a teller is free. Your program should accept the following
inputs:

• The arrival rate for the customers
• The average processing time
• The number of tellers
Use your program to determine how many tellers are required for a given arrival rate
and average processing time.

8. Simulate a checkout area of a supermarket consisting of one super-express counter, two
express counters, and num_std_lines standard counters. All customers with num_super
or fewer items proceed to a super-express counter with the fewest customers, unless
there is a free express or regular line, and those with between num_super and num_exp
proceed to the express counter with the shortest line unless there is a free standard line.
Customers with more than num_exp go to the standard counter with the shortest stan-
dard line.

The number of items bought will be a random number in the range 1 to max_items.
The time to process a customer is 5 seconds per item.

Calculate the following statistics:

• Average waiting time for each of the lines
• Overall average waiting time
• Maximum length of each line
• Number of customers per hour for each line and overall
• Number of items processed per hour for each line and overall
• Average free time of each counter
• Overall free time
Note: The average waiting time for a line is the total of the customer waiting times
divided by the number of customers. A customer’s waiting time is the time from when he
(or she) enters the queue for a given checkout line until the checkout processing begins.
If the customer can find a free line, then the wait time is zero.

Your program should read the following data:

402 Chapter 6 Queues and Deques

num_super The number of items allowed in the super-express line.

num_exp The number of items allowed in the express line.

num_std_lines The number of standard lines.

arrival_rate The arrival rate of customers per hour.

max_items The maximum number of items.

max_sim_time The simulation time.

It may be that some lines do not get any business. In that case you must be sure, in cal-
culating the average, not to divide by zero.

C h a p t e r O b j e c t i v e s

◆ To understand how to think recursively
◆ To learn how to trace a recursive function
◆ To learn how to write recursive algorithms and functions for searching arrays
◆ To understand how to use recursion to solve the Towers of Hanoi problem
◆ To understand how to use recursion to process two-dimensional images
◆ To learn how to apply backtracking to solve search problems such as finding a path

through a maze

403

Recursion

C h a p t e r 7

This chapter introduces a programming technique called recursion and shows
you how to think recursively. You can use recursion to solve many kinds of
programming problems that would be very difficult to conceptualize and solve

without recursion. Computer scientists in the field of artificial intelligence (AI) often
use recursion to write programs that exhibit intelligent behavior: playing games
such as chess, proving mathematical theorems, recognizing patterns, and so on.

In the beginning of the chapter you will be introduced to recursive thinking and
how to design a recursive algorithm and prove that it is correct. You will also learn
how to trace a recursive function and use activation frames for this purpose.

Recursive algorithms and functions can be used to perform common mathe-
matical operations such as computing a factorial or a greatest common divisor.
Recursion can be used to process familiar data structures such as strings, arrays, and
linked lists and to design a very efficient array search technique called binary search.

Recursion can be used to solve a variety of other problems. The case studies
in this chapter use recursion to solve a game, to search for “blobs” in a two-
dimensional image, and to find a path through a maze.

7.1 Recursive Thinking

Recursion is a problem-solving approach that can be used to generate simple solu-
tions to certain kinds of problems that would be difficult to solve in other ways. In
a recursive algorithm the original problem is split into one or more simpler versions
of itself. For example, if the solution to the original problem involved n items, recur-
sive thinking might split it into two problems: one involving n – 1 items and one
involving just a single item. Then the problem with n – 1 items could be split again
into one involving n – 2 items and one involving just a single item, and so on. If the
solution to all the one-item problems is “trivial,” we can build up the solution to
the original problem from the solutions to the simpler problems.

As an example of how this might work, consider a collection of nested wooden fig-
ures as shown in Figure 7.1. If you wanted to write an algorithm to “process” this
collection in some way (such as counting the figures or painting a face on each fig-
ure), you would have difficulty doing it, because you don’t know how many objects
are in the nest. But you could use recursion to solve the problem in the following
way:

Recursive Algorithm to Process Nested Figures
1. if there is one figure in the nest
2. Do whatever is required to the figure.

else

3. Do whatever is required to the outer figure in the nest.
4. Process the nest of figures inside the outer figure in the same way.

In this recursive algorithm, the solution is trivial if there is only one figure: Perform
Step 2. If there is more than one figure, perform Step 3 to process the outer figure.
Step 4 is the recursive operation—recursively process the nest of figures inside the
outer figure. This nest will, of course, have one less figure than before, so it is a sim-
pler version of the original problem.

404 Chapter 7 Recursion

R e c u r s i o n

7.1 Recursive Thinking
7.2 Recursive Definitions of Mathematical Formulas
7.3 Recursive Search
7.4 Problem Solving with Recursion

Case Study: Towers of Hanoi
Case Study: Counting Cells in a Blob

7.5 Backtracking
Case Study: Finding a Path Through a Maze

As another example, let’s consider searching for a target value in an array. Assume
that the array elements are sorted and are in increasing order. A recursive approach,
which we will study in detail in Section 7.3, involves replacing the problem of
searching an array of n elements with one of searching an array of n/2 elements.
How do we do that? We compare the target value to the value of the element in the
middle of the sorted array. If there is a match, we have found the target. If not, based
on the result of the comparison, we search either the elements that come before the
middle one or the elements that come after the middle one. So we have replaced the
problem of searching an array with n elements to one that involves searching a
smaller array with only n/2 elements. The recursive algorithm follows.

Recursive Algorithm to Search an Array
1. if the array is empty
2. Return –1 as the search result.

else if the middle element matches the target
3. Return the subscript of the middle element as the result.

else if the target is less than the middle element
4. Recursively search the array elements before the middle element

and return the result.
else

5. Recursively search the array elements after the middle element and
return the result.

The condition in Step 1 is true when there are no elements left to search. Step 2
returns –1 to indicate that the search failed. Step 3 executes when the middle ele-
ment matches the target. Otherwise, we recursively apply the search algorithm
(Steps 4 and 5), thereby searching a smaller array (approximately half the size), and
return the result. For each recursive search, the region of the array being searched
will be different, so the middle element will also be different.

The two recursive algorithms we showed so far follow this general approach:

General Recursive Algorithm
1. if the problem can be solved directly for the current value of n
2. Solve it.

else

3. Recursively apply the algorithm to one or more problems involving
smaller values of n.

4. Combine the solutions to the smaller problems to get the solution to
the original.

7.1 Recursive Thinking 405

F I G U R E 7. 1
A Set of Nested
Wooden Figures

Step 1 involves a test for what is called the base case: the value of n for which the
problem can be solved easily. Step 3 is the recursive case, because there we recur-
sively apply the algorithm. Because the value of n for each recursive case is smaller
than the original value of n, each recursive case makes progress towards the base
case. Whenever a split occurs, we revisit Step 1 for each new problem to see whether
it is a base case or a recursive case.

Steps to Design a Recursive Algorithm
From what we have seen so far, we can summarize the characteristics of a recursive
solution:

• There must be at least one case (the base case), for a small value of n, that can
be solved directly.

• A problem of a given size (say, n) can be split into one or more smaller versions
of the same problem (the recursive case).

Therefore, to design a recursive algorithm, we must

• Recognize the base case and provide a solution to it.
• Devise a strategy to split the problem into smaller versions of itself. Each recur-

sive case must make progress toward the base case.
• Combine the solutions to the smaller problems in such a way that each larger

problem is solved correctly.

Next we look at a recursive algorithm for a common programming problem. We
will also provide a C++ function that solves this problem. All of the functions in this
section and in the next will be found in file Recursive_Functions.cpp on this text-
book’s Web site.

E X A M P L E 7 . 1 Let’s see how we could write our own recursive function for finding string length.
How would you go about doing this? If there is a special character that marks the
end of a string, then you can count all the characters that precede this special char-
acter. But if there is no special character, you might try a recursive approach. The
base case is an empty string—its length is 0. For the recursive case, consider that
each string has two parts: the first character and the “rest of the string.” If you can
find the length of the “rest of the string,” you can then add 1 (for the first charac-
ter) to get the length of the larger string. For example, the length of "abcde" is 1 +
the length of "bcde".

Recursive Algorithm for Finding the Length of a String
1. if the string is empty (has no characters)
2. The length is 0.

else

3. The length is 1 plus the length of the string that excludes the first
character.

406 Chapter 7 Recursion

We can implement this algorithm as a function with a string argument. The test for
the base case is a string that contains no characters (""). In that case, the length is
0. In the recursive case,

return 1 + size(str.substr(1));

the function call str.substr(1) returns a string containing all characters in string
str except for the character at position 0. Then we call function size again with this
substring as its argument. The function result is one more than the value returned
from the next call to size. Each time we reenter function size, the if statement exe-
cutes with str referencing a string containing all but the first character in the previ-
ous call. Function size is called a recursive function because it calls itself.

/** Recursive function size (in Recursive_Functions.cpp).
@param str The string
@return The length of the string

*/
int size(string str) {
if (str == "")
return 0;

else
return 1 + size(str.substr(1));

}

E X A M P L E 7 . 2 Function print_chars is a recursive function that displays each character in its string
argument on a separate line. In the base case (an empty string), the function return
occurs immediately and nothing is displayed. In the recursive case, print_chars dis-
plays the first character of its string argument and then calls itself to display the
characters in the rest of the string. If the initial call is print_chars("hat"), the func-
tion will display the lines

h
a
t

Unlike function size in Example 7.1, print_chars is a void function. However, both
functions follow the format for the general recursive algorithm shown earlier.

/** Recursive function print_chars (in Recursive_Functions.cpp).
post: The argument string is displayed, one character per line.
@param str The string

*/
void print_chars(string str) {
if (str == "") {
return;

} else {
cout << str.at(0) << endl;
print_chars(str.substr(1));

}
}

7.1 Recursive Thinking 407

You get an interesting result if you reverse the two statements in the recursive case.
/** Recursive function print_chars_reverse (in Recursive_Functions.cpp).

post: The argument string is displayed in reverse,
one character per line.

@param str The string
*/
void print_chars_reverse(string str) {
if (str == "") {
return;

} else {
print_chars_reverse(str.substr(1));
cout << str.at(0) << endl;

}
}

Function print_chars_reverse calls itself to display the rest of the string before dis-
playing the first character in the current string argument. The effect will be to delay
displaying the first character in the current string until all characters in the rest of
the string are displayed. Consequently, the characters in the string will be displayed
in reverse order. If the initial call is print_chars_reverse("hat"), the function will
display the lines

t
a
h

Proving That a Recursive Function Is Correct
To prove that a recursive function is correct, you must verify that you have per-
formed correctly the design steps listed earlier. You can use a technique that mathe-
maticians use to prove that a theorem is true for all values of n. A proof by
induction works the following way:

• Prove the theorem is true for the base case of (usually) n = 0 or n = 1.
• Show that if the theorem is assumed true for n, then it must be true for n + 1.

We can extend the notion of an inductive proof and use it as the basis for proving
that a recursive algorithm is correct. To do this:

• Verify that the base case is recognized and solved correctly.
• Verify that each recursive case makes progress toward the base case; that is, any

new problems generated are smaller versions of the original problem.
• Verify that if all smaller problems are solved correctly, then the original prob-

lem is also solved correctly.

If you can show that your algorithm satisfies these three requirements, then your
algorithm will be correct.

E X A M P L E 7 . 3 To prove that the size function is correct, we know that the base case is an empty
string, and its length is correctly set at 0. The recursive case involves a call to size
with a smaller string, so it is making progress toward the base case. Finally, if we

408 Chapter 7 Recursion

know the length of the rest of the string, adding 1 gives us the length of the longer
string consisting of the first character and the rest of the string.

Tracing a Recursive Function
Figure 7.2 traces the execution of the function call size("ace"). The diagram shows
a sequence of recursive calls to function size. After returning from each call to size,
we complete execution of the statement return 1 + size(...); by adding 1 to the
result so far and then returning from the current call. The final result, 3, would be
returned from the original call. The arrow alongside each word return shows which
call to size is associated with that result. For example, 0 is the result of the function
call size(""). After adding 1, we return 1, which is the result of the call size("e"),
and so on. This process of returning from the recursive calls and computing the par-
tial results is called unwinding the recursion.

The Stack and Activation Frames
You can also trace a recursive function by showing what C++ does when one func-
tion calls another. C++ maintains a stack, on which it saves new information in the
form of an activation frame. The activation frame contains storage for the function
arguments and any local variables as well as the return address of the instruction
that called the function. Whenever a function is called, C++ pushes a new activation
frame onto the stack and saves this information on the stack. This is done whether
the function is recursive or not.

The left side of Figure 7.3 shows the activation frames on the stack after the last
recursive call (corresponding to size("")) resulting from an initial call to
size("ace"). At any given time, only the frame at the top of the stack is accessible,
so its argument values will be used when the function instructions execute. When
the return statement executes, control will be passed to the instruction at the spec-
ified return address, and this frame will be popped from the stack (Figure 7.3, right).
The activation frame corresponding to the next-to-last call (size("e")) is now
accessible.

F I G U R E 7. 2
Trace of size("ace")

7.1 Recursive Thinking 409

return 1 + size("ce");

size("ace")

return 1 + size("e");

return 1 + size("");

2

3

1

0

F I G U R E 7. 3
Stack Before and After Removal of Frame for size("")

410 Chapter 7 Recursion

str: ""
return address in size("e")

Frame for
size("")

Frame for
size("e")

Frame for
size("ce")

Frame for
size("ace")

Frame for
size("e")

Frame for
size("ce")

Frame for
size("ace")

str: "e"
return address in size("ce")

str: "ce"
return address in size("ace")

str: "ace"
return address in caller

str: "e"
return address in size("ce")

str: "ce"
return address in size("ace")

str: "ace"
return address in caller

Run-time stack after all calls Run-time stack after return from last call

F I G U R E 7. 4
Trace of size("ace")
Using Activation Frames

str: "ace"
"ace" == "" is false
return 1 + size("ce");

str: "ce"
"ce" == "" is false
return 1 + size("e");

str: "e"
"e" == "" is false
return 1 + size("");

str: ""
"" == "" is true
return 0

size("ace")

size("ce")

size("e")

size("")

3

2

1

0

You can think of the stack for a sequence of calls to a recursive function as an office
tower in which an employee on each floor has the same list of instructions. The
employee in the bottom office carries out part of the instructions on the list, calls
the employee in the office above, and is put on hold. The employee in the office
above starts to carry out the list of instructions, calls the employee in the next higher
office, is put on hold, and so on. When the employee on the top floor is called, that

employee carries out the list of instructions to completion and then returns an
answer to the employee below. The employee below then resumes carrying out the
list of instructions and returns an answer to the employee on the next lower floor,
and so on, until an answer is returned to the employee in the bottom office, who
then resumes carrying out the list of instructions.

To make the flow of control easier to visualize, we will draw the activation frames
from the top of the page down (see Figure 7.4). For example, the activation frame
at the top, which would actually be at the bottom of the stack, represents the first
call to the recursive function. The downward-pointing arrows connect each state-
ment that calls a function with the frame for that particular execution of the func-
tion. The upward-pointing arrows show the return point from each lower-level call
with the value returned alongside the arrow. For each frame, the return point is to
the addition operator in the statement return 1 + size(...); For each frame, the
code in the color screen is executed prior to the creation of the next activation
frame; the rest of the code shown is executed after the return.

E X E R C I S E S F O R S E C T I O N 7. 1

S E L F - C H E C K

1. Trace the execution of the call mystery(4) for the following recursive function
using the technique shown in Figure 7.2. What does this function do?
int mystery(int n) {
if (n == 0)
return 0;

else
return n * n + mystery(n – 1);

}

2. Answer Exercise 1 using activation frames.
3. Trace the execution of print_chars("tic") (Example 7.2) using activation

frames.
4. Trace the execution of print_chars_reverse("toc") using activation frames.
5. Prove that the print_chars function is correct.

P R O G R A M M I N G

1. Write a recursive function to_number that forms the integer sum of all digit char-
acters in a string. For example, the result of to_number("3ac4") would be 7. Hint:
If next is a digit character ('0' through '9'), function is_digit(next) in header
<cctype> will return true.

2. Write a recursive function repeater that returns a string with each character in
its argument repeated. For example, if the string passed to repeater is "hello",
repeater will return the string "hheelllloo".

7.1 Recursive Thinking 411

7.2 Recursive Definitions of Mathematical Formulas

Mathematicians often use recursive definitions of formulas. These definitions lead
very naturally to recursive algorithms.

E X A M P L E 7 . 4 The factorial of n, or n!, is defined as follows:

0! = 1

n! = n � (n – 1)!

The first formula identifies the base case: n equal to 0. The second formula is a
recursive definition. It leads to the following algorithm for computing n!.

Recursive Algorithm for Computing n !
1. if n equals 0
2. n! is 1.

else

3. n! = n � (n – 1)!

To verify the correctness of this algorithm, we see that the base case is solved cor-
rectly (0! is 1). The recursive case makes progress toward the base case, because it
involves the calculation of a smaller factorial. Also, if we can calculate (n – 1)! , the
recursive case gives us the correct formula for calculating n!.

The recursive function follows. The statement
return n * factorial(n – 1);

implements the recursive case. Each time factorial calls itself, the function body
executes again with a different argument value. An initial function call such as fac-
torial(4) will generate four recursive calls, as shown in Figure 7.5.

/** Recursive factorial function (in Recursive_Functions.cpp).
pre: n >= 0
@param n The integer whose factorial is being computed
@return n!

*/
int factorial(int n) {
if (n == 0)
return 1;

else
return n * factorial(n – 1);

}

412 Chapter 7 Recursion

F I G U R E 7. 5
Trace of factorial(4)

7.2 Recursive Definitions of Mathematical Formulas 413

return 4 * factorial(3);

factorial(4)

return 3 * factorial(2);

return 2 * factorial(1);

6

24

2

return 1 * factorial(0);1

1

P I T F A L L

Infinite Recursion and Stack Overflow
If you call function factorial with a negative argument, you will see that the recursion
does not terminate. It will continue forever, because the stopping case, n equals 0, can
never be reached, as n gets more negative with each call. For example, if the original
value of n is –4, you will make function calls factorial(–5), factorial(–6),
factorial(–7), and so on. You should make sure that your recursive functions are
constructed so that a stopping case is always reached. One way to prevent the infinite
recursion in this case would be to change the terminating condition to n <= 0. How-
ever, this would incorrectly return a value of 1 for n! if n is negative. A better solution
would be to throw an invalid_argument exception if n is negative.

If your program does not terminate properly, you may see an extremely long display on
the console (if the console is being used to display its results). However, if the recursive
call occurs before any output is displayed, you will see no output. Eventually you will
get a run-time error because there is no more memory available for your program to
execute any more function calls.

E X A M P L E 7 . 5 Let’s develop a recursive function that raises a number x to a power n. You can raise
a number to a power that is greater than 0 by repeatedly multiplying that number
by itself. So if we know xk, we can get xk+1 by multiplying xk by x. The recursive
definition is

xn = x � xn–1

This gives us the first recursive case. You should know that any number raised to
the power 0 is 1, so the base case is

x0 = 1

What happens if n is negative? In this case, the answer can be determined by calling
the recursive function with –n (a positive integer) as the argument and dividing 1.0
by this result. So there are two recursive cases, as follows.

xn = 1.0 / x–n, for n < 0

Recursive Algorithm for Calculating x n

1. if n is 0
2. The result is 1.

else if n is greater than 0
3. The result is x � xn–1.

else if n is less than 0
4. The result is 1.0 / x–n.

We show the function next.
/** Recursive power function (in Recursive_Functions.cpp).

@param x The number being raised to a power
@param n The exponent
@return x raised to the power n

*/
double power(double x, int n) {
if (n == 0)
return 1;

else if (n > 0)
return x * power(x, n – 1);

else
return 1.0 / power(x, -n);

}

E X A M P L E 7 . 6 The greatest common divisor (gcd) of two numbers is the largest integer that divides
both numbers. For example, the gcd of 20, 15 is 5; the gcd of 36, 24 is 12; the gcd
of 36, 18 is 18. The mathematician Euclid devised an algorithm for finding the great-
est common divisor of two integers, m and n, based on the following definition:

Definition of gcd(m, n) for m > n
gcd(m, n) = n if n is a divisor of m
gcd(m, n) = gcd(n, m % n) if n isn’t a divisor of m

This definition states that gcd(m, n) is n if n divides m. This is correct, because no
number larger than n can divide n. Otherwise, the definition states that gcd(m, n) is
the same as gcd(n, m % n), where m % n is the integer remainder of m divided by
n. Therefore, gcd(20, 15) is the same as gcd(15, 5), or 5, because 5 divides 15. This
recursive definition leads naturally to a recursive algorithm.

414 Chapter 7 Recursion

Recursive Algorithm for Calculating gcd(m, n) for m > n
1. if n is a divisor of m
2. The result is n.

else

3. The result is gcd(n, m % n).

To verify that this is correct, we need to make sure that there is a base case and that
it is solved correctly. The base case is “n is a divisor of m.” If so, the solution is n
(n is the greatest common divisor), which is correct. Does the recursive case make
progress toward the base case? It must, because both arguments in each recursive
call are smaller than in the previous call, and the new second argument is always
smaller than the new first argument (m % n must be less than n). Eventually a divi-
sor will be found or the second argument will become 1. Since 1 is a base case (1
divides every integer), we have verified that the recursive case makes progress
toward the base case.

Next, we show function gcd. Notice that the function introduces a new recursive
case that transposes m and n if the initial value of n happens to be larger than m:

else if (m < n)
return gcd(n, m);

This clause allows us to handle arguments that initially are not in the correct
sequence.

/** Recursive gcd function (in Recursive_Functions.cpp).
pre: m > 0 and n > 0
@param m The larger number
@param n The smaller number
@return Greatest common divisor of m and n

*/
int gcd(int m, int n) {
if (m % n == 0)
return n;

else if (m < n)
return gcd(n, m); // Transpose arguments.

else
return gcd(n, m % n);

}

Recursion Versus Iteration
You may have noticed that there are some similarities between recursion and itera-
tion. Both techniques enable us to repeat a compound statement. In iteration, a loop
repetition condition in the loop header determines whether we repeat the loop body
or exit from the loop. We repeat the loop body while the repetition condition is true.
In recursion, the condition usually tests for a base case. We stop the recursion when
the base case is reached (the condition is true), and we execute the function body
again when the condition is false. We can always write an iterative solution to a
problem that is solvable by recursion. However, the recursive algorithm may be eas-
ier to conceptualize and may, therefore, lead to a function that is easier to write,
read, and debug—all of which are very desirable attributes of code.

7.2 Recursive Definitions of Mathematical Formulas 415

Tail Recursion or Last-Line Recursion
Most of the recursive algorithms and functions you have seen so far are examples
of tail recursion or last-line recursion. In these algorithms, there is a single recursive
call and it is the last line of the function. An example is the factorial function in
Example 7.4.

int factorial(int n) {
if (n == 0)
return 1;

else
return n * factorial(n – 1);

}

It is a straightforward process to turn such a function into an iterative one, replac-
ing the if statement with a loop, as we show next.

E X A M P L E 7 . 7 An iterative version of the factorial function follows.
/** Iterative factorial function.

pre: n >= 0
@param n The integer whose factorial is being computed
@return n!

*/
int factorial_iter(int n) {
int result = 1;
for (int k = 1; k <= n; k++)
result = result * k;

return result;
}

Efficiency of Recursion
The iterative function factorial_iter multiplies all integers between 1 and n to
compute n!. It may be slightly less readable than the recursive function factorial,
but not much. In terms of efficiency, both algorithms are O(n), because the number
of loop repetitions or recursive calls increases linearly with n. However, the iterative
version is probably faster, because the overhead for a function call and return would
be greater than the overhead for loop repetition (testing and incrementing the loop
control variable). The difference, though, would not be significant. Generally, if it is
easier to conceptualize an algorithm using recursion, then you should code it as a
recursive function, because the reduction in efficiency does not outweigh the advan-
tage of readable code that is easy to debug.

A second factor to consider when discussing efficiency is memory usage. A recursive
version can require significantly more memory that an iterative version because of
the need to save local variables and parameters on a stack. The next example illus-
trates a simple recursive solution that is very inefficient in terms of time and mem-
ory utilization.

416 Chapter 7 Recursion

E X A M P L E 7 . 8 The Fibonacci numbers fibn are a sequence of numbers that were invented to model
the growth of a rabbit colony. Therefore, we would expect this sequence to grow
very quickly, and it does. For example, fib10 is 55, fib15 is 610, fib20 is 6,765, and
fib25 is 75,025 (that’s a lot of rabbits!). The definition of this sequence follows:

fib1 = 1
fib2 = 1
fibn = fibn–1 + fibn–2

Next, we show a function that calculates the nth Fibonacci number. The last line
codes the recursive case.

/** Recursive function to calculate Fibonacci numbers
(in Recursive_Functions.cpp).
pre: n >= 1.
@param n The position of the Fibonacci number being calculated
@return The Fibonacci number

*/
int fibonacci(int n) {
if (n <= 2)
return 1;

else
return fibonacci(n – 1) + fibonacci(n – 2);

}

Unfortunately, this solution is very inefficient because of multiple calls to fibonacci
with the same argument. For example, calculating fibonacci(5) results in calls to
fibonacci(4) and fibonacci(3). Calculating fibonacci(4) results in calls to
fibonacci(3) (second call) and also fibonacci(2). Calculating fibonacci(3) twice
results in two more calls to fibonacci(2) (three calls total), and so on (see Figure
7.6).

Because of the redundant function calls, the time required to calculate fibonacci(n)
increases exponentially with n. For example, if n is 100, there are approximately
2100 activation frames. This number is approximately 1030. If you could process one
million activation frames per second, it would still take 1024 seconds, which is
approximately 3 � 1016 years. However, it is possible to write recursive functions
for computing Fibonacci numbers that have O(n) performance. We show one such
function next.

/** Recursive O(n) function to calculate Fibonacci numbers
(in Recursive_Functions.cpp).
pre: n >= 1
@param fib_current The current Fibonacci number
@param fib_previous The previous Fibonacci number
@param n The count of Fibonacci numbers left to calculate
@return The value of the Fibonacci number calculated so far

*/
int fibo(int fib_current, int fib_previous, int n) {
if (n == 1)
return fib_current;

else
return fibo(fib_current + fib_previous, fib_current, n – 1);

}

7.2 Recursive Definitions of Mathematical Formulas 417

fibonacci(5)

fibonacci(4)

fibonacci(3) fibonacci(2) fibonacci(2) fibonacci(1)

fibonacci(3)

fibonacci(2) fibonacci(1)

F I G U R E 7. 6
Function Calls Resulting
from fibonacci(5)

418 Chapter 7 Recursion

Unlike function fibonacci, function fibo does not follow naturally from the recur-
sive definition of the Fibonacci sequence. In function fibo the first argument is
always the current Fibonacci number, and the second argument is the previous one.
We update these values for each new call. When n is 1 (the base case), we have cal-
culated the required Fibonacci number, so we return its value (fib_current). The
recursive case,

return fibo(fib_current + fib_previous, fib_current, n – 1);

passes the sum of the current Fibonacci number and the previous Fibonacci number
to the first parameter (the new value of fib_current); it passes the current Fibonacci
number to the second parameter (the new value of fib_previous); and it decrements
n, making progress toward the base case.

To start this function executing, we need the following wrapper function, which is not
recursive. This function is called a wrapper function because its only purpose it to call
the recursive function and return its result. Its parameter, n, specifies the position in
the Fibonacci sequence of the number we want to calculate. It calls the recursive func-
tion fibo, passing the first Fibonacci number as its first argument and n as its third.

/** Wrapper function for calculating Fibonacci numbers
(in Recursive_Functions.cpp).
pre: n >= 1
@param n The position of the desired Fibonacci number
@return The value of the nth Fibonacci number

*/
int fibonacci_start(int n) {
return fibo(1, 0, n);

}

Figure 7.7 traces the execution of the function call fibonacci_start(5). Notice that
the first arguments for the function calls to fibo form the sequence 1, 1, 2, 3, 5,
which is the Fibonacci sequence. Also notice that the result of the first return (5) is
simply passed on by each successive return. That is because the recursive case does
not specify any operations other than returning the result of the next call.

F I G U R E 7. 7
Trace of
fibonacci_start(5)

E X E R C I S E S F O R S E C T I O N 7. 2
S E L F - C H E C K

1. Does the recursive algorithm for raising x to the power n work for negative val-
ues of n? Does it work for negative values of x? Indicate what happens if it is
called for each of these cases.

2. Trace the execution of fibonacci_start(5) using activation frames.
3. For each of the following function calls, show the argument values in the activa-

tion frames that would be pushed onto the stack.
a. gcd(6, 21)

b. factorial(5)
c. gcd(31, 7)

d. fibonacci(6)
e. fibonacci_start(7)

4. See for what value of n function fibonacci begins to take a long time to run on
your computer (over 1 minute). Compare the performance of fibonacci_start
and fibo for this same value.

P R O G R A M M I N G

1. Write a recursive function for raising x to the power n that works for negative n
as well as positive n.

2. Modify the factorial function to throw an invalid_argument exception if n is negative.
3. Write a program that has an iterative function for calculating Fibonacci numbers.

Use an array that saves each Fibonacci number as it is calculated. Your function
should take advantage of the existence of this array so that subsequent calls to
the function simply retrieve the desired Fibonacci number if it has been calcu-
lated. If not, start with the largest Fibonacci number in the array rather than
repeating all calculations.

return fibo(1, 0, 5);

fibonacci_start(5)

return fibo(1, 1, 4);

return fibo(2, 1, 3);

5

5

5

return fibo(3, 2, 2);5

return fibo(5, 3, 1);5

5

7.2 Recursive Definitions of Mathematical Formulas 419

7.3 Recursive Search

Searching a vector is an activity that can be accomplished using recursion. The sim-
plest way to search a vector is a linear search. In a linear search, we examine one
vector element at a time, starting with the first element or the last element, to see
whether it matches the target. The vector element we are seeking may be anywhere
in the vector, so on average we will examine n/2 items to find the target if it is in the
vector. If it is not in the vector, we will have to examine all n elements (the worst
case). This means linear search is an O(n) algorithm.

Design of a Recursive Linear Search Algorithm
Let’s consider how we might write a recursive algorithm that returns the subscript
of a target item.

The base case would be an empty vector. If the vector is empty, the target cannot be
there, so the result should be –1. If the vector is not empty, we will assume that we
can examine just the first element of the vector, so another base case would be when
the first vector element matches the target. If so, the result should be the subscript
of the first vector element.

The recursive step would be to search the rest of the vector, excluding the first ele-
ment. So our recursive step should search for the target starting with the current sec-
ond vector element, which will become the first element in the next execution of the
recursive step. The algorithm follows.

Algorithm for Recursive Linear Search
1. if the vector is empty
2. The result is –1.

else if the first element matches the target
3. The result is the subscript of the first element.

else

4. Search the vector excluding the first element and return the result.

Implementation of Linear Search
The following function, linear_search, shows the linear search algorithm for a vec-
tor of type Item_Type.

/** Recursive linear search function (in linear_search.h).
@param items The vector being searched
@param target The item being searched for
@param pos_first The position of the current first element
@return The subscript of target if found; otherwise -1

*/
template<typename Item_Type>
int linear_search(const std::vector<Item_Type>& items,

const Item_Type& target, size_t pos_first) {

420 Chapter 7 Recursion

if (pos_first == items.size())
return -1;

else if (target == items[pos_first])
return pos_first;

else
return linear_search(items, target, pos_first + 1);

}

The function parameter pos_first represents the subscript of the current first ele-
ment. The first condition tests whether the vector left to search is empty. The con-
dition (pos_first == items.size()) is true when the subscript of the current first
element is beyond the bounds of the vector. If so, function linear_search returns –1.
The statement

return linear_search(items, target, pos_first + 1);

implements the recursive step; it increments pos_first to exclude the current first
element from the next search.

To search a vector<int> x for target, you could use the function call
linear_search(x, target, 0)

However, since the third argument would always be 0, we can define a nonrecursive
wrapper function (also called linear_search) that has just two parameters: items,
and target.

/** Wrapper for recursive linear search function (in linear_search.h).
@param items The vector being searched
@param target The object being searched for
@return The subscript of target if found; otherwise -1

*/
template<typename Item_Type>
int linear_search(const std::vector<Item_Type>& items,

const Item_Type& target) {
return linear_search(items, target, 0);

}

The sole purpose of this function is to call the recursive function, passing on its
arguments with 0 as a third argument, and return its result. This function definition
overloads the previous one.

Figure 7.8 traces the execution of the call to linear_search in the statement,
int pos_hello = linear_search(greetings, string("Hello"));

Where the vector<string> greetings contains {"Hi", "Hello", "Shalom"}. The value
returned to pos_hello will be 1.

Design of a Binary Search Algorithm
A second approach to searching is called binary search. Binary search can be per-
formed only on a vector (or array) that has been sorted. In binary search, the stop-
ping cases are the same as for linear search:

• When the vector is empty
• When the vector element being examined matches the target

7.3 Recursive Search 421

However, rather than examining the last vector element, binary search compares the
“middle” element to the target. If there is a match, it returns the position of the mid-
dle element. Otherwise, because the vector has been sorted, we know with certainty
which half of the vector must be searched to find the target. We then can exclude
the other half of the vector (not just one element as with linear search). The binary
search algorithm (first introduced in Section 7.1) follows.

Binary Search Algorithm
1. if the vector is empty
2. Return –1 as the search result.

else if the middle element matches the target
3. Return the subscript of the middle element as the result.

else if the target is less than the middle element
4. Recursively search the vector elements before the middle element and

return the result.
else

5. Recursively search the vector elements after the middle element and
return the result.

422 Chapter 7 Recursion

F I G U R E 7. 8
Trace of linear_search(greetings, "Hello")

linear_search(greetings, "Hello")

items: {"Hi, "Hello", "Shalom"}
target: "Hello"
return linear_search(greetings, "Hello", 0);

linear_search(greetings, "Hello", 0)

items: {"Hi, "Hello", "Shalom"}
target: "Hello"
pos_first: 0
pos_first == items.size() is false
"Hello" == "Hi" is false
return linear_search(greetings, "Hello", 1)

linear_search(greetings, "Hello", 1)

items: {"Hi, "Hello", "Shalom"}
target: "Hello"
pos_first: 1
pos_first == items.size() is false
"Hello" == "Hello" is true
return 1

1

1

1

Figure 7.9 illustrates binary search for a vector with seven elements. The shaded ele-
ments are the ones that are being searched each time. The vector element in color is
the one that is being compared to the target. In the first call, we compare "Dustin"
to "Elliot". Because "Dustin" is smaller, we need to search only the part of the vec-
tor before "Elliot" (consisting of just 3 candidates). In the second call, we compare
"Dustin" to "Debbie". Because "Dustin" is larger, we need to search only the shaded
part of the vector after "Debbie" (consisting of just 1 candidate). In the third call, we
compare "Dustin" to "Dustin", and the subscript of "Dustin" (2) is our result. If there
were no match at this point (for example, the vector contained "Duncan" instead of
"Dustin"), the vector of candidates to search would become an empty array.

Efficiency of Binary Search
Because we eliminate at least half of the elements from consideration with each
recursive call, binary search is an O(log n) algorithm. To verify this, an unsuccessful
search of a vector of size 16 could result in our searching vectors of size 16, 8, 4, 2,
and 1 to determine that the target was not present. Thus a vector of size 16 requires
a total of 5 probes in the worst case (16 is 24, so 5 is log2 16 + 1). If we double the
size, we would need to make only 6 probes for a vector of size 32 in the worst case
(32 is 25, so 6 is log2 32 + 1). The advantages of binary search become even more
apparent for larger vectors. For a vector with 32,768 elements, the maximum num-

7.3 Recursive Search 423

target kid_names

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = 0 middle = 3 last = 6

First call

target kid_names

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = 0

middle = 1

last = 2

Second call

target kid_names

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = middle = last = 2

Third call

F I G U R E 7. 9
Binary Search for "Dustin"

ber of probes required would be 16 (log2 32,768 is 15), and if we expand the vector
to 65,536 elements, we would increase the number of probes required only to 17.

Implementation of Binary Search
Listing 7.1 shows a recursive implementation of the binary search algorithm and its
nonrecursive wrapper function. The parameters first and last are the subscripts of
the first element and last element in the vector being searched. For the initial call to
the recursive function from the wrapper function, first is 0 and last is size – 1.

The condition (first > last) becomes true when the list of candidates is empty,
and -1 is returned. Otherwise, the statement

int middle = (first + last) / 2;

computes the subscript of the “middle” element in the current vector (midway
between first and last).

Next the condition (target == items[middle]) compares the target to the middle
element of the vector. If they match, the subscript middle is returned. Otherwise, if
the condition (target < items[middle]) is true, the recursive step

return binary_search(items, first, middle – 1, target);

returns the result of searching the part of the current vector before the middle item
(with subscripts first through middle – 1). If no conditions are true, the recursive step

return binary_search(items, middle + 1, last, target);

returns the result of searching the part of the current vector after the middle item
(with subscripts middle + 1 through last).

L I S T I N G 7. 1
Functions binary_search

/** Recursive binary search function (in binary_search.h).
@param items The vector being searched
@param first The subscript of the first element
@param last The subscript of the last element
@param target The item being searched for
@return The subscript of target if found; otherwise -1

*/
template<typename Item_Type>
int binary_search(const std::vector<Item_Type>& items,

int first, int last,
const Item_Type& target) {

if (first > last)
return -1; // Base case for unsuccessful search.

else {
int middle = (first + last) / 2; // Next probe index.
if (target == items[middle])
return middle; // Base case for successful search.

else if (target < items[middle])
return binary_search(items, first, middle - 1, target);

else
return binary_search(items, middle + 1, last, target);

}
}

424 Chapter 7 Recursion

/** Wrapper for recursive binary search function (in binary_search.h).
@param items The vector being searched
@param target The item being searched for
@return The subscript of target if found; otherwise -1

*/
template<typename Item_Type>
int binary_search(const std::vector<Item_Type>& items,

const Item_Type& target) {
return binary_search(items, 0, items.size() - 1, target);

}

Figure 7.10 traces the execution of binary_search for the vector shown in Figure
7.9. The parameter items always references the same vector; however, the pool of
candidates changes with each call.

F I G U R E 7. 1 0
Trace of binary_search(kid_names, "Dustin")

7.3 Recursive Search 425

binary_search(kid_names, "Dustin")

items: kid_names
target: "Dustin"
return binary_search(kid_names, 0, 6, "Dustin");

binary_search(kid_names, 0, 6, "Dustin")

items: kid_names
target: "Dustin"
first: 0
last: 6
(0 > 6) is false
middle = (0 + 6) / 2 = 3
target == items[middle] is false
target < items[middle] is true
return binary_search(kid_names, 0, 2, "Dustin");

binary_search(kid_names, 0, 2, "Dustin")

items: kid_names
target: "Dustin"
first: 0
last: 2
(0 > 2) is false
middle = (0 + 2) / 2 = 1
target == items[middle] is false
target < items[middle] is false
return binary_search(kid_names, 2, 2, "Dustin");

2

2

2

binary_search(kid_names, 2, 2, "Dustin")

items: kid_names
target: "Dustin"
first: 2
last: 2
(2 > 2) is false
middle = (2 + 2) / 2 = 2
target == items[middle] is true
return 2

2

Testing Binary Search
To test the binary search algorithm, you must test vectors with an even number of
elements and vectors with an odd number of elements. You must also test vectors
that have duplicate items. Each vector must be tested for the following cases:

• The target is the element at each position of the vector, starting with the first
position and ending with the last position. The purpose of this test is to ensure
that all elements that are in the vector can be found.

• The target is less than the smallest vector element. The purpose of this test is to
ensure that the function does not fall off the left end of the vector.

• The target is greater than the largest vector element. The purpose of this test is
to ensure that the function does not fall off the right end of the vector.

• The target is a value between each pair of items in the vector. The purpose of
this test is to ensure that the recursion terminates properly for target values that
are between all element pairs in the vector.

E X E R C I S E S F O R S E C T I O N 7. 3

S E L F - C H E C K

1. For the vector shown in Figure 7.9, show the values of first, last, and middle
in successive frames when searching for a target of "Rich"; when searching for a
target of "Alice"; when searching for a target of "Daryn".

2. How many elements will be compared to target for an unsuccessful binary
search in a vector of 1000 items? What is the answer for 2000 items?

3. If there are multiple occurrences of the target item in a vector, what can you say
about the subscript value that will be returned by linear_search? Answer the
same question for binary_search.

P R O G R A M M I N G

1. Write a recursive algorithm to find the sum of all values stored in a vector of integers.
2. Write a recursive linear search function with a recursive step that finds the last

occurrence of a target in a vector, not the first. You will need to modify the linear
search function so that the last element of the vector is always tested, not the first.

7.4 Problem Solving with Recursion

In this section we discuss recursive solutions to two problems. Our recursive solu-
tions will break each problem up into multiple smaller versions of the original prob-
lem. Both problems are easier to solve using recursion because recursive thinking
enables us to split each problem into more manageable subproblems. They would
both be much more difficult to solve without recursion.

426 Chapter 7 Recursion

7.4 Problem Solving with Recursion 427

CASE STUDY Towers of Hanoi

Problem You may be familiar with a version of this problem that is sold as a child’s puzzle.
There is a board with three pegs and three disks of different sizes (see Figure 7.11).
The goal of the game is to move the three disks from the peg where they have been
placed (largest disk on the bottom, smallest disk on the top) to one of the empty
pegs, subject to the following constraints:

• Only the top disk on a peg can be moved to another peg.
• A larger disk cannot be placed on top of a smaller disk.

F I G U R E 7. 1 1
Three-Disk Version of Towers of Hanoi

L M R

Analysis We can solve this problem by displaying a list of moves to be made. The problem
inputs will be the number of disks to move, the starting peg, the destination peg, and
the temporary peg. We will write a program Towers_Of_Hanoi that contains a func-
tion show_moves that builds a string with all the moves.

TA B L E 7. 1
Inputs and Outputs for Towers of Hanoi Problem

Problem Inputs

Number of disks (an integer)

Letter of starting peg: L (left), M (middle), or R (right)

Letter of destination peg: (L, M, or R), but different from starting peg

Letter of temporary peg: (L, M, or R), but different from starting peg and
destination peg

Problem Outputs

A list of moves

Design We still need to determine a strategy for making a move. If we examine the situa-
tion in Figure 7.11 (all three disks on the L peg) we can derive a strategy to solve it.
If we can figure out how to move the top two disks to the M peg (a two-disk ver-
sion of the original problem), we can then place the bottom disk on the R peg (see
Figure 7.12). Now all we need to do is move the two disks on the M peg to the R
peg. If we can solve both of these two-disk problems, then the three-disk problem is
also solved.

428 Chapter 7 Recursion

Solution to 3-Disk Problem: Move 3 Disks from Peg L to Peg R
1. Move the top two disks from peg L to peg M.
2. Move the bottom disk from peg L to peg R.
3. Move the top two disks from peg M to peg R.

F I G U R E 7. 1 2
Towers of Hanoi After the First Two Steps in Solution of the Three-Disk Problem

L M R

1

2

L M R

1 2

We can split the solution to each two-disk problem into three problems involving
single disks. We solve the second two-disk problem next; the solution to the first one
(move the top two disks from peg L to peg M) is quite similar.

Solution to 2-Disk Problem: Move Top 2 Disks from Peg M to Peg R
1. Move the top disk from peg M to peg L.
2. Move the bottom disk from peg M to peg R.
3. Move the top disk from peg L to peg R.

In Figure 7.13 we show the pegs after steps 1 and 2. When step 3 is completed, the
three pegs will be on peg R.

F I G U R E 7. 1 3
Towers of Hanoi After First Two Steps in Solution of Two-Disk Problem

In a similar way, we can split a four-disk problem into two three-disk problems.
Figure 7.14 shows the pegs after the top three disks have been moved from peg L to
peg M. Because we know how to solve three-disk problems, we can also solve four-
disk problems.

Solution to 4-Disk Problem: Move 4 Disks from Peg L to Peg R
1. Move the top three disks from peg L to peg M.
2. Move the bottom disk from peg L to peg R.
3. Move the top three disks from peg M to peg R.

7.4 Problem Solving with Recursion 429

F I G U R E 7. 1 4
Towers of Hanoi After the First Two Steps in Solution of the Four-Disk Problem

L M R

Next, we show a general recursive algorithm for moving n disks from one of the
three pegs to a different peg.

Recursive Algorithm for n-Disk Problem: Move n Disks from the Starting Peg
to the Destination Peg
1. if n is 1
2. Move disk 1 (the smallest disk) from the starting peg to the destination peg.
3. else

4. Move the top n – 1 disks from the starting peg to the temporary peg
(neither starting nor destination peg).

5. Move disk n (the disk at the bottom) from the starting peg to the destina-
tion peg.

6. Move the top n – 1 disks from the temporary peg to the destination peg.

The stopping case is the one-disk problem. The recursive step enables us to split the
n-disk problem into two (n – 1)-disk problems and a single-disk problem. Each
problem has a different starting peg and destination peg.

Our recursive function, show_moves, will display the solution as a list of disk moves.
For each move, we show the number of the disk being moved and its starting and
destination pegs. For example, for the two-disk problem shown earlier (move two
disks from the middle peg, M, to the right peg, R), the list of moves would be

Move disk 1 from peg M to peg L
Move disk 2 from peg M to peg R
Move disk 1 from peg L to peg R

The function show_moves must have the number of disks, the starting peg, the desti-
nation peg, and the temporary peg as its parameters. If there are n disks, the bottom
disk has number n (the top disk has number 1). Table 7.2 describes the function
required for program Towers_Of_Hanoi.

TA B L E 7. 2
Program Towers_Of_Hanoi

Function Behavior

void show_moves(int n, char start_peg, Builds a string containing all moves for a game with n disks
char dest_peg, char temp_peg) on start_peg that will be moved to dest_peg, using

temp_peg for temporary storage of disks being moved.

430 Chapter 7 Recursion

Implementation Listing 7.2 shows the program Towers_Of_Hanoi. In function show_moves, the stop-
ping case is a single disk, which is “moved” from the start peg to the destination
peg. The recursive step

show_moves(n - 1, start_peg, temp_peg, dest_peg);
cout << "Move disk " << n << " from peg " << start_peg

<< " to peg " << dest_peg << "\n";
show_moves(n - 1, temp_peg, dest_peg, start_peg);

calls show_moves to display the list of moves for the first (n – 1)-disk problem, dis-
plays the move required for the bottom disk (disk n), and then calls show_moves
again to display the list of moves for the second (n – 1)-disk problem.

L I S T I N G 7. 2
Towers_Of_Hanoi.cpp

/** Recursive function for "moving" disks.
pre: start_peg, dest_peg, temp_peg are different, n >= 1.
post: displays a list of moves that solve the problem

of moving n disks from start_peg to dest_peg.
@param n is the number of disks
@param start_peg is the starting peg
@param dest_peg is the destination peg
@param temp_peg is the temporary peg
@return A string with all the required disk moves

*/
void show_moves(int n, char start_peg,

char dest_peg, char temp_peg) {
if (n == 1)
{
cout << "Move disk 1 from peg " << start_peg

<< " to peg " << dest_peg << "\n";
}
else
{ // Recursive step
show_moves(n - 1, start_peg, temp_peg, dest_peg);
cout << "Move disk " << n << " from peg " << start_peg

<< " to peg " << dest_peg << "\n";
show_moves(n - 1, temp_peg, dest_peg, start_peg);

}
}

Testing Figure 7.15 shows the result of executing the following main function for the data
3, L, R (“move 3 disks from peg L to peg R”). The first three lines are the solution
to the problem “move 2 disks from peg L to peg M,” and the last three lines are the
solution to the problem “move 2 disks from peg M to peg R.”

int main() {
int n_disks;
char start_peg;
char dest_peg;
char temp_peg;
cout << "Enter number of disks: ";
cin >> n_disks;
cout << "Enter start peg: ";
cin >> start_peg;

7.4 Problem Solving with Recursion 431

cout << "Enter destination peg: ";
cin >> dest_peg;
cout << "Enter temporary peg: ";
cin >> temp_peg;
show_moves(n_disks, start_peg, dest_peg, temp_peg);

}

F I G U R E 7. 1 5
Solution to “Move 3
Disks from Peg L to
Peg R”

CASE STUDY Counting Cells in a Blob

In the next case study we consider how we might process an image that is presented
as a two-dimensional array of color values. The information in the two-dimensional
array might come from a variety of sources. For example, it could be an image of
part of a person’s body that comes from an X-ray or an MRI, or it could be a pic-
ture of part of the earth’s surface taken by a satellite. Our goal in this case study is
to determine the size of any area in the image that is considered abnormal because
of its color values.

Problem You have a two-dimensional grid of cells, and each cell contains either a normal
background color or a second color, which indicates the presence of an abnormal-
ity. The user wants to know the size of a blob: a collection of contiguous abnormal
cells. The user will enter the position of a cell in the blob, and the count of all cells
in that blob will be determined. As an example, Figure 7.16 shows a two-dimen-
sional array with some abnormal cells in color. The size of the blob containing the
cell at row 2, column 3 (rows and columns start at 0) is 4; the size of the blob con-
taining the cell at row 3, column 1 is 2.

F I G U R E 7. 1 6
A Grid of Cells with
Abnormal Cells in Color

Analysis Data Requirements

PROBLEM INPUTS

• The two-dimensional grid of cells
• The position of a cell in a blob

PROBLEM OUTPUTS

• The count of cells in the blob

432 Chapter 7 Recursion

Design Function count_cells in file Blob.cpp is a recursive function that is applied to a
two-dimensional array. Its parameters are the array and the position (row and col-
umn) of a cell. The algorithm follows.

Algorithm for Function count_cells
1. if the cell grid[r][c] is outside the grid dimensions
2. The result is 0.

else if the color of the cell grid[r][c] is not the abnormal color
3. The result is 0.

else

4. Set the color of cell grid[r][c] to a temporary color.
5. The result is 1 plus the number of cells in each blob that includes a

nearest neighbor.

The two stopping cases are reached if the coordinates of the cell are out of bounds
or if the cell does not have the abnormal color and, therefore, can’t be part of a blob.
The recursive step involves counting 1 for a cell that has the abnormal color and
adding the counts for the blobs that include each immediate neighbor cell. Each cell
has eight immediate neighbors: two in the horizontal direction, two in the vertical
direction, and four in the diagonal directions.

If no neighbor has the abnormal color, then the result will be just 1. If any neighbor
cell has the abnormal color, then it will be counted along with all its neighbor cells
that have the abnormal color, and so on until no neighboring cells with abnormal
color are encountered (or the edge of the grid is reached). The reason for setting the
color of cell grid[r][c] to the temporary color is to prevent it from being counted
again when its neighbors’ blobs are counted.

Implementation Listing 7.3 shows file Blob.cpp. The enumeration type color defines three enumer-
ator values: BACKGROUND, ABNORMAL, and TEMPORARY. The first terminating condition

(r < 0 || r >= ROW_SIZE || c < 0 || c >= COL_SIZE)

is true if the cell position is outside the dimensions of the two-dimensional grid. The
second terminating condition,

(grid[r][c] != ABNORMAL)

is true if the cell grid[r][c] has either the background color or the temporary color.

The recursive step is implemented by the statement
return 1
+ count_cells(grid, r - 1, c - 1) + count_cells(grid, r - 1, c)
+ count_cells(grid, r - 1, c + 1) + count_cells(grid, r, c + 1)
+ count_cells(grid, r + 1, c + 1) + count_cells(grid, r + 1, c)
+ count_cells(grid, r + 1, c - 1) + count_cells(grid, r, c - 1);

Each recursive call to count_cells has as its arguments the coordinates of a neigh-
bor of the cell grid[r][c]. The value returned by each call will be the number of
cells in the blob it belongs to, excluding the cell grid[r][c] and any other cells that
may have been counted already.

7.4 Problem Solving with Recursion 433

L I S T I N G 7. 3
Blob.cpp

/** Program that solves problem of counting abnormal cells. */

enum color {BACKGROUND, ABNORMAL, TEMPORARY};
const int ROW_SIZE = 5;
const int COL_SIZE = 5;

// Insert main function here
...

/** Finds the number of cells in the blob that contains grid[r][c].
pre: Abnormal cells are in ABNORMAL color;

Other cells are in BACKGROUND color.
post: All cells in the blob are in the TEMPORARY color.
@param r The row of a blob cell
@param c The column of a blob cell
@return The number of cells in the blob that contains grid[r][c]

*/
int count_cells(color grid[ROW_SIZE][COL_SIZE], int r, int c) {

if (r < 0 || r >= ROW_SIZE || c < 0 || c >= COL_SIZE) {
return 0;

}
else if (grid[r][c] != ABNORMAL) {
return 0;

}
else {
grid[r][c] = TEMPORARY;
return 1
+ count_cells(grid, r - 1, c - 1) + count_cells(grid, r - 1, c)
+ count_cells(grid, r - 1, c + 1) + count_cells(grid, r, c + 1)
+ count_cells(grid, r + 1, c + 1) + count_cells(grid, r + 1, c)
+ count_cells(grid, r + 1, c - 1) + count_cells(grid, r, c - 1);

}
}

Testing To test function count_cells, we will need to write a main function that declares and
initializes the two-dimensional array grid. We can do this either by using an initial-
izer list or by reading the cell values from a data file (see Programming Exercise 3
at the end of this section). A main function with an initializer list follows.

#include <iostream>
int count_cells(color[ROW_SIZE][COL_SIZE], int, int);
int main() {
color grid[ROW_SIZE][COL_SIZE] =

{{BACKGROUND, ABNORMAL, BACKGROUND, ABNORMAL, ABNORMAL},
{BACKGROUND, ABNORMAL, BACKGROUND, BACKGROUND, ABNORMAL},
{BACKGROUND, BACKGROUND, BACKGROUND, ABNORMAL, BACKGROUND},
{BACKGROUND, ABNORMAL, BACKGROUND, BACKGROUND, BACKGROUND},
{BACKGROUND, ABNORMAL, BACKGROUND, ABNORMAL, BACKGROUND}};

434 Chapter 7 Recursion

// Enter row and column of a cell in the blob.
int row;
std::cout << "Enter row: "; std::cin >> row;
int col;
std::cout << "Enter column: "; std::cin >> col;

// Display results.
std::cout << count_cells(grid, row, col) << "\n";

}

When you test this program, make sure you verify that it works for the following
cases:

• A starting cell that is on the edge of the grid
• A starting cell that has no neighboring abnormal cells
• A starting cell whose only abnormal neighbor cells are diagonally connected

to it
• A “bull’s-eye”: a starting cell whose neighbors are all normal but their

neighbors are abnormal
• A starting cell that is normal
• A grid that contains all abnormal cells
• A grid that contains all normal cells

E X E R C I S E S F O R S E C T I O N 7. 4

S E L F - C H E C K

1. What is the big-O for the Towers of Hanoi as a function of n, where n represents
the number of disks? Compare it to the function 2n.

2. How many moves would be required to solve the five-disk problem?
3. Provide a “trace” of the solution to a four-disk problem by showing all the calls

to show_moves that would be generated.
4. Explain why the first condition of function count_cells must precede the second

condition.

P R O G R A M M I N G

1. Modify function count_cells, assuming that cells must have a common side in
order to be counted in the same blob. This means that they must be connected
horizontally or vertically but not diagonally. Under this condition, the value of
the function call count_cells(grid, 2, 3) would be 1, instead of 4, for the array
in Figure 7.16.

2. Write a function restore that restores the grid back to its original state. You will
need to reset the color of each cell that is in the temporary color back to its orig-
inal color.

3. Write a function fill_cells that fills the two-dimensional array grid by reading
each row's values from a data line consisting of 0s and 1s. The first data line in
the input file will contain the number of rows and columns; the second data line
will contain the values for row 0, and so on.

7.5 Backtracking

In this section we consider the problem-solving technique called backtracking.
Backtracking is an approach to implementing systematic trial and error in a search
for a solution. An application of backtracking is finding a path through a maze.

If you are attempting to walk through a maze, you will probably follow the general
approach of walking down a path as far as you can go. Eventually either you will
reach your destination and exit the maze, or you won’t be able to go any further. If
you exit the maze, you are done. Otherwise, you need to retrace your steps (back-
track) until you reach a fork in the path. At each fork, if there is a branch you did
not follow, you will follow that branch hoping to reach your destination. If not, you
will retrace your steps again, and so on.

What makes backtracking different from random trial and error is that backtrack-
ing provides a systematic approach to trying alternative paths and eliminating them
if they don’t work out. You will never try the exact same path more than once, and
you will eventually find a solution path if one exists.

Problems that are solved by backtracking can be described as a set of choices made
by some function. If at some point, it turns out that a solution is not possible with
the current set of choices, the most recent choice is identified and removed. If there
is an untried alternative choice, it is added to the set of choices, and search contin-
ues. If there is no untried alternative choice, then the next most recent choice is
removed, and an alternative is sought for it. This process continues until either we
reach a choice with an untried alternative and can continue our search for a solu-
tion, or we determine that there are no more alternative choices to try. Recursion
allows us to implement backtracking in a relatively straightforward manner, because
we can use each activation frame to remember the choice that was made at that par-
ticular decision point.

We will show how to use backtracking to find a path through a maze, but it can be
applied to many other kinds of problems that involve a search for a solution. For
example, a program that plays chess may use a kind of backtracking. If a sequence
of moves it is considering does not lead to a favorable position, it will backtrack and
try another sequence.

7.5 Backtracking 435

436 Chapter 7 Recursion

CASE STUDY Finding a Path Through a Maze

Problem Use backtracking to find and display the path through a maze. From each point in
a maze, you can move to the next cell in the horizontal or vertical direction, if that
cell is not blocked. So there are at most four possible moves from each point.

Analysis Our maze will consist of a grid of cells like the grid used in the previous case study.
The starting point is the cell at the top left corner (grid[0][0]), and the exit point
is the cell at the bottom right corner (grid[ROW_SIZE – 1][COL_SIZE – 1]). All cells
that can be part of a path will be in the BACKGROUND color. All cells that represent bar-
riers and cannot be part of a path will be in the ABNORMAL color. To keep track of a
cell that we have visited, we will set it to the TEMPORARY color. If we find a path, all
cells on the path will be reset to the PATH color. So there are a total of four possible
colors for a cell.

The cells in gray in Figure 7.17 right are on the path that would be found through
the maze. The initial maze is shown at the left of Figure 7.17.

F I G U R E 7. 1 7
Finding a Path
through a Maze

Design The following recursive algorithm returns true if a path is found. It changes the
color of all cells that are visited, but found not to be on the path, to the temporary
color. In the recursive algorithm, each cell grid[r][c] being tested is reachable from
the starting point. We can use recursion to simplify the problem of finding a path
from cell grid[r][c] to the exit. We know that we can reach any unblocked neigh-
bor cell that is in the horizontal or vertical direction from cell grid[r][c]. So a path
exists from cell grid[r][c] to the maze exit if there is a path from a neighbor cell
of grid[r][c] to the maze exit. If there is no path from any neighbor cell, we must
backtrack and replace grid[r][c] with an alternative that has not yet been tried.
That is done automatically through recursion. If there is a path, it will eventually be
found and find_maze_path will return true.

Recursive Algorithm for find_maze_path(x, y)
1. if the current cell is outside the maze
2. Return false (you are out of bounds).

else if the current cell is part of the barrier or has already been visited
3. Return false (you are off the path or in a cycle).

else if the current cell is the maze exit
4. Recolor it to the path color and return true (you have successfully

completed the maze).
else // Try to find a path from the current path to the exit:

(a) (b)

7.5 Backtracking 437

5. Mark the current cell as on the path by recoloring it to the path color.
6. for each neighbor of the current cell
7. if a path exists from the neighbor to the maze exit
8. Return true.

// No neighbor of the current cell is on the path.
9. Recolor the current cell to the temporary color (visited) and return

false.

If no stopping case is reached (Steps 2, 3, or 4), the recursive case (the else clause)
marks the current cell as being on the path and then tests whether there is a path
from any neighbor of the current cell to the exit. If a path is found, we return true
and begin unwinding from the recursion. During the process of unwinding from the
recursion, the function will continue to return true. However, if all neighbors of the
current cell are tested without finding a path, this means that the current cell can-
not be on the path, so we recolor it to the temporary color and return false (Step
9). Next, we backtrack to a previous call and try to find a path through a cell that
is an alternative to the cell just tested. The cell just tested will have been marked as
visited (the temporary color), so we won’t try using it again.

Notice that there is no attempt to find the shortest path through the maze. We just
show the first path that is found.

Implementation Listing 7.4 shows Maze.cpp. There is a wrapper function that calls recursive function
find_maze_path with its argument values set to the coordinates of the starting point
(grid[0][0]). The wrapper function returns the result of this call (true or false).

The recursive version of find_maze_path begins with three stopping cases: two
unsuccessful and one successful (grid[r][c] is the exit point). The recursive case
contains an if condition with four recursive calls. Because of short-circuit evalua-
tion, if any call returns true, the rest are not executed. The arguments for each call
are the coordinates of a neighbor cell. If a path exists from a neighbor to the maze
exit, then the neighbor is part of the solution path, so we return true. If a neighbor
cell is not on the solution path, we try the next neighbor until all four neighbors
have been tested. If there is no path from any neighbor, we recolor the current cell
to the temporary color and return false.

L I S T I N G 7. 4
Maze.cpp

/** Program that solves maze problems with backtracking. */
enum color {BACKGROUND, ABNORMAL, TEMPORARY, PATH};
const int ROW_SIZE = 5;
const int COL_SIZE = 5;

// Insert main function here
...

/** Wrapper function. */
bool find_maze_path(color grid[ROW_SIZE][COL_SIZE]) {
return find_maze_path(grid, 0, 0); // (0, 0) is the start point.

}

438 Chapter 7 Recursion

/** Attempts to find a path through cell grid[r][c].
pre: Possible path cells are in BACKGROUND color;

barrier cells are in ABNORMAL color.
post: If a path is found, all cells on it are set to the

PATH color; all cells that were visited but are
not on the path are in the TEMPORARY color.

@param r The row of current point
@param c The column of current point
@return If a path through grid[r][c] is found, true;

Otherwise, false
*/
bool find_maze_path(color grid[ROW_SIZE][COL_SIZE], int r, int c) {
if (r < 0 || c < 0 || r >= ROW_SIZE || c >= COL_SIZE)
return false; // Cell is out of bounds.

else if (grid[r][c] != BACKGROUND)
return false; // Cell is on barrier or dead end.

else if (r == ROW_SIZE - 1 && c == COL_SIZE - 1) {
grid[r][c] = PATH; // Cell is on path
return true; // and is maze exit.

}
else {
// Recursive case.
// Attempt to find a path from each neighbor.
// Tentatively mark cell as on path.
grid[r][c] = PATH;
if (find_maze_path(grid, r - 1, c)

|| find_maze_path(grid, r + 1, c)
|| find_maze_path(grid, r, c - 1)
|| find_maze_path(grid, r, c + 1)) {

return true;
}
else {
grid[r][c] = TEMPORARY; // Dead end.
return false;

}
}

}

The Effect of Marking a Cell as Visited
If a path can’t be found from a neighbor of the current cell to the maze exit, the cur-
rent cell is considered a “dead end” and is recolored to the temporary color. You may
be wondering whether the program would still work if we just recolored it to the
background color. The answer is “Yes”. In this case, cells that turned out to be dead
ends or cells that were not visited would be in the background color after the program
terminated. This would not affect the ability of the algorithm to find a path or to
determine that none exists; however, it would affect the algorithm’s efficiency. After
backtracking, the function could try to place on the path a cell that had been found
to be a dead end. The cell would be classified once again as a dead end. Marking it as
a dead end (color TEMPORARY) the first time prevents this from happening.

To demonstrate the efficiency of this approach, we tested the program on a maze
with 4 rows and 6 columns that had a single barrier cell at the maze exit. When we
recolored each dead end cell in the TEMPORARY color, it took 93 recursive calls to

7.5 Backtracking 439

find_maze_path to determine that a path did not exist. When we recolored each
tested cell in the BACKGROUND color, it took 177,313 recursive calls to determine that
a path did not exist.

Testing To test function find_maze_path, we will need to write a main function that declares
and initializes the two-dimensional array grid. A main function with an initializer
list follows.

#include <iostream>

bool find_maze_path(color[ROW_SIZE][COL_SIZE]);
bool find_maze_path(color[ROW_SIZE][COL_SIZE], int, int);

int main() {
color grid[ROW_SIZE][COL_SIZE] =

{{BACKGROUND, ABNORMAL, BACKGROUND, ABNORMAL, ABNORMAL},
{BACKGROUND, ABNORMAL, BACKGROUND, ABNORMAL, ABNORMAL},
{BACKGROUND, BACKGROUND, BACKGROUND, ABNORMAL, BACKGROUND},
{BACKGROUND, ABNORMAL, BACKGROUND, BACKGROUND, BACKGROUND},
{BACKGROUND, ABNORMAL, BACKGROUND, ABNORMAL, BACKGROUND}};

// Display results.
std::cout << std::boolalpha << find_maze_path(grid) << "\n";

}

You should test this with a variety of mazes, some that can be solved and some that
can’t (no path exists). You should also try a maze that has no barrier cells and one
that has a single barrier cell at the exit point. In the latter case, no path exists.

E X E R C I S E S F O R S E C T I O N 7. 5

S E L F - C H E C K

1. The terminating conditions in find_maze_path must be performed in the order
specified. What could happen if the second or third condition were evaluated
before the first? If the third condition were evaluated before the second condition?

2. Does it matter in which order the neighbor cells are tested in find_maze_path?
How could this order affect the path that is found?

P R O G R A M M I N G

1. Modify find_maze_path to push the coordinates of the cells that are on the path
onto a stack (type std::stack<std::pair<int, int> >). The coordinates to be
pushed are the arguments (r, c) whenever find_maze_path returns true.

2. Write a display_path function that takes the stack as an argument and pops its
contents to display the actual path.

C h a p t e r R e v i e w

◆ A recursive function has the following form, where Step 2 is the base case, and
Steps 3 and 4 are the recursive case:

1. if the problem can be solved for the current value of n
2. Solve it.

else

3. Recursively apply the function to one or more problems involving
smaller values of n.

4. Combine the solutions to the smaller problems to get the solution to
the original.

◆ To prove that a recursive algorithm is correct, you must

—Verify that the base case is recognized and solved correctly.
—Verify that each recursive case makes progress toward the base case.
—Verify that if all smaller problems are solved correctly, then the original prob-

lem must also be solved correctly.

◆ The operating system uses activation frames, stored on a stack, to keep track of
argument values and return points during recursive function calls. Activation
frames can be used to trace the execution of a sequence of recursive function calls.

◆ Mathematical sequences and formulas that are defined recursively can be imple-
mented naturally as recursive functions.

◆ Two problems that can be solved using recursion were investigated: the Towers of
Hanoi problem and counting cells in a blob.

◆ Backtracking is a technique that enables you to write programs that can be used
to explore different alternative paths in a search for a solution.

Quick-Check Exercises
1. A recursive function has two cases: ______ and ______.
2. Each recursive call of a recursive function must lead to a situation that is ______ to the

______ case.
3. The control statement used in a recursive function is the ______ statement.
4. What three things are stored in an activation frame? Where are the activation frames

stored?
5. You can sometimes substitute ______ for recursion.
6. Explain how a recursive function might cause a stack overflow exception.
7. If you have a recursive and an iterative function that calculate the same result, which

do you think would be more efficient? Explain your answer.
8. Binary search is an O(___) algorithm, and linear search is an O(___) algorithm.
9. Towers of Hanoi is an O(___) algorithm. Explain your answer.

10. Why did you need to provide a wrapper function for recursive functions
linear_search and binary_search?

440 Chapter 7 Recursion

Answers to Quick-Check Exercises
1. A recursive function has two cases: base case and recursive case.
2. Each recursive call of a recursive function must lead to a situation that is closer to the

base case.
3. The control statement used in a recursive function is the if statement.
4. An activation frame stores the following information on the stack: the function argu-

ment values, the function local variable values, and the address of the return point in
the caller of the function.

5. You can sometimes substitute iteration for recursion.
6. A recursive function that doesn’t stop would continue to call itself, eventually pushing

so many activation frames onto the stack that a stack overflow exception would occur.
7. An iterative function would generally be more efficient, because there is more over-

head associated with multiple function calls.
8. Binary search is an O(log2 n) algorithm, and linear search is an O(n) algorithm.
9. Towers of Hanoi is an O(2n) algorithm, because each problem splits into two problems

at the next lower level.
10. Both search functions should be called with the vector name and target as arguments.

However, the recursive linear search function needs the subscript of the element to be
compared to the target. The binary search function needs the search boundaries.

Review Questions
1. Explain the use of the stack and activation frames in processing recursive function calls.
2. What is a recursive data structure? Give an example of one.
3. For Towers of Hanoi, show the output lines generated by the function call

show_moves(3, 'R', 'M', 'L'). Also, show the sequence of function calls.
4. For the counting cells in a blob problem, show the activation frames in the recursive

calls to count_cells following count_cells(grid, 4, 1).

Programming Projects
1. Test function count_cells using a data file made up of lines consisting of 0s and 1s

with no spaces between them.
2. Test function find_maze_path using a data file made up of lines consisting of 0s and

1s with no spaces between them.
3. Show how you could use the following TwoDArray class in programs Blob and Maze to

enable you to declare and use arrays of variable dimensions. The first line of a data file
that is used to initialize the array should consist of the number of rows and number of
columns in the array. The operator [] returns a pointer to the row. Since this is a
pointer, we can then treat it as a one-dimensional array and apply the operator []
again to get a particular element (that is, if x is type TwoDArray, x[i][j] is the element
of x at row i, column j.) Declaring the copy constructor and the assignment operator
private has the effect of prohibiting these operations, as they are for one-dimensional
arrays in C++.

#ifndef TWODARRAY_H_
#define TWODARRAY_H_

#include <cstddef>

Chapter 7 Review 441

/** Class to define a two dimensional array whose dimensions
can be declared at run time.

*/
template<typename Item_Type>
class TwoDArray {

public:

/** Construct a TwoDArray with n rows and m columns. */
TwoDArray(size_t n, size_t m) :
num_rows(n), num_cols(m), data(new Item_Type[n * m]) {}

/** Destructor. */
~TwoDArray() { delete data; }

/** Access a row. */
Item_Type* operator[](size_t i) {
return data + num_cols * i;

}

const Item_Type* operator[](size_t i) const {
return data + num_cols * i;

}

/** Get the number of rows. */
size_t get_num_rows() const {return num_rows;}

/** Get the number of columns. */
size_t get_num_cols() const {return num_cols;}

private:

/** Number of rows */
size_t num_rows;
/** Number of columns */
size_t num_cols;
/** The data array */
Item_Type* data;

// Prohibit copy and assignment
TwoDArray(const TwoDArray&);
TwoDArray& operator=(const TwoDArray&);

};

#endif

4. Write a recursive function that converts a decimal integer to a binary string. Write a
recursive function that converts a binary string to a decimal integer.

5. As discussed in Chapter 5, a palindrome is a word that reads the same left to right as
right to left. Write a recursive function that determines whether its argument string is a
palindrome.

6. Write a program that will read a list of numbers and a desired sum, then determine the
subset of numbers in the list that yield that sum if such a subset exists.

442 Chapter 7 Recursion

7. Write a recursive function that will dispense change for a given amount of money. The
function will display all combinations of quarters, dimes, nickels, and pennies that equal
the desired amount.

8. Write a recursive function for placing eight queens on a chessboard. The eight queens
should be placed so that no queen can capture another. Recall that a queen can move in
the horizontal, vertical, or diagonal direction.

Hint: Obviously each queen must be in a different row and column. Let’s assume that
the ith queen (i runs from 0 to 7) is in column i and in row[i]. If for some i and j,
row[i] == row[j], then this is not a valid solution. To check the diagonals if row[i]
- row[j] == i - j or row[i] - row[j] == j - i, then the two queens are on the
same diagonal, and this not a valid solution.

Use i as the parameter to the recursive function. The base case is i == 8 when all
queens have been assigned a row. The recursive case should try each possible row for
queen i, and then see whether the (i + 1)th queen can find a safe position. If none of
the rows for the ith queen is safe, then return false.

There are 92 possible solutions. The following is one of them:

Chapter 7 Review 443

C h a p t e r O b j e c t i v e s

◆ To learn how to use a tree to represent a hierarchical organization of information
◆ To learn how to use recursion to process trees
◆ To understand the different ways of traversing a tree
◆ To understand the difference between binary trees, binary search trees, and heaps
◆ To learn how to implement binary trees, binary search trees, and heaps using linked

data structures and arrays
◆ To learn how to use a binary search tree to store information so that it can be retrieved

in an efficient manner
◆ To learn how to use a Huffman tree to encode characters using fewer bits than ASCII or

Unicode, resulting in smaller files and reduced storage requirements

445

Trees

C h a p t e r 8

The data organizations you studied so far are linear, in that each element has
only one predecessor or successor. Accessing all the elements in sequence is an
O(n) process. In this chapter we begin our discussion of a data organization

that is nonlinear or hierarchical: the tree. Instead of having just one successor, a
node in a tree can have multiple successors; but it has just one predecessor. A tree
in computer science is like a natural tree, which has a single trunk that may split off
into two or more main branches. The predecessor of each main branch is the trunk.
Each main branch may spawn several secondary branches (successors of the main
branches). The predecessor of each secondary branch is a main branch. In computer
science, we draw a tree from the top down, so the root of the tree is at the top of
the diagram instead of the bottom.

Because trees have a hierarchical structure, we use them to represent hierarchi-
cal organizations of information, such as a class hierarchy, a disk directory and its

subdirectories (see Figure 8.1), or a family tree. You will see that trees are recursive
data structures, because they can be defined recursively. For this reason, many of the
functions used to process trees are written as recursive functions.

This chapter will focus on a restricted tree structure, a binary tree, in which each
element has, at most, two successors. You will learn how to use linked data struc-
tures and arrays to represent binary trees. You will also learn how to use a special
kind of binary tree called a binary search tree to store information (for example, the
words in a dictionary) in an ordered way. Because each element of a binary tree can
have two successors, you will see that searching for an item stored in a binary search
tree is much more efficient than searching for an item in a linear data structure:
(possibly O(log n) for a binary tree versus O(n) for a list).

You also will learn about other kinds of binary trees. Expression trees are used
to represent arithmetic expressions. The heap is an ordered tree structure that is
used as the basis for a very efficient sorting algorithm and for a special kind of queue
called the priority queue. The Huffman tree is used for encoding information and
compressing files.

446 Chapter 8 Trees

Programs

NetscapeMicrosoft Office

TemplatesOffice Cool PluginsChrome

F I G U R E 8 . 1
Part of the Programs Directory

T r e e s

8.1 Tree Terminology and Applications
8.2 Tree Traversals
8.3 Implementing a Binary_Tree Class
8.4 Binary Search Trees

Case Study: Writing an Index for a Term Paper
8.5 Heaps and Priority Queues
8.6 Huffman Trees

Case Study: Building a Custom Huffman Tree

8.1 Tree Terminology and Applications

Tree Terminology
We use the same terminology to describe trees in computer science as we do trees in
nature. In computer science, a tree consists of a collection of elements or nodes, with
each node linked to its successors. The node at the top of a tree is called its root
because computer science trees grow from the top down. The links from a node to
its successors are called branches. The successors of a node are called its children.
The predecessor of a node is called its parent. Each node in a tree has exactly one
parent except for the root node, which has no parent. Nodes that have the same par-
ent are siblings. A node that has no children is a leaf node. Leaf nodes are also
known as external nodes, and nonleaf nodes are known as internal nodes.

A generalization of the parent-child relationship is the ancestor-descendant rela-
tionship. If node A is the parent of node B, which is the parent of node C, which in
turn is the parent of node D, node A is an ancestor of nodes B, C, and D, and node
D is a descendant of nodes A, B, and C. Sometimes we say that node A and node C
are a grandparent and grandchild, respectively. The root node is an ancestor of every
other node in a tree, and every other node in a tree is a descendant of the root node.

Figure 8.2 illustrates these features in a tree that stores a collection of words. The
branches are the lines connecting a parent to its children. In discussing this tree, we
will refer to a node by the string that it stores. For example, we will refer to the node
that stores the string "dog" as node dog.

A subtree of a node is a tree whose root is a child of that node. For example, the
nodes cat and canine and the branch connecting them are a subtree of node dog.
The other subtree of node dog is the tree consisting of the single node wolf. The sub-
tree consisting of the single node canine is a subtree of node cat.

F I G U R E 8 . 2
A Tree of Words

8.1 Tree Terminology and Applications 447

dog

cat wolf

canine

The root node, parent of cat and
wolf, ancestor of canine

A leaf node, child of dog
and sibling of cat

Child of dog, parent of canine,
and sibling of wolf

A leaf node, child of cat
descendant of dog

The depth of a node is a measure of its distance from the root. It is defined recur-
sively as follows:

• If node n is the root of tree T, its depth is 0.
• If node n is not the root of tree T, its depth is 1 + the depth of its parent.

For the tree in Figure 8.2, node dog is at depth 0, nodes cat and wolf are at depth
1, and node canine is at depth 2. We will sometimes use the term level to refer to a
node’s depth in a tree.

The height of a node is the number of nodes in the longest path from that node to
a leaf node. The height of nodes canine and wolf is 1, the height of node cat is 2,
and the height of node dog is 3 (the longest path goes through the nodes dog, cat,
and canine). An alternate definition of the height of a node is the number of
branches in the longest path from the node to a leaf node plus one.

The height of a tree is the same as the height of its root node. The height of the tree
in Figure 8.2 is 3.

Binary Trees
The tree in Figure 8.2 is a binary tree. Informally, this is a binary tree because each
node has at most two branches to subtrees. A more formal definition for a binary
tree follows:

A set of nodes T is a binary tree if either of the following is true:

• T is empty.
• If T is not empty, it has a root node r with 0, 1, or 2 binary subtrees whose

roots are connected to r by a branch.

We refer to the left subtree as TL and to the right subtree as TR. Note that TL, TR,
or both can be empty trees. For the tree in Figure 8.2, the right subtree of node cat
is empty. The leaf nodes (wolf and canine) have empty left and right subtrees. This
is illustrated in Figure 8.3, where the empty subtrees are indicated by the squares.
Generally the empty subtrees are represented by NULL pointers, but another value
may be chosen. From now on, we will consistently use a NULL pointer, and we will
not draw the squares for the empty subtrees.

F I G U R E 8 . 3
A Tree of Words with
Empty Subtrees Indicated

448 Chapter 8 Trees

dog

cat wolf

canine

F I G U R E 8 . 4
Expression Tree

Some Types of Binary Trees
Next we discuss three different types of binary trees that are common in computer
science.

An Expression Tree
Figure 8.4 shows a binary tree that stores an expression. Each node contains an
operator (+, –, *, /, %) or an operand. The expression in Figure 8.4 corresponds to
(x + y) * ((a + b) / c). Operands are stored in leaf nodes. Parentheses are not
stored in the tree, because the tree structure dictates the order of operator evalua-
tion. Operators in nodes higher up in the tree are evaluated after operators in nodes
that are lower, so the operator * in the root node is evaluated last. If a node con-
tains a binary operator, its left subtree represents the operator’s left operand and its
right subtree represents the operator’s right operand. The left subtree of the root
represents the expression x + y, and the right subtree of the root represents the
expression (a + b) / c.

A Huffman Tree
Another use of a binary tree is to represent Huffman codes for characters that might
appear in a text file. Unlike ASCII or Unicode encoding, which use the same num-
ber of bits to encode each character, a Huffman code uses different numbers of bits
to encode the letters. It uses fewer bits for the more common letters (for example,
space, e, a, and t) and more bits for the less common letters (for example, q, x, and
z). On average, using Huffman codes to encode text files should give you files with
fewer bits than you would get using other codes. Many programs that compress files
use Huffman encoding to generate smaller files in order to save disk space or to
reduce the time spent sending the files over the Internet.

Figure 8.5 shows the Huffman encoding tree for an alphabet consisting of the low-
ercase letters and the space character. All the characters are at leaf nodes. The data
stored at internal nodes is not shown. To determine the code for a letter, you form
a binary string by tracing the path from the root node to that letter. Each time you
go left, append a 0, and each time you go right, append a 1. To reach the space char-
acter, you go right three times, so the code is 111. The code for the letter d is 10110
(right, left, right, right, left).

8.1 Tree Terminology and Applications 449

c

a b

x +

+ /

*

y

450 Chapter 8 Trees

0 1

0 1

0 1 0 1 0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 10 1

0 1

c

e

h nir s

u

o a

d

b p g y

v

k

x q z j

w m f

t

l

[

F I G U R E 8 . 5
Huffman Code Tree

The two characters with a depth of 3 (space, e) are the most common and, there-
fore, have the shortest codes (111, 010). The next most common characters (a, o, i,
and so forth) have a depth of 4.

You can store the code for each letter in an array. For example, the code for the
space ' ' would be at position 0, the letter 'a' would be at position 1, and the code
for letter 'z' would be at position 26. You can encode each letter in a file by look-
ing up its code in the array.

However, to decode a file of letters and spaces, you walk down the Huffman tree,
starting at the root, until you reach a letter. Once you have reached a letter, append
that letter to the output text and go back to the root. Here is an example. The sub-
strings that represent the individual letters are shown in alternate colors to help you
follow the process. The underscore in the second line represents a space character
(code is 111).

10001010011110101010100010101110100011
g o _ e a g l e s

Huffman trees are discussed further in Section 8.6.

Binary Search Trees
The tree in Figure 8.2 is a binary search tree because, for each node, all words in its
left subtree precede the word in that node, and all words in its right subtree follow
the word in that node. For example, for the root node dog, all words in its left sub-
tree (cat, canine) precede dog in the dictionary, and all words in its right subtree

(wolf) follow dog. Similarly, for the node cat, the word in its left subtree (canine)
precedes it. There are no duplicate entries in a binary search tree.

More formally, we define a binary search tree as follows:

A set of nodes T is a binary search tree if either of the following is true:

• T is empty.
• If T is not empty, its root node has two subtrees, TL and TR, such that TL and

TR are binary search trees and the value in the root node of T is greater than
all values in TL and is less than all values in TR.

The order relations in a binary search tree expedite searching the tree. A recursive
algorithm for searching a binary search tree follows:

1. if the tree is empty
2. Return NULL (target is not found).

else if the target matches the root node’s data
3. Return the data stored at the root node.

else if the target is less than the root node’s data
4. Return the result of searching the left subtree of the root.

else

5. Return the result of searching the right subtree of the root.

The first two cases are base cases and self-explanatory. In the first recursive case, if
the target is less than the root node’s data, we search only the left subtree (TL)
because all data items in TR are larger than the root node’s data and, therefore,
larger than the target. Likewise we execute the second recursive step (search the
right subtree) if the target is greater than the root node’s data.

Just as with a binary search of an array (or vector), each probe into the binary
search tree has the potential of eliminating half the elements in the tree. If the binary
search tree is relatively balanced (that is, the depths of the leaves are approximately
the same), searching a binary search tree is an O(log n) process, just like a binary
search of an ordered array.

What is the advantage of using a binary search tree instead of just storing elements
in a vector and then sorting it? A binary search tree never has to be sorted, because
its elements always satisfy the required order relations. When new elements are
inserted (or removed), the binary search tree property can be maintained. In con-
trast, a vector must be expanded whenever new elements are added, and it must be
compacted whenever elements are removed. Both expanding and contracting
involve shifting items and are thus O(n) operations.

Fullness and Completeness
Trees grow from the top down, and each new value is inserted in a new leaf node.
Trees have different shapes depending on how the values are inserted. The tree on
the left in Figure 8.6 is called a full binary tree because all internal nodes have
exactly two children. Note that the number of leaf nodes is one more than the num-
ber of internal nodes. This will be the case for a full binary tree of any height.

8.1 Tree Terminology and Applications 451

F I G U R E 8 . 6
Full Binary Tree (Left)
and Complete Binary
Tree (Right) of Height 3

A complete binary tree of height h is filled up to depth h – 1 and, at depth h, any
unfilled nodes are on the right (see Figure 8.6, right). A node is filled if it has a value
stored in it. More formally, a binary tree of height h is complete if:

• All nodes at depth h – 2 and above have two children.
• When a node at depth h – 1 has children, all nodes to the left of it have two

children.
• If a node at depth h – 1 has one child, it is a left child.

General Trees
A general tree is a tree that does not have the restriction that each node of a tree has
at most two subtrees. So nodes in a general tree can have any number of subtrees.
Figure 8.7 shows a general tree that represents a family tree showing the descen-
dants of King William I (the Conqueror) of England.

We will not discuss general trees in detail. However, it is worth mentioning that a
general tree can be represented using a binary tree. Figure 8.8 shows a binary tree
representation of the family tree in Figure 8.7. We obtained it by connecting the left
branch from a node to the oldest child (if any). Each right branch from a node is

452 Chapter 8 Trees

10

4 6

120

2 5

9

1 11

7

3

8

111

4 6

9

3 10

7

5

820

William I

Robert

Richard

Edmund

William

William II

Richard I John

Adela Henry I

Henry III

Edward I

Stephen William

Henry Geoffrey

Arthur

Matilda

EdmundThomasEdward II

Edward III

Henry II

F I G U R E 8 . 7
Family Tree for the
Descendants of
William I of England

connected to the next younger sibling (if any). For example in Figure 8.8, the left
branch from William I is connected to his oldest child, Robert. The left branch from
Robert is connected to his only son, William. The right branch from Robert is con-
nected to his oldest sibling, William II, and so on.

Historical Note: The names of the men who became kings are in boldface type. You
would expect the eldest son to succeed his father as king; however, this would not
be the case if the eldest male died before his father. For example, Robert died before
William I, so William II became king instead. Starting with King John (near the bot-
tom of the tree), the eldest son of each king did become King of England.

E X E R C I S E S F O R S E C T I O N 8 . 1

S E L F - C H E C K

1. Draw binary expression trees for the following infix expressions. Your trees
should enforce the C++ rules for operator evaluation (higher-precedence opera-
tors before lower-precedence operators and left associativity).
a. x / y + a – b * c

b. (x * a) – y / b * (c + d)
2. Using the Huffman tree in Figure 8.5,

a. Write the binary string for the message “scissors cuts paper”.
b. Decode the following binary string:

1100010001010001001011101100011111110001101010111101101001

8.1 Tree Terminology and Applications 453

William I

William II
Robert

Richard

Edmund

William

Richard I

John

Adela

Matilda

Henry I

Henry II

Henry III

Edward I

Stephen
William

Henry

Geoffrey

Arthur

Edmund

Thomas

Edward II

Edward III

F I G U R E 8 . 8
Binary Tree Equivalent
of King William’s
Family Tree

3. For each of the following trees, answer these questions. What is its height? Is it a
full tree? Is it a complete tree? Is it a binary search tree? If not, make it a binary
search tree.

4. Represent the general tree in Figure 8.1 as a binary tree.

8.2 Tree Traversals

Often we want to determine the nodes of a tree and their relationship. We can do
this by walking through the tree in a prescribed order and visiting the nodes (pro-
cessing the information in the nodes) as they are encountered. This process is known
as tree traversal. We will discuss three kinds of traversal in this section: inorder, pre-
order, and postorder. These three functions are distinguished by when they visit a
node in relation to the nodes in its subtrees (TL and TR).

• Preorder: Visit root node, traverse TL, traverse TR.
• Inorder: Traverse TL, visit root node, traverse TR.
• Postorder: Traverse TL, traverse TR, visit root node.

Because trees are recursive data structures, we can write similar recursive algorithms
for all three techniques. The difference in the algorithms is whether the root is vis-
ited before the children are traversed (pre), in between traversing the left and right
children (in), or after the children are traversed (post).

32

30 55

40

32 50

30 55

40

35

454 Chapter 8 Trees

Algorithm for
Preorder Traversal
1. if the tree is empty
2. Return.

else

3. Visit the root.
4. Preorder traverse the

left subtree.
5. Preorder traverse the

right subtree.

Algorithm for
Inorder Traversal
1. if the tree is empty
2. Return.

else

3. Inorder traverse the
left subtree.

4. Visit the root.
5. Inorder traverse the

right subtree.

Algorithm for
Postorder Traversal
1. if the tree is empty
2. Return.

else

3. Postorder traverse the
left subtree.

4. Postorder traverse the
right subtree.

5. Visit the root.

F I G U R E 8 . 9
Traversal of a Binary
Tree

Visualizing Tree Traversals
You can visualize a tree traversal by imagining a mouse that walks along the edge
of the tree. If the mouse always keeps the tree to the left (from the mouse’s point of
view), it will trace the route shown in color around the tree shown in Figure 8.9.
This is known as an Euler tour.

If we record each node as the mouse first encounters it (indicated by the arrows
pointing down in Figure 8.9), we get the following sequence:

a b d g e h c f i j

This is a preorder traversal, because the mouse visits each node before traversing its
subtrees. The mouse also walks down the left branch (if it exists) of each node
before going down the right branch, so the mouse visits a node, traverses its left sub-
tree, and traverses its right subtree.

If we record each node as the mouse returns from traversing its left subtree (indi-
cated by the arrows pointing to the right in Figure 8.9), we get the following
sequence:

d g b h e a i f j c

This is an inorder traversal. The mouse traverses the left subtree, visits the root, and
then traverses the right subtree. Node d is visited first because it has no left subtree.

If we record each node as the mouse last encounters it (indicated by the arrows
pointing up in Figure 8.9), we get the following sequence:

g d h e b i j f c a

This is a postorder traversal, because we visit the node after traversing both its sub-
trees. The mouse traverses the left subtree, traverses the right subtree, and then vis-
its the node.

Traversals of Binary Search Trees and Expression Trees
An inorder traversal of a binary search tree results in the nodes being visited in
sequence by increasing data value. For example, for the binary search tree shown
earlier in Figure 8.2, the inorder traversal would visit the nodes in the sequence:

canine, cat, dog, wolf

8.2 Tree Traversals 455

g h ji

d f

b c

a

e

Traversals of expression trees give interesting results. If we perform an inorder tra-
versal of the expression tree first shown in Figure 8.4 and repeated here, we visit the
nodes in the sequence x + y * a + b / c. If we insert parentheses where they
belong, we get the infix expression

(x + y) * ((a + b) / c)

The postorder traversal of this tree would visit the nodes in the sequence

which is the postfix form of the expression. To illustrate this, we show the operand-
operand-operator groupings under the expression.

The preorder traversal visits the nodes in the sequence

which is the prefix form of the expression. To illustrate this, we show the operator-
operand-operand groupings under the expression.

E X E R C I S E S F O R S E C T I O N 8 . 2

S E L F - C H E C K

1. For the following trees:

If visiting a node displays the integer value stored, show the inorder, preorder,
and postorder traversal of each tree.

2. Draw an expression tree corresponding to each of the following:
a. Inorder traversal is x / y + 3 * b / c (Your tree should represent the C++

meaning of the expression.)
b. Postorder traversal is x y z + a b – c * / –
c. Preorder traversal is * + a – x y / c d

32

30 55

40

32 50

30 55

40

35

* + x y / + a b c

x y + a b + c / *

c

a b

x +

+ /

*

y

456 Chapter 8 Trees

3. Explain why the statement “Your tree should represent the C++ meaning of the
expression” was not needed for parts b and c of Exercise 2.

8.3 Implementing a Binary_Tree Class

In this section we show how to use linked data structures to represent binary trees
and binary tree nodes. We begin by focusing on the structure of a binary tree node.

The BTNode Class
Like a linked list, a node consists of a data part and links (references) to successor
nodes. So that we can store any kind of data in a tree node, we will make the data
part an object of type Item_Type. Instead of having a single link (pointer) to a suc-
cessor node as in a list, a binary tree node must have links (pointers) to both its left
and right subtrees. Figure 8.10 shows the structure of a binary tree node; Listing 8.1
shows its implementation.

Class BTNode is a stand-alone class. Since this class is merely a grouping of data, we
use the struct keyword to declare it rather than the class keyword. (Recall that
struct and class are synonymous except that, by default, members are public in a
struct.) Even though the BTNode is only used within the Binary_Tree class, we do
not define it as a nested class. Later, we will use the Binary_Tree and BTNode classes
as base classes. Keeping the BTNode and Binary_Tree as distinct classes makes it eas-
ier to use them as base classes.

The constructor for class BTNode creates a leaf node (both left and right are NULL).
The to_string function for the class just displays the data part of the node. Note
that this function is declared virtual so that derived classes can override it. As was
explained in Chapter 3, the virtual destructor is declared because some compilers
issue a warning message if a class contains a virtual function but does not contain a
virtual destructor. As shown, this destructor does nothing.

F I G U R E 8 . 1 0
Linked Structure to
Represent a Node

8.3 Implementing a Binary_Tree Class 457

BTNode

left =
right =
data =

L I S T I N G 8 . 1
BTNode.h

#ifndef BTNODE_H_
#define BTNODE_H_
#include <sstream>

/** A node for a Binary Tree. */
template<typename Item_Type>
struct BTNode

{
// Data Fields
Item_Type data;
BTNode<Item_Type>* left;
BTNode<Item_Type>* right;

// Constructor
BTNode(const Item_Type& the_data,

BTNode<Item_Type>* left_val = NULL,
BTNode<Item_Type>* right_val = NULL) :

data(the_data), left(left_val), right(right_val) {}

// Destructor (to avoid warning message)
virtual ~BTNode() {}

// to_string
virtual std::string to_string() const {
std::ostringstream os;
os << data;
return os.str();

}
}; // End BTNode

// Overloading the ostream insertion operator
template<typename Item_Type>
std::ostream& operator<<(std::ostream& out,

const BTNode<Item_Type>& node) {
return out << node.to_string();

}

#endif

The Binary_Tree Class
Table 8.1 shows the design of the Binary_Tree class. The single data field root
points to the root node of a Binary_Tree object. It has protected visibility because
we will need to access it in subclass Binary_Search_Tree, discussed later in this
chapter. In Figure 8.11, we draw the expression tree for ((x + y) * (a / b)) using
our BTNode representation.

458 Chapter 8 Trees

E X A M P L E 8 . 1 Assume the tree drawn in Figure 8.11 is referenced by variable bT (type
Binary_Tree).

• bT.root->data contains the char object '*'
• bT.root->left points to the left subtree of the root (the root node of tree x + y).
• bT.root->right points to the right subtree of the root (the root node of tree a / b).
• bT.root->right->data contains the char object '/'.

F I G U R E 8 . 1 1
Linked Representation
of the Expression Tree
((x + y) * (a / b))

8.3 Implementing a Binary_Tree Class 459

BTNode

left =
right =
data =

BTNode

left = NULL
right = NULL
data = 'x'

BTNode

BTNode

left =
right =
data =

Binary_Tree

root =

BTNode

left =
right =
data =

BTNode BTNode

 '*'

'+' '/'

left = NULL
right = NULL
data = 'y'

left = NULL
right = NULL
data = 'a'

left = NULL
right = NULL
data = 'b'

TA B L E 8 . 1
Design of the Binary_Tree Class

Data Field Attribute

BTNode<Item_Type>* root Pointer to the root of the tree.

Constructor Behavior

Binary_Tree() Constructs an empty binary tree.

Binary_Tree(BTNode<Item_Type>* new_root) Constructs a binary tree with the given node as the root.

Binary_Tree(Item_Type the_data, const Constructs a binary tree with the given data at the root
Binary_Tree<Item_Type>& left_child, const and the two given subtrees.
Binary_Tree<Item_Type>& right_child)

The class definition file follows.
#ifndef BINARY_TREE_H
#define BINARY_TREE_H

/** Class for a binary tree. */

#include <cstddef>
#include <sstream>
#include <stdexcept>
#include <string>
#include "BTNode.h"

template<typename Item_Type>
class Binary_Tree

{
public:

// Constructors and Functions
/** Construct an empty Binary_Tree. */
Binary_Tree() : root(NULL) {}

/** Construct a Binary_Tree with two subtrees.
@param the_data The data at the root
@param left_child The left subtree
@param right_child The right subtree

*/
Binary_Tree(const Item_Type& the_data,

const Binary_Tree<Item_Type>& left_child
= Binary_Tree(),

const Binary_Tree<Item_Type>& right_child
= Binary_Tree()) :

root(new BTNode<Item_Type>(the_data, left_child.root,
right_child.root)) {}

/** Virtual destructor to avoid warnings. */
virtual ~Binary_Tree() {} // Do nothing.

460 Chapter 8 Trees

TA B L E 8 . 1 (cont.)

Function Behavior

Binary_Tree<Item_Type> get_left_subtree() Returns the left subtree.
const

Binary_Tree<Item_Type> get_right_subtree() Returns the right subtree.
const

const Item_Type& get_data() const Returns the data in the root.

bool is_leaf() const Returns true if this tree is a leaf, false otherwise.

bool is_null() const Returns true if this is an empty tree, false otherwise.

string to_string() const Returns a string representation of the tree.

static Binary_Tree<Item_Type> Constructs a binary tree by reading its data from input
read_binary_tree(std::istream& in) stream in.

/** Return the left subtree. */
Binary_Tree<Item_Type> get_left_subtree() const;

/** Return the right subtree. */
Binary_Tree<Item_Type> get_right_subtree() const;

/** Return the data field of the root.
@throws std::invalid_argument if empty tree

*/
const Item_Type& get_data() const;

/** Indicate that this is the empty tree. */
bool is_null() const;

/** Indicate that this tree is a leaf. */
bool is_leaf() const;

/** Return a string representation of this tree. */
virtual std::string to_string() const;

/** Read a Binary_Tree. */
static Binary_Tree<Item_Type> read_binary_tree(std::istream& in);

protected:

// Protected Constructor
/** Construct a Binary_Tree with a given node as the root */
Binary_Tree(BTNode<Item_Type>* new_root) : root(new_root) {}

// Data Field
BTNode<Item_Type>* root;

}; // End Binary_Tree

// Overloading the ostream insertion operator
template<typename Item_Type>
std::ostream& operator<<(std::ostream& out,

const Binary_Tree<Item_Type>& tree) {
return out << tree.to_string();

}

// Overloading the istream extraction operator
template<typename Item_Type>
std::istream& operator>>(std::istream& in,

Binary_Tree<Item_Type>& tree) {
tree = Binary_Tree<Item_Type>::read_binary_tree(in);
return in;

}

// Implementation of member functions
...
#endif

The Constructors
There are three constructors: a no-parameter constructor, a constructor that creates
a tree with a given node as its root, and a constructor that builds a tree from a data
value and two trees.

8.3 Implementing a Binary_Tree Class 461

The no-parameter constructor merely sets the data field root to NULL
Binary_Tree() : root(NULL) {}

The constructor that takes a BTNode as a parameter is a protected constructor. This
is because client classes do not know about the BTNode class. This constructor can
be used only by functions internal to the Binary_Tree class and its subclasses.

Binary_Tree(BTNode<Item_Type>* new_root) : root(new_root) {}

The third constructor takes three parameters: data to be referenced by the root
node, and two Binary_Trees that will become its left and right subtrees.

Binary_Tree(const Item_Type& the_data,
const Binary_Tree<Item_Type>& left_child
= Binary_Tree(),

const Binary_Tree<Item_Type>& right_child
= Binary_Tree()):

root(new BTNode<Item_Type>(the_data, left_child.root,
right_child.root)) {}

After its execution, the root node of the tree referenced by left_child

(left_child.root) is pointed to by root->left, making left_child the left subtree
of the new root node. If lT and rT are type Binary_Tree<char> and lT.root points
to the root node of binary tree x + y and rT.root points to the root node of binary
tree a / b, the statement

Binary_Tree<char> bT('*', lT, rT);

would cause bT to contain the tree shown in Figure 8.12.

Default values are provided for the second and third parameters. The default value
is an empty tree (root value is NULL) created by the no-parameter constructor.

F I G U R E 8 . 1 2
The Expression Tree
(x + y) * (a / b)

The get_left_subtree and get_right_subtree Functions
The get_left_subtree function returns a binary tree whose root is the left subtree
of the object on which the function is called. It uses the protected constructor just
discussed to construct a new Binary_Tree object whose root references the left sub-
tree of this tree. The get_right_subtree function is symmetric.

/** Return the left-subtree. */
template<typename Item_Type>
Binary_Tree<Item_Type>
Binary_Tree<Item_Type>::get_left_subtree() const {

if (root == NULL) {
throw std::invalid_argument("get_left_subtree on empty tree");

}
return Binary_Tree<Item_Type>(root->left);

}

462 Chapter 8 Trees

bx a

+ /

*

y

The is_leaf Function
The is_leaf function tests to see whether this tree has any subtrees. If there are no
subtrees, then true is returned.

/** Indicate that this tree is a leaf. */
template<typename Item_Type>
bool Binary_Tree<Item_Type>::is_leaf() const {
if (root != NULL) {
return root->left == NULL && root->right == NULL;

} else
return true;

}

The to_string Function
The to_string function generates a string representation of the Binary_Tree for out-
put purposes. The string representation is a preorder traversal in which each local
root is on a separate line. If a subtree is empty, the string "NULL" is displayed. The
tree in Figure 8.12 would be displayed as follows:

*
+
x
NULL
NULL
y
NULL
NULL
/
a
NULL
NULL
b
NULL
NULL

The to_string function creates an ostringstream object. If the tree is empty, then it
writes the string "NULL\n" to the ostringstream. Otherwise it writes the contents of
the root using the ostream insertion operator followed by a newline character. Then
it recursively applies the to_string function to the left and right subtrees.

/** Return a string representation of this tree. */
template<typename Item_Type>
std::string Binary_Tree<Item_Type>::to_string() const {
std::ostringstream os;
if (is_null())
os << "NULL\n";

else {
os << *root << '\n';
os << get_left_subtree().to_string();
os << get_right_subtree().to_string();

}
return os.str();

}

8.3 Implementing a Binary_Tree Class 463

Reading a Binary Tree
If we use an istream to read the individual lines created by the to_string function
previously discussed, we can reconstruct the binary tree using the algorithm:

1. Read a line that represents information at the root.
2. if it is "NULL"
3. Return an empty tree.

else

4. Convert the input line to a data value.
5. Recursively read the left child.
6. Recursively read the right child.
7. Return a tree consisting of the root and the two children.

The tree that is constructed will be type Binary_Tree<Item_Type>. The code for a
function that implements this algorithm is shown in Listing 8.2.

L I S T I N G 8 . 2
Function to Read a Binary Tree

template<typename Item_Type>
Binary_Tree<Item_Type> Binary_Tree<Item_Type>::
read_binary_tree(std::istream& in) {

std::string next_line;
getline(in, next_line);
if (next_line == "NULL") {
return Binary_Tree<Item_Type>();

} else {
Item_Type the_data;
std::istringstream ins(next_line);
ins >> the_data;
Binary_Tree<Item_Type> left = read_binary_tree(in);
Binary_Tree<Item_Type> right = read_binary_tree(in);
return Binary_Tree<Item_Type>(the_data, left, right);

}
}

Using istream and ostream
We can overload the istream extraction operator for the Binary_Tree class to call
the read_binary_tree function and we can overload the ostream insertion operator
to call the to_string function. By doing this, we can read and write Binary_Tree
objects in the same manner as we read and write other objects.

// Overloading the ostream insertion operator.
template<typename Item_Type>
std::ostream& operator<<(std::ostream& out,

const Binary_Tree<Item_Type>& tree) {
return out << tree.to_string();

}

464 Chapter 8 Trees

// Overloading the istream extraction operator.
template<typename Item_Type>
std::istream& operator>>(std::istream& in,

Binary_Tree<Item_Type>& tree) {
tree = Binary_Tree<Item_Type>::read_binary_tree(in);
return in;

}

Copy Constructor, Assignment, and Destructor
We have not provided copy constructors, assignment operators, or functioning
destructors for the Binary_Tree and BTNode classes. This is intentional. The purpose
of these classes is to illustrate the binary tree ADT and not to provide a robust
implementation. The constructor

Binary_Tree(const Item_Type& the_data,
const Binary_Tree<Item_Type>& left_child,
const Binary_Tree<Item_Type>& right_child)

and the functions get_left_subtree and get_right_subtree can result in multiple
Binary_Tree objects containing pointers either directly or indirectly to a given
BTNode object. One solution would be for this constructor and these functions to
make a copy of the subtree arguments. Then the Binary_Tree destructor could call
the root’s BTNode destructor, which would then recursively call the destructors for all
of the nodes in the tree. There are many cases where this would be very inefficient.
Thus, we have decided to live with potential memory leaks for these classes.

An alternative would be to use what is known as a smart pointer for the pointers in
the BTNode and Binary_Tree classes. A smart pointer is a class that acts like a pointer,
but automatically deletes the object pointed to when the pointed-to object has no
owners. We describe smart pointers in more detail in Appendix A.

E X E R C I S E S F O R S E C T I O N 8 . 3

S E L F - C H E C K

1. Draw the linked representation of the two trees below. See Figure 8.11 for an
example.

FE

B D

A

C C

B E

F

A

D

8.3 Implementing a Binary_Tree Class 465

2. Show the tree that would be built by the following data lines:
30
15
4
NULL
NULL
20
18
NULL
19
NULL
NULL
NULL
35
32
NULL
NULL
38
NULL
NULL

3. What can you say about this tree?
4. Write the strings that would be displayed for the two binary trees in Figure 8.6.

P R O G R A M M I N G

1. Write a function for the Binary_Tree class that returns the preorder traversal of
a binary tree as a sequence of strings each separated by a space.

2. Write a function to display the postorder traversal of a binary tree in the same
form as Programming Exercise 1.

3. Write a recursive member function to find the height of a Binary_Tree.
4. Write a recursive member function to find the number of nodes in a Binary_Tree.
5. Write a function to display the inorder traversal of a binary tree in the same form

as Programming Exercise 1, except place a left parenthesis before each subtree
and a right parenthesis after each subtree. Don’t display anything for an empty
subtree. For example, the expression tree shown in Figure 8.12 would be repre-
sented as (((x) + (y)) * ((a) / (b))).

8.4 Binary Search Trees

Overview of a Binary Search Tree
In Section 8.1 we provided the following recursive definition of a binary search tree:

A set of nodes T is a binary search tree if either of the following is true:

• T is empty
• If T is not empty, its root node has 0, 1, or 2 nonempty subtrees. Its left sub-

tree, TL , is a binary search tree that contains all values less than the value in

466 Chapter 8 Trees

8.4 Binary Search Trees 467

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

the root of T; its right subtree, TR, is a binary search tree that contains all val-
ues greater than the value in the root of T.

We will assume that all entries saved in a binary search tree are unique (no dupli-
cates). Figure 8.13 shows a binary search tree that contains the words in lowercase
from the nursery rhyme “The House That Jack Built.” We can use the following
algorithm to find an object in a binary search tree.

Recursive Algorithm for Searching a Binary Search Tree
1. if the root is NULL
2. The item is not in the tree; return NULL.
3. Compare the value of target, the item being sought, with root->data.
4. if they are equal
5. The target has been found, return the data at the root.

else if target is less than root->data
6. Return the result of searching the left subtree.

else

7. Return the result of searching the right subtree.

F I G U R E 8 . 1 3
Binary Search Tree Containing All of the Words from “The House That Jack Built”

E X A M P L E 8 . 2 Suppose we wish to find jill in Figure 8.13. We first compare jill with lay. Because
jill is less than lay, we continue the search with the left subtree and compare jill with
house. Because jill is greater than house, we continue with the right subtree and
compare jill with jack. Because jill is greater than jack, we continue with killed fol-
lowed by kept. Now kept has no left child, and jill is less than kept, so we conclude
that jill is not in this binary search tree. (She’s in a different nursery rhyme.) Follow
the entire path marked in color in Figure 8.14.

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn wakedworried

F I G U R E 8 . 1 4
Looking for jill

468 Chapter 8 Trees

Performance
Searching the tree in Figure 8.13 is O(log n). However, if a tree is not very full, per-
formance will be worse. The tree in the figure at left has only right subtrees, so
searching it is O(n). In general, the performance is O(h), where h is the height of the
tree.

The Binary_Search_Tree Class
Next we implement class Binary_Search_Tree. The type parameter specified when
we create a new Binary_Search_Tree must implement the less-than operator (<).

Table 8.3 shows the design of this class. The class definition follows. Notice that
class Binary_Search_Tree extends class Binary_Tree (see Figure 8.15). Class
Binary_Search_Tree inherits the data field root from class Binary_Tree (declared as
protected). Listing 8.3 shows the class definition. Functions insert and erase are
declared virtual because we will extend Binary_Search_Tree in Chapter 11. The
private member functions are used in the implementation of the public functions
and are discussed subsequently.

TA B L E 8 . 3
Design of the Class Binary_Search_Tree

cat

 cow

 dog

 fox

Function Behavior

bool insert(const Item_Type& item) Inserts an item into the tree. Returns true if the item was
inserted, false if the item was already in the tree.

bool erase(const Item_Type& item) Remove an item from the tree. Returns true if the item was
removed, false if the item was not in the tree.

const Item_Type* find(const Return a pointer to an item in the tree, or NULL if the
Item_Type& target) const item is not in the tree.

F I G U R E 8 . 1 5
UML Diagram of
Binary_Search_Tree

8.4 Binary Search Trees 469

+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)
+ const Item_Type* find(const Item_Type&)

 Binary_Tree

+ get_left_subtree()
+ get_right_subtree()
+ get_data()
+ to_string()

BTNode

+ data

root

left right

 Binary_Search_Tree

L I S T I N G 8 . 3
Binary_Search_Tree.h

#ifndef BINARY_SEARCH_TREE_H
#define BINARY_SEARCH_TREE_H

#include "Binary_Tree.h"

/** Definition of the Binary Search Tree class.
@param Item_Type The type of item to be stored in the tree
Note: Item_Type must define the less-than operator as a
total ordering.

*/
template<typename Item_Type>
class Binary_Search_Tree : public Binary_Tree<Item_Type>

{
public:
// Constructor
/** Construct an empty Binary_Search_Tree */
Binary_Search_Tree() : Binary_Tree<Item_Type>() {}

// Public Member Functions
/** Insert an item into the tree.

post: The item is in the tree.
@param item The item to be inserted
@return true if the item was not already

in the tree, false otherwise
*/
virtual bool insert(const Item_Type& item);

/** Remove an item from the tree.
post: The item is no longer in the tree.
@param item The item to be removed
@return true if the item was in the tree,

false otherwise
*/
virtual bool erase(const Item_Type& item);

/** Determine whether an item is in the tree.
@param item The item sought
@return A const pointer to the item if in the

tree, or NULL if not
*/
const Item_Type* find(const Item_Type& target) const;

private:

// Private Member Functions
/** Insert an item into the tree.

post: The item is in the tree.
@param local_root A reference to the current root
@param item The item to be inserted
@return true if the item was not already in the

tree, false otherwise
*/
virtual bool insert(BTNode<Item_Type>*& local_root,

const Item_Type& item);

/** Remove an item from the tree.
post: The item is no longer in the tree.
@param local_root A reference to the current root
@param item The item to be removed
@return true if the item was in the tree,

false otherwise
*/
virtual bool erase(BTNode<Item_Type>*& local_root,

const Item_Type& item);

/** Determine whether an item is in the tree.
@param local_root A reference to the current root
@param target The item sought
@return A const pointer to the item in the tree

*/
const Item_Type* find(BTNode<Item_Type>* local_root,

const Item_Type& target) const;

/** Find a replacement for a node that is being deleted.
This function finds the rightmost local root that
does not have a right child. The data in this local_root
replaces the data in old_root. The pointer to local_root
is then saved in old_root and local_root is replaced
by its left child.
@param old_root Reference to the pointer to old parent
@param local_root Reference to the pointer to local root

*/
virtual void replace_parent(BTNode<Item_Type>*& old_root,

BTNode<Item_Type>*& local_root);

}; // End binary search tree

// Implementation of member functions
...

#endif

470 Chapter 8 Trees

Implementing the find Functions
Earlier we showed a recursive algorithm for searching a binary search tree. Next we
show how to implement this algorithm and a non-recursive starter function for the
algorithm. Our function find will return a pointer to the data within the node that
contains the information we are seeking.

Listing 8.4 shows the code for function find. In the starter function, the statement
return find(this->root, target);

calls the recursive find function with the tree root as its first parameter. When a
template class (Binary_Tree in this case) is used as a base class of another template
class (Binary_Search_Tree), the names of members of the base class are not found
by the compiler unless they are qualified with the prefix this->. If bST is a
Binary_Search_Tree, the function call bST.find(target) invokes the starter function.

The recursive function first tests the local root for NULL. If it is NULL, the object is not
in the tree, so NULL is returned.

If the local root is not NULL, we see whether the target is less than the data at the
local_root. If it is, we recursively call the function find, passing the left subtree of
the local_root as the parameter.

return find(local_root->left, target);

If it is not, we see whether the data at the local_root is less than the target. (Recall
that Item_Type is only required to implement the less-than operator.) If it is, we call
find to search the right subtree.

return find(local_root->right, target);

If the target is not less than the data at the local_root, and if the data at the
local_root is not less than the target, then we conclude that the target is equal to
the data at the local_root. We then return a pointer to this data.

return &(local_root->data);

L I S T I N G 8 . 4
Binary_Search_Tree find Function

template<typename Item_Type>
const Item_Type* Binary_Search_Tree<Item_Type>::find(
const Item_Type& target) const {

return find(this->root, target);
}

template<typename Item_Type>
const Item_Type* Binary_Search_Tree<Item_Type>::find(
BTNode<Item_Type>* local_root,
const Item_Type& target) const {

if (local_root == NULL)
return NULL;

if (target < local_root->data)
return find(local_root->left, target);

else if (local_root->data < target)
return find(local_root->right, target);

else
return &(local_root->data);

}

8.4 Binary Search Trees 471

472 Chapter 8 Trees

Insertion into a Binary Search Tree
Inserting an item into a binary search tree follows a similar algorithm as searching
for the item, because we are trying to find where in the tree the item would be, if it
were there. In searching, a result of NULL is an indicator of failure; in inserting, we
replace this NULL with a new leaf that contains the new item. If we reach a node that
contains the object we are trying to insert, then we can’t insert it (duplicates are not
allowed), so we return false to indicate that we were unable to perform the inser-
tion. The insertion algorithm follows.

Recursive Algorithm for Insertion in a Binary Search Tree
1. if the root is NULL
2. Replace empty tree with a new tree with the item at the root and

return true.
3. else if the item is equal to root->data
4. The item is already in the tree; return false.
5. else if the item is less than root->data
6. Recursively insert the item in the left subtree.
7. else

8. Recursively insert the item in the right subtree.

The algorithm returns true when the new object is inserted and false if it is a dupli-
cate (the second stopping case). The first stopping case tests for an empty tree. If so,
a new Binary_Search_Tree is created, and the new item is stored in its root node
(Step 2).

E X A M P L E 8 . 3 To insert jill into Figure 8.13, we would follow the steps shown in Example 8.2
except that when we reached kept, we would insert jill as the left child of the node
that contains kept (see Figure 8.16).

P I T F A L L

Failure to Qualify a Template Base Class Member Name
If you fail to qualify a template base class member name within a template derived
class, you may get an error message. However, if this name happens to be defined out-
side the class, you will not get an error, but your program will not execute as expected.
This is because the other name will be used. For example, if there was a global variable
root, and we omitted this-> from the call to find, then find would start the search
using the contents of this global variable.

Implementing the insert Functions
Listing 8.5 shows the code for the starter and recursive insert functions. The recur-
sive insert follows the algorithm presented earlier, except that the order of the tests
needs to be changed similar to that used for find. This is because we only can per-
form a less-than comparison on Item_Type values.

In method insert, we define the parameter local_root as type BTNode<Item_Type>*&
where there is both a * and a & following the type BTNode<Item_Type>. The * indi-
cates that local_root is a pointer and the & indicates that local_root is a reference.
When there is a * followed by a &, this indicates that local_root is a reference to a
pointer to a BTNode<Item_Type>. Recall that when you pass an argument to a func-
tion by reference, any changes make to the corresponding parameter by the function
are made to the argument.

The starter function calls the recursive function with the tree root as its argument.
If the root was initially NULL, the statement

local_root =
new BTNode<Item_Type>(item);

sets root to point to a newly created BTNode.

If the local_root is not NULL, then we follow the same pattern as in the find func-
tion and test to see whether the item to be inserted is less than local_root->data. If
it is, we recursively call insert with local_root->left as the first argument.

return insert(local_root->left, item);

If item is not less than local_root->data, we then test to see whether local_root->data
is less than item. If it is, we recursively call insert with local_root->right as the
first argument.

return insert(local_root->right, item);

If both tests fail, then the item is already in the tree, and we return false.

If the item is not in the tree, the sequence of recursive calls will eventually lead to
local_root being NULL. The statement

local_root =
new BTNode<Item_Type>(item);

will set the caller’s local_root->left or the caller’s local_root->right to point to
the newly created BTNode.

8.4 Binary Search Trees 473

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn jill married sowing the torn wakedworried

F I G U R E 8 . 1 6
Inserting jill

474 Chapter 8 Trees

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in

in

kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the tornwakedworried

L I S T I N G 8 . 5
Binary_Search_Tree insert Functions

template<typename Item_Type>
bool Binary_Search_Tree<Item_Type>::insert(
const Item_Type& item) {

return insert(this->root, item);
}

template<typename Item_Type>
bool Binary_Search_Tree<Item_Type>::insert(
BTNode<Item_Type>*& local_root,
const Item_Type& item) {

if (local_root == NULL) {
local_root =
new BTNode<Item_Type>(item);

return true;
} else {
if (item < local_root->data)
return insert(local_root->left, item);

else if (local_root->data < item)
return insert(local_root->right, item);

else {
return false;

}
}

}

Removal from a Binary Search Tree
Removal also follows the search algorithm, except that when the item is found, it is
removed. If the item is a leaf node, then its parent’s reference to it is set to NULL,
thereby removing the leaf node. If the item has only a left or right child, then the
grandparent references the remaining child instead of the child’s parent (the node we
want to remove).

E X A M P L E 8 . 4 If we remove the node is from Figure 8.13, we can replace it with in. This is accom-
plished by changing the left child reference in jack (the grandparent) to reference in
(see Figure 8.17).

F I G U R E 8 . 1 7
Removing is

8.4 Binary Search Trees 475

cow

house

lay

rat

jack

horn

milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the tornwakedworried

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest

priest

shorn tosseddog

forlorn in kept kissed maiden man morn

morn

shaven tattered withthis

crowed farmer horn married sowing the tornwakedworried

A complication arises when the item we wish to remove has two children. In this
case we need to find a replacement parent for the children. Remember that the par-
ent must be larger than all of the data fields in the left subtree and smaller than all
of the data fields in the right subtree. If we take the largest item in the left subtree
and promote it to be the parent, then all of the remaining items in the left subtree
will be smaller. This item is also less than the items in the right subtree. This item is
also known as the inorder predecessor of the item being removed. (We could use the
inorder successor instead; this is discussed in the exercises.)

E X A M P L E 8 . 5 If we remove house from Figure 8.13, we look in the left subtree (root contains cow)
for the largest item, horn. We then replace "house" with "horn" and remove the node
horn (see Figure 8.18).

F I G U R E 8 . 1 8
Removing house

E X A M P L E 8 . 6 If we want to remove rat from the tree in Figure 8.13, we would start the search for
the inorder successor at milked and see that it has a right child, priest. If we now look
at priest, we see that it does not have a right child, but it does have a left child. We
would then replace "rat" with "priest" and replace the reference to priest in milked
with a reference to morn (the left subtree of the node priest). See Figure 8.19.

F I G U R E 8 . 1 9
Removing rat

Recursive Algorithm for Removal from a Binary Search Tree
1. if the root is NULL
2. The item is not in tree – return NULL.
3. Compare the item to the data at the local root.
4. if the item is less than the data at the local root
5. Return the result of deleting from the left subtree.
6. else if the item is greater than the local root
7. Return the result of deleting from the right subtree.
8. else // The item is in the local root
9. if the local root has no children

10. Set the parent of the local root to reference NULL.
11. else if the local root has one child
12. Set the parent of the local root to reference that child.
13. else // Find the inorder predecessor
14. if the left child has no right child,

it is the inorder predecessor
15. Set the parent of the local root to reference the left child.
16. else

17. Find the rightmost node in the right subtree of the left
child.

18. Copy its data into the local root’s data and remove it by
setting its parent to reference its left child.

Implementing the erase Functions
Listing 8.6 shows both the starter and the recursive erase functions. As with the
insert function, the recursive erase function returns a bool value to indicate
whether the item was removed or was not in the tree.

L I S T I N G 8 . 6
Binary_Search_Tree erase Functions

template<typename Item_Type>
bool Binary_Search_Tree<Item_Type>::erase(
const Item_Type& item) {

return erase(this->root, item);
}

template<typename Item_Type>
bool Binary_Search_Tree<Item_Type>::erase(
BTNode<Item_Type>*& local_root,
const Item_Type& item) {

if (local_root == NULL) {
return false;

} else {
if (item < local_root->data)
return erase(local_root->left, item);

476 Chapter 8 Trees

else if (local_root->data < item)
return erase(local_root->right, item);

else { // Found item
BTNode<Item_Type>* old_root = local_root;
if (local_root->left == NULL) {
local_root = local_root->right;

} else if (local_root->right == NULL) {
local_root = local_root->left;

} else {
replace_parent(old_root, old_root->left);

}
delete old_root;
return true;

}
}

}

For the recursive function the two stopping cases are an empty tree and a tree whose
root contains the item being removed. We first test to see whether the tree is empty
(local root is NULL). If so, then the item sought is not in the tree, and false is
returned. Next, local_root->data is compared to the item to be deleted. If the item
to be deleted is less than local_root->data, it must be in the left subtree if it is in
the tree at all, so we recursively call erase with local_root->left as the new
local_root parameter.

return erase(local_root->left, item);

Any change made to the local_root parameter by the recursive call will be made to
the caller’s local_root->left, thus changing the caller’s left subtree.

If the local_root->data is less than the item to be deleted, the statement
return erase(local_root->right, item);

affects the right subtree of local_root in a similar way.

If local_root->data is the item to be deleted, we have reached the second stopping
case, beginning with the line

else { // Found item

A pointer to the node containing the item is saved in old_root. If the node to be
deleted has one child (or zero children), we set the local_root (parent of the deleted
node) to point to its only grandchild (or NULL). Thus the node containing the item
to be deleted (pointed to by old_root) has been unlinked from the tree.

If the node to be deleted (such as jack) has two children, we need to find the replace-
ment for this node. This is done by the function replace_parent. Upon return from
replace_parent the value in local_root->data will be the data value of the inorder
predecessor of the item deleted. The pointer old_root will now point to the node
that contained this value, and this node will have been unlinked from the tree. We
describe how replace_parent does this next.

Whether the node to be deleted has zero, one, or two children, old_root points to a
node that has been unlinked from the tree. We return this node to the free storage
pool, and then return true to indicate that an item has been removed from the tree.

8.4 Binary Search Trees 477

The replace_parent Function
The function replace_parent (see Listing 8.7) takes two reference parameters. The
parameter old_root is a reference to a pointer to the node that contains the item to
be removed. The parameter local_root is a reference to a pointer to a node that
might contain the replacement value.

The function is initially called with old_root bound to the caller’s old_root and with
local_root bound to the caller’s old_root->left. If this left child has no right sub-
tree (as in deleting jack), the left child (node is) is the inorder predecessor. The first
of the following statements,

old_root->data = local_root->data;
old_root = local_root;
local_root = local_root->left;

copies the left child’s data into the old_root’s data ("is" to jack); the second state-
ment now changes old_root to point to the left child; and the third statement resets
the local node’s left branch to reference its left child’s left subtree (in).

If the left child of the node to be deleted has a right subtree, we recursively call
replace_parent, leaving old_root referencing the node containing the item to be
removed, and local_root referencing the current local_root’s right child.

replace_parent(old_root, local_root->right);

The recursion will terminate when local_root references a pointer to the rightmost
child (a node with no right child) of the original parameter. This is illustrated in
Figure 8.19. When the recursion reaches its stopping case, old_root will point to the
node containing the value to be removed (rat). The left child (milked) of the node
to be deleted (rat) has a right child (priest), which is its largest child. The parameter
local_root will reference the node priest. Therefore, old_root->data will now con-
tain "priest" (replacing "rat"). Then old_root is changed so that it points to the
node priest and the node morn (the left child of priest) becomes the new right child
of milked.

L I S T I N G 8 . 7
Function replace_parent

template<typename Item_Type>
void Binary_Search_Tree<Item_Type>::replace_parent(
BTNode<Item_Type>*& old_root,
BTNode<Item_Type>*& local_root) {

if (local_root->right != NULL) {
replace_parent(old_root, local_root->right);

jack

is killed

in

is

478 Chapter 8 Trees

8.4 Binary Search Trees 479

} else {
old_root->data = local_root->data;
old_root = local_root;
local_root = local_root->left;

}
}

Testing a Binary Search Tree
To test a binary search tree, you need to verify that an inorder traversal will display
the tree contents in ascending order after a series of insertions (to build the tree) and
deletions are performed. You can base the main function of your testing code on that
shown in Listing 4.3 (which validates these operations for an Ordered_List). You
need to write a function that returns a vector of strings built from an inorder tra-
versal. These strings should be in alphabetical order (see Programming Exercise 3).

CASE STUDY Writing an Index for a Term Paper

Problem You would like to write an index for a term paper. The index should show each
word in the paper followed by the line number in which it occurred. The words
should be displayed in alphabetical order. If a word occurs on multiple lines, the line
numbers should be listed in ascending order. For example, the three lines

a, 3
a, 13
are, 3

show that the word “a” occurred on lines 3 and 13 and the word “are” occurred
on line 3.

Analysis A binary search tree is an ideal data structure to use for storing the index entries.
We can store each word and its line number as a string in a tree node. For example,
the two occurrences of the word “C++” on lines 5 and 10 could be stored as the
strings "c++, 5" and "c++, 10". Each word will be stored in lowercase to ensure
that it appears in its proper position in the index. The line number is right-justified
so that the string "c++, 5" is considered less than the string "c++, 10". If the
leading spaces were removed, this would not be the case ("c++, 5" is greater than
"c++, 10"). After all the strings are stored in the search tree, we can display them in
ascending order by performing an inorder traversal. Storing each word in a search
tree is an O(log n) process, where n is the number of words currently in the tree.
Storing each word in an ordered list would be an O(n) process.

Design We will use the Binary_Search_Tree just discussed to store the index. Function
build_index will read each word from a data file and store it in the search tree.
Function print_index will display the index.

480 Chapter 8 Trees

Implementation Listing 8.8 shows the program Index_Generator. In function build_index, the outer
while loop reads each data line into next_line. After incrementing line_num, a new
String_Tokenizer object (discussed after the listing) is created for the current data
line. The inner while loop processes each token. The statements

string word = tokenizer.next_token();
to_lower(word);

extracts the next word from next_line and converts it to lower case. We then use
an ostringstream to construct a string that consists of this word, followed by a
comma, and followed by the value of line_num. The statements

os << right;
os << setw(3) << line_num;

formats line_num with leading spaces so that it occupies a total of 3 columns. Use
of the manipulators right and setw are described in the C++ Primer.

Function print_index performs an inorder traversal of a Binary_Tree (recall that
Binary_Tree is a base class of Binary_Search_Tree). This function is left as an exercise.

L I S T I N G 8 . 8
Index_Generator.cpp

/** Program to generate a simple index. */

#include <fstream>
#include <sstream>
#include <iostream>
#include <cctype>
#include <iomanip>
#include "String_Tokenizer.h"
#include "Binary_Search_Tree.h"

using namespace std;

/** Function to convert a string to lowercase.
post: All characters in the string are converted

to their lowercase equivalents.
@param a_string The string to be converted

*/
void to_lower(string& a_string) {
for (size_t i = 0; i < a_string.length(); i++)
a_string[i] = tolower(a_string[i]);

}

/** Function to build the index.
post: index contains the index of all words

in the input file.
@param index The Binary_Search_Tree that will

contain the index
@param in The istream that contains the file

8.4 Binary Search Trees 481

*/
void build_index(Binary_Search_Tree<string>& index,

istream& in) {
string next_line;
int line_num = 0;
while (getline(in, next_line)) {
line_num++;
String_Tokenizer tokenizer(next_line, " ,.:-!?/%\'\"");
while (tokenizer.has_more_tokens()) {
string word = tokenizer.next_token();
to_lower(word);
ostringstream os;
os << word;
os << ", ";
os << right;
os << setw(3) << line_num;
index.insert(os.str());

}
}

}

/** Function to print the index in alphabetic order.
Performs an inorder traversal of the index.
@param index The Binary_Tree containing the index

subtree being traversed.
*/
void print_index(const Binary_Tree<string>& index) {
// Exercise

}

int main(int argc, char* argv[]) {
// Exercise

}

The String_Tokenizer
Example P.16 in the C++ Primer showed how to use the string functions
find_first_of and find_first_not_of to find individual tokens (substrings) in a
longer string. A token is a substring that is delimited by a pair of delimiter charac-
ters (examples of delimiter characters are spaces and punctuation symbols).

We can use the code in that example to define a class String_Tokenizer (Listing
8.9). The constructor takes two string parameters: the line to be split and a string
consisting of the delimiting characters. It initializes data members start and end to
0, but then calls function find_next to advance start to the first character that is
not a delimiter and end to the first delimiter character after the character at start.
The function has_more_tokens returns true if there are more substrings available.
Function next_token returns the next substring (the characters between start and
end). Before returning a token, it calls find_next to advance start and end to delimit
the token following this one. Listing 8.9 shows the definition for the
String_Tokenizer class, and Listing 8.10 shows the implementation.

482 Chapter 8 Trees

L I S T I N G 8 . 9
String_Tokenizer.h

#ifndef STRING_TOKENIZER_H
#define STRING_TOKENIZER_H

#include <string>

/** The String_Tokenizer class splits a string into a sequence of
subtrings, called tokens, separated by delimiters.

*/
class String_Tokenizer
{
public:

/** Construct a String_Tokenizer.
@param source The string to be split into tokens
@param delim The string containing the delimiters. If

this parameter is omitted, a space character is
assumed

*/
String_Tokenizer(std::string source, std::string delim = " ") :
the_source(source), the_delim(delim), start(0), end(0) {
find_next();

}

/** Determine if there are more tokens.
@return true if there are more tokens

*/
bool has_more_tokens();

/** Retrieve the next token.
@return The next token. If there are no more tokens, an empty

string is returned
*/
std::string next_token();

private:

/** Position start and end so that start is the index of the start
of the next token and end is the end.

*/
void find_next();

/** The string to be split into tokens */
std::string the_source;

/** The string of delimiters */
std::string the_delim;

/** The index of the start of the next token */
size_t start;

8.4 Binary Search Trees 483

/** The index of the end of the next token */
size_t end;

};

#endif

L I S T I N G 8 . 1 0
String_Tokenizer.cpp

#include "String_Tokenizer.h"
using std::string;

/** Position start and end so that start is the index of the start
of the next token and end is the end.

*/
void String_Tokenizer::find_next() {
// Find the first character that is not a delimiter.
start = the_source.find_first_not_of(the_delim, end);
// Find the next delimiter.
end = the_source.find_first_of(the_delim, start);

}

/** Determine if there are more tokens.
@return true if there are more tokens

*/
bool String_Tokenizer::has_more_tokens() {
return start != string::npos;

}

/** Retrieve the next token.
@return The next token. If there are no more

tokens, an empty string is returned
*/
string String_Tokenizer::next_token() {
// Make sure there is a next token
if (!has_more_tokens())
return "";

// Save the next token.
string token = the_source.substr(start, end - start);
// Find the following token.
find_next();
// Return the next token.
return token;

}

Testing To test program Index_Generator, write a main function that declares new ifstream
and Binary_Tree<string> objects. The ifstream can reference any text file stored on
your hard drive. Make sure that duplicate words are handled properly (including
duplicates on the same line), that words at the end of each line are stored in the
index, that empty lines are processed correctly, and that the last line of the docu-
ment is also part of the index.

E X E R C I S E S F O R S E C T I O N 8 . 4

S E L F - C H E C K

1. Show the tree that would be formed for the following data items. Exchange the
first and last items in each list, and rebuild the tree that would be formed if the
items were inserted in the new order.
a. happy, depressed, manic, sad, ecstatic
b. 45, 30, 15, 50, 60, 20, 25, 90

2. Explain how the tree shown in Figure 8.13 would be changed if you inserted
"mother". How would it be changed if you inserted "jane"? Does either of these
insertions change the height of the tree?

3. Show or explain the effect of removing "kept" and "cow" from the tree in Figure
8.13.

4. In Exercise 3, a replacement must be chosen for the node cow because it has two
children. What is the relationship between the replacement word and the word
"cow"? What other word in the tree could also be used as a replacement for
"cow"? What is the relationship between that word and the word "cow"?

5. The algorithm for deleting a node does not explicitly test for the situation where
the node being deleted has no children. Explain why this is not necessary.

6. In Step 18 of the algorithm for deleting a node, when we replace the pointer to a
node that we are removing with a pointer to its left child, why is it not a concern
that we might lose the right subtree of the node that we are removing?

P R O G R A M M I N G

1. Self-Check Exercise 4 indicates that there are two items that can be used to
replace a data item in a binary search tree. Rewrite function erase so that it
retrieves the leftmost element in the right subtree instead. You will also need to
provide a function find_smallest_child.

2. Write a function that returns the tree contents in ascending order (using an
inorder traversal) with newline characters separating the tree elements.

3. Write a main function to test a binary search tree based on Listing 4.3.

8.5 Heaps and Priority Queues

In this section, we discuss a binary tree that is ordered but in a different way than a
binary search tree. In a heap, the value in each node is greater than all values in the
node’s subtrees. Figure 8.20 shows an example of a heap. Observe that 89 is the
largest value. Observe that each parent is larger than its children, and that each par-
ent has two children, with the exception of node 39 at the next-to-lowest level and
the leaves. All nodes to the right of 39 (node 66) are leaf nodes. Furthermore, with
the exception of 66, all leaves are at the lowest level.

484 Chapter 8 Trees

F I G U R E 8 . 2 0
Example of a Heap

8.5 Heaps and Priority Queues 485

The heap shown in Figure 8.20 is called a max heap because the root node stores
the largest value. It is also possible to build and use a min heap, in which each node’s
value is smaller than the values of its children, and the root node stores the smallest
value.

A heap is a complete binary tree with the following properties:

• The value in the root is greater than or equal to all items in the tree.
• Every subtree is a heap

Inserting an Item into a Heap
We use the following algorithm for inserting an item into a heap. Our approach is
to place each item initially in the bottom row of the heap and then move it up until
it reaches the position where it belongs.

Algorithm for Inserting in a Heap
1. Insert the new item in the next position at the bottom of the heap.
2. while new item is not at the root and new item is larger than its parent
3. Swap the new item with its parent, moving the new item up the heap.

New items are added to the last row of a heap. If a new item is smaller than or equal
to its parent, nothing more need be done. If we insert 6 in the heap in Figure 8.20,
6 becomes the right child of 39, and we are done. However, if the new item is larger
than its parent, the new item and its parent are swapped. This is repeated up the tree
until the new item is in a position where it is no longer larger than its parent. For
example, let’s add 80 to the heap shown in Figure 8.21. Since 80 is larger than 66,
these values are swapped as shown in Figure 8.22. Also, 80 is larger than 74, so
these values are swapped resulting in the updated heap shown in Figure 8.23. But
80 is smaller than 89, so we are done.

37 32

20 26 18 28

39 66

29

76 74

89

37 32

20 26 18 28

39 66

29 6 80

76 74

89

37 32

20 26 18 28

39 80

29 6 66

76 74

89

37 32

20 26 18 28

39 74

29 6 66

76 80

89

F I G U R E 8 . 2 3
Swapping 80 and 74

F I G U R E 8 . 2 1
After Inserting 80 into a Heap

F I G U R E 8 . 2 2
Swapping 80 and 66

Removing an Item from a Heap
Removal from a heap is always from the top. The top item is first replaced with the
last item in the heap (at the lower right-hand position), so that the heap remains a
complete tree. If we used any other value, there would be a “hole” in the tree where
that value used to be. Then the new item at the top is moved down the heap until it
is in its proper position.

Algorithm for Removal from a Heap
1. Remove the item in the root node by replacing it with the last item in the

heap (LIH).
2. while item LIH has children and item LIH is smaller than either of its

children
3. Swap item LIH with its larger child, moving LIH down the heap.

As an example, if we remove 89 from the heap shown in Figure 8.23, 66 replaces it
as shown in Figure 8.24. Since 66 is smaller than both of its children, it is swapped
with the larger of the two, 80, as shown in Figure 8.25. The result is still not a heap,
because 66 is smaller than one of its children. Swapping 66 with its larger child, 74,
restores the heap as shown in Figure 8.26.

Implementing a Heap
Because a heap is a complete binary tree, we can implement it efficiently using an
array (or vector) instead of a linked data structure. We can use the first element
(subscript 0) for storing the root data. We can use the next two elements (subscripts
1 and 2) for storing the two children of the root. We can use elements with sub-
scripts 3, 4, 5, and 6 for storing the four children of these two nodes, and so on.
Therefore, we can view a heap as a sequence of rows; each row is twice as long as
the previous row. The first row (the root) has one item, the second row two, the
third four, and so on. All of the rows are full except for the last one (see Figure
8.27).

Observe that the root, 89, is at position 0. The root’s two children, 76 and 74, are
at positions 1 and 2. For a node at position p, the left child is at 2p + 1 and the right
child is at 2p + 2. A node at position c can find its parent at (c – 1)/2. Thus, as shown
in Figure 8.27, the children of 32 (at position 4) are at positions 9 and 10.

486 Chapter 8 Trees

37 32

20 26 18 28

39 74

29 6

76 80

66

37 32

20 26 18 28

39 74

29 6

76 66

80

37 32

20 26 18 28

39 66

29 6

76 74

80

F I G U R E 8 . 2 6
Swapping 74 and 66

F I G U R E 8 . 2 4
After Removal of 89

F I G U R E 8 . 2 5
Swapping 80 and 66

Insertion into a Heap Implemented as a vector
We will use a vector for storing our heap because it is easier to expand and contract
than an array. Figure 8.28 shows the heap after inserting 80 into position 13. This cor-
responds to inserting the new value into the lower right position as shown in the fig-
ure, right. Now we need to move 80 up the heap, by comparing it to the values stored
in its ancestor nodes. The parent (66) is in position 6 (13 minus 1 is 12, divided by 2
is 6). Since 66 is smaller than 80, we need to swap as shown in Figure 8.29.

Now the child is at position 6 and the parent is at position 2 (6 minus 1 is 5, divided
by 2 is 2). Since the parent, 74, is smaller than the child, 80, we must swap again as
shown in Figure 8.30.

The child is now at position 2 and the parent at position 0. Since the parent is larger
than the child, the heap property is restored. In the heap insertion and removal algo-
rithms that follow, we will use table to reference the vector that stores the heap.

8.5 Heaps and Priority Queues 487

37 32

20 26 18 28

39 66

29

76 74

89

6

F I G U R E 8 . 2 7
Internal Representation
of the Heap

F I G U R E 8 . 2 8
Internal Representation
of Heap After Insertion

F I G U R E 8 . 2 9
Internal Representation
of Heap After First Swap

F I G U R E 8 . 3 0
Internal Representation
of Heap After Second
Swap

89

0 1 2 3 4 5 6 7 8 9 10 11 12

76 74 3237 39 66 20 26 18 28 29 6

Parent

L
eft child

R
ight child

37 32

20 26 18 28

39 66

29 6 80

76 74

890 1 2 3 4 5 6 7 8 9 10 11 12 13

Parent

C
hild

89 76 74 3237 39 66 20 26 18 28 29 6 80

37 32

20 26 18 28

39 80

29 6 66

76 74

890 1 2 3 4 5 6 7 8 9 10 11 12 13

Parent

C
hild

89 76 74 3237 39 80 20 26 18 28 29 6 66

37 32

20 26 18 28

39 74

29 6 66

76 80

890 1 2 3 4 5 6 7 8 9 10 11 12 13
Parent

C
hild

89 76 80 3237 39 74 20 26 18 28 29 6 66

Insertion of an Element into a Heap Implemented as a vector
1. Insert the new element at the end of the vector and set child to

table.size() – 1.
2. Set parent to (child – 1)/2.
3. while (parent >= 0 and table[parent] < table[child])
4. Swap table[parent] and table[child].
5. Set child equal to parent.
6. Set parent equal to (child – 1)/2.

Removal from a Heap Implemented as a vector
In removing elements from a heap, we must always remove the element at the top
of the heap, which is the smallest element. We start with a vector that has been
organized to form a heap. To remove the first item (89), we begin by replacing the
first item with the last item, and then removing the last item. This is illustrated in
Figure 8.31. The new value of the root (position 0) is smaller than both of its chil-
dren (76 in position 1, and 80 in position 2). The larger of the two children (80 in
position 2) is swapped with the parent as shown in Figure 8.32. Next, 66 is swapped
with the larger of its two new children (74) and the heap is restored (Figure 8.33).

The algorithm for removal from a heap implemented as a vector follows:

488 Chapter 8 Trees

F I G U R E 8 . 3 1
Internal Representation
of Heap After 89 Is
Removed

F I G U R E 8 . 3 2
Internal Representation
of Heap After 80 and 66
Are Swapped

F I G U R E 8 . 3 3
Internal Representation
of Heap After Swap of
66 and 74

37 32

20 26 18 28

39 74

29 6

76 80

660 1 2 3 4 5 6 7 8 9 10 11 12

Parent

R
ight child

L
eft child

66 76 80 3237 39 74 20 26 18 28 29 6

37 32

20 26 18 28

39 74

29 6

76 66

800 1 2 3 4 5 6 7 8 9 10 11 12

Parent

R
ight child

L
eft child

80 76 66 3237 39 74 20 26 18 28 29 6

37 32

20 26 18 28

39 66

29 6

76 74

800 1 2 3 4 5 6 7 8 9 10 11 12

Parent

R
ight child

L
eft child

80 76 74 3237 39 66 20 26 18 28 29 6

Removing an Element from a Heap Implemented as a vector
1. Remove the last element (that is, the one at size() – 1) and set the item

at 0 to this value.
2. Set parent to 0.
3. while (true)
4. Set left_child to (2 * parent) + 1 and right_child to

left_child + 1.
5. if left_child >= table.size()

6. Break out of loop.
7. Assume max_child (the larger child) is left_child.
8. if right_child < table.size()

and table[left_child] < table[right_child]
9. Set max_child to right_child.

10. if table[parent] < table[max_child]
11. Swap table[parent] and table[max_child].
12. Set parent to max_child.

else

13. Break out of loop.

The loop (Step 3) is terminated under one of two circumstances: Either the item
has moved down the tree so that it has no children (line 5 is true), or it is larger
than both its children (line 10 is false). In these cases, the loop terminates (line 6
or 13). This is shown in Figure 8.33. At this point the heap property is restored,
and the next smallest item can be removed from the heap.

Performance of the Heap
The remove algorithm traces a path from the root to a leaf, and the insert algorithm
traces a path from a leaf to the root. This requires at most h steps, where h is the
height of the tree. The largest heap of height h is a full tree of height h. This tree has
2h – 1 nodes. The smallest heap of height h is a complete tree of height h, consist-
ing of a full tree of height h – 1, with a single node as the left child of the leftmost
child at height h – 1. Thus, this tree has 2(h – 1) nodes. Therefore, both insert and
remove are O(log n), where n is the number of items in the heap.

Priority Queues
In computer science, a heap is used as the basis of a very efficient algorithm for sort-
ing arrays, called heapsort, which you will study in Chapter 10. The heap is also
used to implement a special kind of queue called a priority queue.

Sometimes a FIFO (First-In-First-Out) queue may not be the best way to implement
a waiting line. In a print queue you might want to print a short document before
some longer documents that were ahead of the short document in the queue. For
example, if you were waiting by the printer for a single page to print, it would be
very frustrating to have to wait until several documents of 50 pages or more were
printed just because they entered the queue before yours did. Therefore, a better
way to implement a print queue would be to use a priority queue. A priority queue

8.5 Heaps and Priority Queues 489

is a data structure in which only the highest-priority item is accessible. During inser-
tion, the position of an item in the queue is based on its priority relative to the pri-
orities of other items in the queue. If a new item has higher priority than all items
currently in the queue, it will be placed at the front of the queue and, therefore, will
be removed before any of the other items inserted in the queue at an earlier time.
This violates the FIFO property of an ordinary queue.

E X A M P L E 8 . 7 Figure 8.34 sketches a print queue that at first (top of diagram) contains two docu-
ments. We will assume that each document’s priority is inversely proportional to its
page count (priority is 1/page_count). The middle queue shows the effect of insert-
ing a document 3 pages long. The bottom queue shows the effect of inserting a sec-
ond one-page document: It follows the earlier document with that page length.

F I G U R E 8 . 3 4
Insertion into a Priority Queue

490 Chapter 8 Trees

pages = 1
title = "web page 1"

After inserting document with 3 pages

After inserting document with 1 page

pages = 4
title = "history paper"

pages = 1
title = "web page 1"

pages = 3
title = "Lab1"

pages = 4
title = "history paper"

pages = 1
title = "web page 1"

pages = 1
title = "receipt"

pages = 3
title = "Lab1"

pages = 4
title = "history paper"

The priority_queue Class
C++ provides a priority_queue class that uses the same interface as the queue given
in Chapter 6. The differences are in the specification for the top and pop functions.
These are defined to return the largest item in the queue rather than the oldest item
in the queue. Table 8.5 summarizes the functions of the priority_queue class.

Using a Heap as the Basis of a Priority Queue
The largest item is always removed first from a priority queue (the largest item has
the highest priority), just as it is for a heap. Because insertion into and removal from
a heap is O(log n), a heap can be the basis for an efficient implementation of a pri-
ority queue. We will call our class KW::priority_queue to differentiate it from class
std::priority_queue in the C++ standard library, which also uses a heap as the
basis of its implementation. The interfaces for our class and the standard class are
identical, but the implementations are slightly different.

TA B L E 8 . 5
Functions of the priority_queue Class

8.5 Heaps and Priority Queues 491

Function Behavior

void push(const Item_Type& item) Inserts an item into the queue.

void pop() Removes the largest entry if the queue is not empty. If the queue is
empty, a run-time error may occur.

const Item_Type& top() const Returns the largest entry without removing it. If the queue is empty,
a run-time error may occur.

size_t size() const Returns the number of items in the priority queue.

bool empty() const Returns true if the queue is empty, false otherwise.

To remove an item from the priority queue, we take the first item from the vector;
this is the largest item. We then remove the last item from the vector and put it into
the first position of the vector, overwriting the value currently there. Then follow-
ing the algorithm described earlier, we move this item down until it is larger than its
children or it has no children.

Design of the KW::priority_queue Class
The design of the KW::priority_queue class is shown in Table 8.6. The data field
the_data is used to store the heap. We discuss the purpose of data field comp shortly.
By default, it acts like the less-than operator. The class definition follows.

#ifndef PRIORITY_QUEUE_H
#define PRIORITY_QUEUE_H

#include <vector>
#include <functional>

namespace KW {

/** Priority queue based on a heap stored in a vector. */
template<typename Item_Type,

typename Container = std::vector<Item_Type>,
typename Compare = std::less<Item_Type> >

class priority_queue {

public:

/** Construct an empty priority queue. */
priority_queue() {}

/** Insert an item into the priority queue. */
void push(const Item_Type& item);

/** Remove the largest item. */
void pop();

/** Return true if the priority queue is empty. */
bool empty() const {return the_data.empty();}

/** Return the number of items in the priority queue. */
size_t size() const {return the_data.size();}

/** Return a reference to the smallest item */
const Item_Type& top() const {return the_data.front();}

private:

/** The vector to hold the data */
Container the_data;

/** The comparator function object */
Compare comp;

};

// Implementation of Member Functions
...

} // End namespace KW

#endif

Specifying Defaults for a Template Class
The template class heading

template<typename Item_Type,
typename Container = std::vector<Item_Type>,
typename Compare = std::less<Item_Type> >

class priority_queue {

prescribes defaults for data types Container (default is a vector) and Compare
(default is operator less). In an application, the declaration

priority_queue<string> pQa;

creates a priority queue pQa that uses a vector (the default) for storage of string data
and operator less (the default) for comparisons. The declaration

priority_queue<string, deque<string> > pQb;

creates a priority queue pQb that uses a deque for storage of string data and opera-
tor less (the default) for comparisons. We show how to specify a different compar-
ison operator shortly.

TA B L E 8 . 6
Design of KW::priority_queue Class

492 Chapter 8 Trees

Data Field Attribute

Container the_data A sequential container to hold the data. A std::vector is used by default, but a
deque may also be used.

Compare comp The function object that performs comparison. By default, this function is equiva-
lent to operator<(const Item_Type&, const Item_Type&).

The push Function
The push function appends the new item to the the_data, using its push_back func-
tion. It then moves this item up the heap until the container is restored to a heap.

template<typename Item_Type, typename Container, typename Compare>
void priority_queue<Item_Type, Container, Compare>::push(
const Item_Type& item) {

the_data.push_back(item);
int child = size() - 1;
int parent = (child - 1) / 2;
// Reheap
while (parent >= 0

&& comp(the_data[parent], the_data[child])) {
std::swap(the_data[child], the_data[parent]);
child = parent;
parent = (child - 1) / 2;

}
}

The while loop condition,
while (parent >= 0

&& comp(the_data[parent], the_data[child])) {

first tests to see whether the index parent is greater than or equal to zero. If it is, it
then tests to see whether the_data[parent] is less than the_data[child]. If it is, then
we need to move the child up by calling on the standard swap function to exchange
the values in the_data[parent] and the_data[child]. Otherwise the heap property
has been restored, so the loop exits.

The pop Function
If there is a single item in the heap, the pop function removes it. Otherwise, the pop
function removes the last item from the heap and places it at the top. Then it moves
the item at the top down the heap until the heap property is restored. It then returns
the original top of the heap.

template<typename Item_Type, typename Container, typename Compare>
void priority_queue<Item_Type, Container, Compare>::pop() {
if (size() == 1) {
the_data.pop_back();
return;

}
std::swap(the_data[0], the_data[size() - 1]);
the_data.pop_back();
int parent = 0;
while (true) {
int left_child = 2 * parent + 1;
if (left_child >= size())
break; // out of heap

int right_child = left_child + 1;
int max_child = left_child;
if (right_child < size()

&& comp(the_data[left_child], the_data[right_child]))
max_child = right_child;

8.5 Heaps and Priority Queues 493

// assert: max_child is the index of the larger child
if (comp(the_data[parent], the_data[max_child])) {
std::swap(the_data[max_child], the_data[parent]);
parent = max_child;

}
else
break;

}
}

Using a Compare Function Class
How do we compare elements in a priority queue? In many cases, we will insert
objects that implement operator< and use their natural ordering. However, we may
need to insert objects that do not implement operator<, or we may want to specify
a different ordering from that defined by the object’s operator<. For example, files
to be printed may be ordered by their name using the operator< function, but we
may want to assign priority based on their length.

To indicate that we want to use an ordering that is different than the natural order-
ing for the objects in our heap, we will provide a template argument that is a func-
tion class. This function class’s operator() will perform the comparison.

E X A M P L E 8 . 8 The class Print_Document is used to define documents to be printed on a printer.
This class implements the operator<, but its operator< function performs a lexical
comparison of document names which has no bearing on their print order—we
want the print order to be a function of the file size and time submitted. The class
has a get_size function that gives the number of bytes to be transmitted to the
printer, and a get_time_stamp function that gets the time that the print job was sub-
mitted. If we were to use either time or size alone, small documents could be delayed
while big ones are printed, or the big documents would never be printed. By using
a priority value that is a combination, we achieve a balanced usage of the printer.

We define a Compare function class for our Print_Document class as shown in Listing
8.11. The function order_value computes the weighted sum of the size and
time_stamp using the weighting factors P1 and P2. Since we want the Print_Document
whose order_value is the smallest to be printed first, the return statement actually
applies the > operator to the two order_values. By making our compare function
class implement a greater-than comparison, we invert the order of the items in the
heap, effectively building a min heap instead of a max heap, so that the item at the
top of the heap has the smallest order_value.

In a client program, we can use the statement

priority_queue<Print_Document,
std::vector<Print_Document>, Compare_Print_Documents>
print_queue;

to create a print queue.

494 Chapter 8 Trees

L I S T I N G 8 . 1 1
Compare_Print_Documents.h

#ifndef COMPARE_PRINT_DOCUMENTS_H
#define COMPARE_PRINT_DOCUMENTS_H

#include "Print_Document.h"

class Compare_Print_Documents
{
public:

bool operator()(const Print_Document& left,
const Print_Document& right) {

return order_value(left) > order_value(right);
}

private:

static const double P1 = 1.0;
static const double P2 = 0.001;

double order_value(const Print_Document& pd) {
return P1 * pd.get_size() + P2 * pd.get_time_stamp();

}

};

#endif

The std::less Function Class
If a Compare function class is not provided when the priority_queue is declared, the
std::less class is used. This template class is defined in the header <functional>
and it has a definition that is equivalent to the following:

template<typename value_type>
struct less {
bool operator()(const value_type& left,

const value_type& right) {
return left < right;

}
};

E X E R C I S E S F O R S E C T I O N 8 . 5

S E L F - C H E C K

1. Show the heap that would be used to store the words this, is, the, house, that,
jack, built, assuming they are inserted in that sequence. Exchange the order of
arrival of the first and last words and build the new heap.

8.5 Heaps and Priority Queues 495

2. Draw the heaps for Exercise 1 as arrays.
3. Show the result of removing the number 76 from the heap in Figure 8.26. Show

the new heap and its array representation.
4. The largest object should be removed first from a priority queue. Explain why

operator less is used as the default to compare objects being placed in a priority
queue instead of operator greater.

P R O G R A M M I N G

1. Write a Compare function class that inserts Person objects in a priority queue
based on the number of dependents a person has. The Person object with the
largest number of dependents should be removed first.

8.6 Huffman Trees

In Section 8.1 we showed the Huffman coding tree and how it can be used to decode
a message. We will now implement some of the functions needed to build a tree and
decode a message. We will do this using a binary tree and a priority_queue (which
also uses a binary tree).

A straight binary coding of an alphabet assigns a unique binary number k to each
symbol in the alphabet ak. An example of such a coding is ASCII, which is used by
C++ for the char data type. There are 256 possible characters, and they are assigned
a number between 0 and 255, which is a string of 8 binary digit ones. Therefore, the
length of a message would be 8 � n, where n is the total number of characters in
the message. For example, the message “go eagles” contains 9 characters and would
require 9 � 8 or 72 bits. As shown in the example in Section 8.1, a Huffman cod-
ing of this message requires just 38 bits.

Table 8.8, based on data published in Donald Knuth, The Art of Computer
Programming, Vol 3: Sorting and Searching (Addison-Wesley, 1973), p. 441, repre-
sents the relative frequencies of the letters in English text and is the basis of the tree
shown in Figure 8.35. The letter e occurs an average of 103 times every 1,000 let-
ters, or 10.3% of the letters are e’s. (This is a useful table to know if you are a fan
of Wheel of Fortune.) We can use this Huffman tree to encode and decode a file of
English text. However, files may contain other symbols or may contain these sym-
bols in different frequencies than what is found in normal English. For this reason,
you may want to build a custom Huffman tree based on the contents of the file you
are encoding. You would then attach this tree to the encoded file so that it can be
used to decode the file. We discuss how to build a Huffman tree in the next case
study.

496 Chapter 8 Trees

TA B L E 8 . 8
Frequency of Letters in English Text

8.6 Huffman Trees 497

Symbol Frequency Symbol Frequency Symbol Frequency

186 h 47 g 15

e 103 d 32 p 15

t 80 l 32 b 13

a 64 u 23 v 8

o 63 c 22 k 5

i 57 f 21 j 1

n 57 m 20 q 1

s 51 w 18 x 1

r 48 y 16 z 1

[

F I G U R E 8 . 3 5
Huffman Tree Based on Frequency of Letters in English Text

0 1

0 1

0 1 0 1 0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 10 1

0 1

c

e

h nir s

u

o a

d

b p g y

v

k

x q z j

w m f

t

l

[

498 Chapter 8 Trees

CASE STUDY Building a Custom Huffman Tree

Problem You want to build a custom Huffman tree for a particular file. Your input will con-
sist of a vector of objects such that each object contains a symbol occurring in that
file and the frequency of occurrence (weight) for the symbol in that file.

Analysis Each node of a Huffman tree has storage for two data items: the weight of the node
and the symbol associated with that node. All symbols will be stored at leaf nodes.
The symbol part has no meaning for internal nodes. The weight of a leaf node will
be the frequency of the symbol stored at that node. The weight of an internal node
will be the sum of frequencies of all nodes in the subtree rooted at the internal node.
For example, the internal node with leaf nodes c and u (on the left of Figure 8.35),
would have a weight of 45 (22 + 23).

We will use a priority queue as the key data structure in constructing the Huffman
tree. We will store individual symbols and subtrees of multiple symbols in order by
their priority (frequency of occurrence). We want to remove symbols that occur less
frequently first, because they should be lower down in the Huffman tree we are con-
structing. We discuss how this is done next.

To build a Huffman tree, we start by inserting trees with just leaf nodes in a prior-
ity queue. Each leaf node will store a symbol and its weight. The queue elements will
be ordered so that the leaf node with smallest weight (lowest frequency) is removed
first. Figure 8.36 shows a priority queue, containing just the symbols a, b, c, d, e,
that uses the weights shown in Table 8.8. The item at the front of the queue stores
a reference to a tree with a root node that is a leaf node containing the symbol b
with a weight (frequency) of 13. To represent the tree referenced by a queue element,
we list the root node information for that tree. The queue elements are shown in pri-
ority order.

Now we start to build the Huffman tree. We build it from the bottom up. The first
step is to remove the first two trees from the priority queue and combine them to
form a new tree. The weight of the root node for this tree will be the sum of the
weights of its left and right subtrees. We insert the new tree back into the priority
queue. The priority queue now contains references to four binary trees instead of
five. The tree referenced by the second element of the queue has a combined weight
of 35 (13 + 22) as shown below.

Again we remove the first two tree references and combine them. The new binary
tree will have a weight of 67 in its root node. We put this tree back in the queue,
and it will be the second element of the queue.

32 35 64 103

d

13

b

22

c

a e

F I G U R E 8 . 3 6
Priority Queue with
the Symbols a, b, c, d,
and e

13 22 32 64 103

b c d a e

8.6 Huffman Trees 499

We repeat this process again. The new queue follows:

Finally we combine the last two elements into a new tree and put it into the prior-
ity queue. Now there is only one tree in the queue, so we have finished building the
Huffman tree (see Figure 8.37). Table 8.9 shows the codes for this tree.

Design The class Huff_Data will represent the data to be stored in each node of the Huffman
binary tree. For a leaf, a Huff_Data object will contain the symbol and the weight.

Our class Huffman_Tree will have the functions and attributes listed in Table 8.10.

131103

64

a

67

e

32

d

35

13

b

22

c

64 67 103

32

d

35

a e

13

b

22

c

0 1

0 1

0 1

0 1

e

a

cd

cb cc

Symbol Code

a 10

b 1110

c 1111

d 110

e 0

F I G U R E 8 . 3 7
Huffman Tree of a, b, c, d, e

TA B L E 8 . 9
Huffman Code of a, b, c, d, e

500 Chapter 8 Trees

TA B L E 8 . 1 0
Data Fields and Functions of Class Huffman_Tree

Data Field Attribute

Binary_Tree<Huff_Data> huff_tree The Huffman tree.

Function Behavior

void build_tree(const Builds the Huffman tree using the given alphabet and weights.
vector<Huff_Data>& symbols)

string decode(const string& Decodes a message using the generated Huffman tree.
coded_message) const

void print_code(ostream& out) const Outputs the resulting code.

Algorithm for Building a Huffman Tree
1. Construct a set of trees with root nodes that contain each of the individual

symbols and their weights.
2. Place the set of trees into a priority queue.
3. while the priority queue has more than one item
4. Remove the two trees with the smallest weights.
5. Combine them into a new binary tree in which the weight of the tree

root is the sum of the weights of its children.
6. Insert the newly created tree back into the priority queue.

Each time through the while loop, two nodes are removed from the priority queue
and one is inserted. Thus, effectively, one tree is removed, and the queue gets smaller
with each pass through the loop.

Implementation Listing 8.12 shows the class definition for class Huffman_Tree. The Compare_
Huffman_Tree class and the functions are discussed in following subsections.

L I S T I N G 8 . 1 2
Huffman_Tree.h

#ifndef HUFFMAN_TREE_H
#define HUFFMAN_TREE_H

#include <vector>
#include <string>
#include <ostream>
#include "Binary_Tree.h"

/** A datum in the Huffman_Tree */
struct Huff_Data
{
// Data Fields
/** The weight or probability assigned to this Huff_Data */
double weight;
/** The alphabet symbol if this is a leaf */
char symbol;

8.6 Huffman Trees 501

// Constructor
Huff_Data(double w, char c) : weight(w), symbol(c) {}

};

// ostream operator for Huff_Data
std::ostream& operator<<(std::ostream&, const Huff_Data&);

/** The comparator for Huff_Data. */
struct Compare_Huffman_Trees
{
bool operator()(const Binary_Tree<Huff_Data>& left_tree,

const Binary_Tree<Huff_Data>& right_tree) {
double wLeft = left_tree.get_data().weight;
double wRight = right_tree.get_data().weight;
return wLeft > wRight;

}
};

/** Class to represent and build a Huffman tree. */
class Huffman_Tree
{
public:

/** Builds the Huffman tree using the given alphabet
and weights.
post: huff_tree contains the Huffman tree.

*/
void build_tree(const std::vector<Huff_Data>& symbols);

/** Output the resulting code.
@param out An ostream to write the output

*/
void print_code(std::ostream& out) const {
print_code(out, "", huff_tree);

}

/** Function to decode a message that is input as a string of
'1' and '0' characters.
@param coded_message The input message as a string of

zeros and ones
@return The decoded message as a string

*/
std::string decode(const std::string& coded_message) const;

private:

/** Outputs the resulting code.
@param ostream An ostream to write the output
@param code The code up to this node
@param tree The current node in the tree

*/
void print_code(std::ostream& out, std::string code,

const Binary_Tree<Huff_Data>& tree) const;
// Data fields
Binary_Tree<Huff_Data> huff_tree;

};

#endif

502 Chapter 8 Trees

The Comparator
Because the Binary_Tree class does not implement operator<, we need to define a
comparator for use with our priority_queue. It will compare the weights in the
Huff_Data objects stored in the root node of each Huffman tree, and, since we want
the tree with the smallest weight to be removed first from the priority queue, we use
the result of the greater than operator on the weights.

The build_tree Function
Function build_tree (see Listing 8.13) takes a vector of Huff_Data objects as its
parameter. The statement

priority_queue<Binary_Tree<Huff_Data>,
std::vector<Binary_Tree<Huff_Data> >,
Compare_Huffman_Trees> the_queue;

creates a new priority queue for storing Binary_Tree<Huff_Data> objects using the
priority_queue. (We could use either the standard priority queue or the KW prior-
ity queue.) This priority queue will use a Compare_Huffman_Trees comparator.

The for loop loads the priority queue with trees consisting of just leaf nodes. Each
leaf node contains a Huff_Data object with the weight and alphabet symbol.

The while loop builds the tree. Each time through this loop, the trees with the small-
est weights are removed and referenced by left and right. The statements

Huff_Data sum(wl + wr, 0);
Binary_Tree<Huff_Data> new_tree(sum, left, right);
the_queue.push(new_tree);

combine them to form a new Binary_Tree with a root node whose weight is the sum
of the weights of its children and whose symbol is 0. This new tree is then inserted
into the priority queue. The number of trees in the queue decreases by 1 each time we
do this. Eventually there will only be one tree in the queue, and that will be the final
Huffman tree. The last statement sets the variable huff_tree to contain this tree.

L I S T I N G 8 . 1 3
The build_tree Function (Huffman_Tree.cpp)

void Huffman_Tree::build_tree(
const std::vector<Huff_Data>& symbols) {
priority_queue<Binary_Tree<Huff_Data>,
std::vector<Binary_Tree<Huff_Data> >,
Compare_Huffman_Trees> the_queue;

for (size_t i = 0; i < symbols.size(); i++) {
the_queue.push(Binary_Tree<Huff_Data>(symbols[i]));

}
// Build the tree.
while (the_queue.size() > 1) {
Binary_Tree<Huff_Data> left = the_queue.top();
the_queue.pop();
Binary_Tree<Huff_Data> right = the_queue.top();
the_queue.pop();
double wl = left.get_data().weight;
double wr = right.get_data().weight;
Huff_Data sum(wl + wr, 0);

8.6 Huffman Trees 503

Binary_Tree<Huff_Data> new_tree(sum, left, right);
the_queue.push(new_tree);

}
huff_tree = the_queue.top();
the_queue.pop();

}

Testing Functions print_code and decode can be used to test the custom Huffman tree.
Function print_code displays the tree, so you can examine it and verify that the
Huffman tree that was built is correct based on the input data.

Function decode will decode a message that has been encoded using the code stored
in the Huffman tree and displayed by print_code. So you can pass it a message
string that consists of binary digits only and see whether it can be transformed back
to the original symbols.

We will discuss testing the Huffman tree further in the next chapter when we con-
tinue the case study.

The print_code Function
To display the code for each alphabet symbol, we perform a preorder traversal of
the final tree. The code so far is passed as a parameter, along with the current node.
If the current node is a leaf, as indicated by the symbol not being 0, then the code is
output. Otherwise the left and right subtrees are traversed. When we traverse the
left subtree, we append a 0 to the code, and when we traverse the right subtree, we
append a 1 to the code. Recall that at each level in the recursion there is a new copy
of the parameters and local variables.

void Huffman_Tree::print_code(ostream& out, string code,
const Binary_Tree<Huff_Data>& tree) const {

Huff_Data the_data = tree.get_data();
if (the_data.symbol != 0) {
if (the_data.symbol == ' ') {
out << "space: " << code << '\n';

} else {
out << the_data.symbol << ": " << code << '\n';

}
} else {
print_code(out, code + "0", tree.get_left_subtree());
print_code(out, code + "1", tree.get_right_subtree());

}
}

The decode Function
To illustrate the decode process we will show a function that takes a string that con-
tains a sequence of the digit characters '0' and '1' and decodes it into a message that
is also a string. Function decode starts by setting current_tree to the Huffman tree.
It then loops through the coded message one character at a time. If the character is
a '1', then current_tree is set to the right subtree; otherwise it is set to the left sub-
tree. If the current_tree is now a leaf, the symbol is appended to the result, and cur-
rent_tree is reset to the Huffman tree (see Listing 8.14). Note that this function is
for testing purposes only. In actual usage, a message would be coded as a string of
bits (not digit characters) and would be decoded one bit at a time.

504 Chapter 8 Trees

L I S T I N G 8 . 1 4
The decode Function (Huffman_Tree.cpp)

string Huffman_Tree::decode(const string& coded_message) const {
string result;
Binary_Tree<Huff_Data> current_tree = huff_tree;
for (size_t i = 0; i < coded_message.length(); i++) {
if (coded_message[i] == '1') {
current_tree = current_tree.get_right_subtree();

} else {
current_tree = current_tree.get_left_subtree();

}
if (current_tree.is_leaf()) {
Huff_Data the_data = current_tree.get_data();
result += the_data.symbol;
current_tree = huff_tree;

}
}
return result;

}

E X E R C I S E S F O R S E C T I O N 8 . 6
S E L F - C H E C K

1. What is the Huffman code for the letters a, j, k, l, s, t, v using Figure 8.35?
2. Create the Huffman code tree for the following frequency table:

Symbol Frequency

* 50

+ 30

– 25

/ 10

% 5

P R O G R A M S T Y L E

A Generic Huffman_Tree Class
We chose to implement a nongeneric Huffman_Tree class to simplify the coding.
However, it may be desirable to build a Huffman tree for storing strings (for example, to
encode words in a document instead of the individual letters) or for storing groups of
pixels in an image file. We can do this by making the Huffman_Tree, Huff_Data and
Compare_Huffman_Tree classes template classes. The template parameter would repre-
sent the type of the symbols. The implementation of the member functions would need
to be included in the .h file that contains the class definitions.

3. What would the Huffman code look like if all symbols in the alphabet had equal
frequency?

P R O G R A M M I N G

1. Write a function encode for the Huffman_Tree class that encodes a string of let-
ters that is passed as its first argument. Assume that a second parameter, codes
(type const vector<string>&), contains the code strings (binary digits) for the
symbols (space at position 0, a at position 1, b at position 2, and so on).

C h a p t e r R e v i e w

◆ A tree is a recursive, nonlinear data structure that is used to represent data that is
organized as a hierarchy.

◆ A binary tree is a collection of nodes with three components: a reference to a data
object, a reference to a left subtree, and a reference to a right subtree. A binary
tree object has a single data field, which references the root node of the tree.

◆ In a binary tree used to represent arithmetic expressions, the root node should store
the operator that is evaluated last. All internal nodes store operators, and the leaf
nodes store operands. An inorder traversal (traverse left subtree, visit root, traverse
right subtree) of an expression tree yields an infix expression, a preorder traversal
(visit root, traverse left subtree, traverse right subtree) yields a prefix expression,
and a postorder traversal (traverse left subtree, traverse right subtree, visit root)
yields a postfix expression.

◆ A binary search tree is a tree in which the data stored in the left subtree of every
node is less than the data stored in the root node, and the data stored in the right
subtree of every node is greater than the data stored in the root node. The per-
formance is proportional to the height of the tree and can range from O(n) (for
trees that resemble linked lists) to O(log n) (if the tree is full). An inorder traversal
visits the nodes in increasing order.

◆ A heap is a complete binary tree in which the data in each node is greater (less)
than the data in both its subtrees. A heap can be implemented very effectively as
an array or vector. The children of the node at subscript p are at subscripts 2p +
1 and 2p + 2. The parent of child c is at (c – 1)/2. The item at the top of a max
(min) heap is the largest (smallest) item.

◆ Insertion and removal in a heap are both O(log n). For this reason, a heap can be
used to implement a priority queue efficiently. A priority queue is a data structure
in which the item with the highest priority is removed next. The item with the
highest priority is at the top of a heap and is always removed next.

Chapter 8 Review 505

◆ A Huffman tree is a binary tree used to store a code that facilitates file compres-
sion. The length of the bit string corresponding to a symbol in the file is inversely
proportional to its frequency, so the symbol with the highest frequency of occur-
rence has the shortest length. In building a Huffman tree, a priority queue is used
to store the symbols and trees formed so far. Each step in building the Huffman
tree consists of removing two items and forming a new tree with these two items
as the left and right subtrees of the new tree’s root node. A reference to each new
tree is inserted in the priority queue.

Quick-Check Exercises
1. For the following expression tree

a. Is the tree full? _____ Is the tree complete? _____
b. List the order in which the nodes would be visited in a preorder traversal.
c. List the order in which the nodes would be visited in an inorder traversal.
d. List the order in which the nodes would be visited in a postorder traversal.

2. Searching a full binary search tree is O(____).
3. A heap is a binary tree that is a (full / complete) tree.
4. Show the binary search tree that would result from inserting the items 35, 20, 30, 50,

45, 60, 18, 25 in this sequence.
5. Show the binary search tree in Exercise 4 after 35 is removed.
6. Show the max heap that would result from inserting the items from Exercise 4 in the

order given.
7. Draw the max heap from Exercise 6 as an array.
8. Show the max heap in Exercise 7 after 60 is removed.
9. In a Huffman tree, the item with the highest frequency of occurrence will have the

_____ code.
10. List the code for each symbol shown in the following Huffman tree.

h r

a t e

s i n o

[

ec

a b

- d

+

/*

506 Chapter 8 Trees

Answers to Quick-Check Exercises
1. a. Not full, complete

b. + * – a b c / d e

c. a – b * c + d / e

d. a b – c * d e / +

2. O(log n).
3. A heap is a binary tree that is a complete tree.
4.

5.

6.

7. 60, 45, 50, 25, 35, 30, 18, 20, where 60 is at position 0 and 20 is at position 7.
8.

9. In a Huffman tree, the item with the highest frequency of occurrence will have the
shortest code.

10. Symbol Code Symbol Code

Space 01 n 1110

a 000 o 1111

e 101 r 1001

h 1000 s 1100

i 1101 t 001

1825 20

45 30

50

35

1825 30

45 50

60

35

20

6018 45

20 50

30

25

6018

25

45

20 50

35

30

Chapter 8 Review 507

Review Questions
1. Draw the tree that would be formed by inserting the words in this question into a binary

search tree. Use lowercase letters.
2. Show all three traversals of this tree.
3. Show the tree from Question 1 after removing draw, by, and letters in that order.
4. Answer Question 1, but store the words in a heap instead of a binary search tree.
5. Given the following frequency table, construct a Huffman code tree. Show the initial

priority queue and all changes in its state as the tree is constructed.

Programming Projects
1. Assume that a class Expression_Tree has a data field that is a Binary_Tree. Write an

instance function to evaluate an expression stored in a binary tree whose nodes contain
either integer values (stored in string objects) or operators (stored in string objects).
Your function should implement the following algorithm:

Algorithm to Evaluate an Expression Tree
1. if the root node is an integer
2. Return the integer value.
3. else if the root node is an operator symbol
4. Let left_val be the value obtained by recursively applying this algorithm

to the left subtree.
5. Let right_val be the value obtained by recursively applying this algorithm

to the right subtree.
6. Return the value obtained by applying the operator in the root node to

left_val and right_val.

Use function read_binary_tree to read the expression tree in.
2. Write an application to test the Huffman_Tree class. Your application will need to read

a text file and build a frequency table for the characters occurring in that file. Once that
table is built, create a Huffman code tree and then a string consisting of '0' and '1'
digit characters that represents the code string for that file. Read that string back in and
recreate the contents of the original file.

3. Solve Programming Project 4 in Chapter 6, “Queues and Deques”, using the class
priority_queue.

Symbol Frequency

x 34

y 28

w 20

a 10

b 8

c 5

508 Chapter 8 Trees

4. Build a generic Huffman_Tree<T> class such that the symbol type T is specified when the
tree is created. Test this class by using it to encode the words in your favorite nursery
rhyme.

5. In a breadth-first traversal of a binary tree, the nodes are visited in an order prescribed
by their depth. First visit the node at depth 0, the root node. Then visit the nodes at
depth 1, in left-to-right order, and so on. You can use a queue to implement a breadth-
first traversal of a binary tree:

Algorithm for Breadth-First Traversal of a Binary Tree
1. Insert the root node in the queue.
2. while the queue is not empty
3. Remove a node from the queue and visit it.
4. Place references to its left and right subtrees in the queue.

Code this algorithm and test it on several binary trees.
6. Define an Index_Tree class such that each node has data fields to store a word, the

count of occurrences of that word in a document file, and the line number for each
occurrence. Use a list to store the line numbers. Use an Index_Tree object to store an
index of words appearing in a text file and then display the index by performing an
inorder traversal of this tree.

7. Morse code (see Table 8.11) is a common code that is used to encode messages consist-
ing of letters and digits. Each letter consists of a series of dots and dashes; for example,
the code for the letter a is •– and the code for the letter b is –••• . Store each letter of
the alphabet in a node of a binary tree of depth 4. The root node is at depth 0 and
stores no letter. The left node at depth 1 stores the letter e (code is •) and the right node
stores the letter t (code is –). The four nodes at depth 2 store the letters with codes (••,
•–, –•, ––). To build the tree (see Figure 8.38), read a file in which each line consists of a
letter followed by its code. The letters should be ordered by tree depth. To find the posi-
tion for a letter in the tree, scan the code and branch left for a dot and branch right for
a dash. Encode a message by replacing each letter by its code symbol. Then decode the
message using the Morse code tree. Make sure you use a delimiter symbol between
coded letters.

TA B L E 8 . 1 1
Morse Code for Letters

Chapter 8 Review 509

a • – b – • • • c – • – •

d – • • e • f • • – •

g – – • h • • • • i • •

j • – – – k – • – l • – • •

m – – n – • o – – –

p • – – • q – – • – r • – •

s • • • t – u • • –

v • • • – w • – – x – • • –

y – • – – z – – • •

F I G U R E 8 . 3 8
Morse Code Tree

510 Chapter 8 Trees

h v f l p j

ws r

i a

b x c y

kd

n

z q

og

m

u

e t

C h a p t e r O b j e c t i v e s

◆ To understand the C++ map and set containers and how to use them
◆ To learn about hash coding and its use to facilitate efficient search and retrieval
◆ To study two forms of hash tables—open addressing and chaining—and to understand

their relative benefits and performance tradeoffs
◆ To learn how to implement both hash table forms
◆ To be introduced to the implementation of maps and sets
◆ To see how two earlier applications can be more easily implemented using map objects

for data storage

511

Sets and Maps

C h a p t e r 9

In Chapter 4 we introduced the C++ containers, focusing on the sequential con-
tainers vector and list. We also described the third sequential container, the
deque, in Chapter 6. Searching for a particular value in a sequential container is

generally an O(n) process. The exception is a binary search of a sorted object, which
is an O(log n) process.

In this chapter we consider the other part of the container framework: the asso-
ciative containers. The main purpose of associative containers is to enable efficient
search and retrieval of information. It is also possible to remove elements from these
collections without moving other elements around. By contrast, if an element is
removed from a vector object, the elements that follow it are normally shifted over
to fill the vacated space.

Included in the associative containers are the set and the map. These classes pro-
vide efficient search and retrieval of entries. The set is an implementation of the Set
abstract data type. The map provides efficient search and retrieval of entries that con-
sist of pairs of objects. The first object in each pair is the key, and the second object
is the information associated with that key. You retrieve an object from a map by
specifying its key.

We also study the hash table data structure. The hash table is a very important
data structure that has been used very effectively in compilers for storing tables of
symbols (identifiers) and in building dictionaries. It can be used as the underlying
data structure for a map or set implementation. It stores objects at arbitrary loca-
tions and offers an average constant time for insertion, removal, and searching.

We will see two ways to implement a hash table and how to use it as the basis
for a class that implements the map or set. We will not show you the complete imple-
mentation of an object that implements map or set, because we expect that you will
use the ones provided by the C++ standard library. However, we will certainly tell
you what you need to know to implement them.

512 Chapter 9 Sets and Maps

S e t s a n d M a p s

9.1 Associative Container Requirements
9.2 Maps and Multimaps
9.3 Hash Tables
9.4 Implementing the Hash Table
9.5 Implementation Considerations for the hash_map
9.6 Additional Applications of Maps

Case Study: Implementing the Phone Directory Using a Map
Case Study: Completing the Huffman Coding Problem

9.1 Associative Container Requirements

We introduced the container class hierarchy in Chapter 4. We covered the part of
that hierarchy that focuses on the sequential containers and their implementors. In
this section we explore the Set interface and its implementors.

Figure 9.1 shows the part of the C++ standard library container hierarchy that
relates to sets. In includes the set, multiset, map, and multimap. They are imple-
mented in C++ using a special kind of binary search tree called the Red-Black tree
(discussed in Chapter 11).

The Set Abstraction
What mathematicians call a set can be thought of as a collection of objects. There
is the additional requirement that the elements contained in the set be unique. For
example, if we have the set of fruits {"apples", "oranges", and "pineapples"} and
add "apples" to it, we still have the same set. Also, we usually want to know
whether or not a particular object is a member of the set rather than where in the
set it is located. Thus, if s is a set, we would be interested in the expression
contains(s, "apples") which returns the value true if "apples" is in set s and false
if it is not.

F I G U R E 9 . 1
The Set Hierarchy

9.1 Associative Container Requirements 513

multimapset multiset

‹‹concept››
associative_container

map

We assume that you are familiar with sets from a course in discrete mathematics. Just
as a review, however, the operations that are performed on a mathematical set are
testing for membership, adding elements, and removing elements. Other common
operations on a mathematical set are set union (A ∪ B), set intersection (A ∩ B), and
set difference (A – B). There is also a subset operator (A ⊂ B). These operations are
defined as follows:

• The union of two sets A, B is a set whose elements belong either to A or B or
to both A and B. Example: {1, 3, 5, 7} ∪ {2, 3, 4, 5} is {1, 2, 3, 4, 5, 7}

• The intersection of sets A, B is the set whose elements belong to both A and B.
Example: {1, 3, 5, 7} ∩ {2, 3, 4, 5} is {3, 5}.

• The difference of sets A, B is the set whose elements belong to A but not to B.
Examples: {1, 3, 5, 7} – {2, 3, 4, 5} is {1, 7}; {2, 3, 4, 5} – {1, 3, 5, 7} is {2, 4}

• Set A is a subset of set B if every element of set A is also an element of set B.
Example: {1, 3, 5, 7} ⊂ {1, 2, 3, 4, 5, 7} is true.

The set Functions
A set has required functions for testing for set membership (find), testing for an
empty set (empty), determining the set size (size), creating an iterator over the set
(begin, end), adding an element (insert), and removing an element (erase). There
are no set union, set intersection, or set difference member functions. However,
these operators are defined in the algorithm header for all containers, not just sets.

Table 9.1 shows the commonly used functions of the set class. The set is a template
class that takes the following template parameters:

• Key_Type: The type of the item contained in the set
• Compare: A function class that determines the ordering of the keys. By default

this is the less-than operator.
• Allocator: The memory allocator for key objects. We will use the library-

supplied default.

Although not a requirement of the Set abstraction, C++ stores items in a set as
ordered by their Compare function. Thus, if you iterate through a set, you will get a
sorted list of the contents.

Table 9.2 shows the set functions defined in the algorithm header that can be
applied to any container. As shown in Table 9.2, the last function parameter is a
comparison function (optional) that determines when one element is less than
another. The default is the less-than operator. In Tables 9.1 and 9.2, type parame-
ters II, II1, and II2 represent input iterators; type parameter OI represents an out-
put iterator.

TA B L E 9 . 1
Some set Member Functions

514 Chapter 9 Sets and Maps

Function Behavior

template<typename II> Constructs a set from the sequence of objects represented by the
set(II first, II last) iterator range first . . . last.

iterator begin(); Returns an iterator to the first item in the set.
const iterator begin() const

iterator end(); Returns an iterator to one past the last item in the set.
const_iterator end()

bool empty() Returns true if there are no items in the set.

int size() Returns the number of items in the set.

pair<iterator, bool> insert(const Inserts an item into the set. If the item is not in the set, the
Key_Type& item) returned iterator will reference the inserted item, and the bool

parameter will be true. If the item is already in the set, the
returned iterator (the iterator parameter) will reference the
item that is currently in the set, and the bool parameter will be
false.

template<typename II> Inserts the items from the sequence of objects represented by the
void insert(II first, II last) iterator range first . . . last. Duplicate values are not inserted.

The iterator range must not reference elements in the target set.

void erase(const Key_Type& item) Removes the item from the set.

iterator find(const Key_Type& item) Returns an iterator that references the item in the set. If the item
is not present, end() is returned.

Function Behavior

template<typename II1, typename II2, Forms the set difference of the element in the sorted sequence
typename OI, typename Compare> OI first1 . . . last1 and the elements in the sorted sequence
set_difference(II1 first1, II1 last1, first2 . . . last2. The set difference is stored in result. An
II2 first2, II2 last2, OI result, iterator to the end of result is returned.
Compare less)

template<typename II1, typename II2, Forms the set intersection of the element in the sorted sequence
typename OI, typename Compare> OI first1 . . . last1 and the elements in the sorted sequence
set_intersection(II1 first1, II1 first2 . . . last2. The set difference is stored in result. An
last1, II2 first2, II2 last2, iterator to the end of result is returned.
OI result, Compare less)

template<typename II1, typename II2, Forms the set union of the element in the sorted sequence first1
typename OI, typename Compare> OI . . . last1 and the elements in the sorted sequence first2 . . .
set_union(II1 first1, II1 last1, last2. The set union is stored in result. An iterator to the end
II2 first2, II2 last2, OI result, of result is returned.
Compare less)

TA B L E 9 . 2
Set Functions from <algorithm>

Function insert(const Key_Type& item) returns two results, a bool value and an
iterator to the set, as denoted by the result type pair<bool, iterator>. We discuss
class pair at the end of Section 9.1. We show how to use these functions next.

E X A M P L E 9 . 1 Listing 9.1 contains a main function that creates two sets: set1 and set2. It loads-
these sets from two arrays and then forms their set union, difference, and intersec-
tion. The statement

set1.insert(data1, data1 + 3);

uses the insert operator with two iterator arguments to load the data from string
array data1 into set1. Notice that the second iterator, data1 + 3, is just past the
third (and last) element of array data1.

The statement
cout << "set1 is " << set1 << endl;

uses the overloaded insertion operator << (in file Set_Functions.h) to display the
elements of the first set including braces and commas. Notice that the elements are
displayed in alphabetical order. We discuss the insertion operator in the next section.

The statement
set_union(set1.begin(), set1.end(),

set2.begin(), set2.end(),
inserter(set_u, set_u.begin()));

uses function set_union to form the union of set1 and set2 in the initially empty
set<string> set_u. Instead of using an output iterator for the last argument, we use
the iterator adapter inserter, which inserts elements into a container rather than
overwriting existing elements in a container. The inserter takes two arguments: a
container and an iterator within the container. Each insertion appends the next ele-
ment to the current end of the container.

Running the main function generates the following output lines. The last line shows
the result of comparing the result of set1.find(string("Apples")) to the result of
set1.end(). They are not equal if "Apples" is a set element.

set1 is {Apples, Oranges, Pineapples}
set2 is {Apples, Grapes, Peaches}
set1 + set2 is {Apples, Grapes, Oranges, Peaches, Pineapples}
set1 - set2 is {Oranges, Pineapples}
set1 * set2 is {Apples}
"Apples" is an element of set1 is true

L I S T I N G 9 . 1
Illustrating the Use of Sets

#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iterator>
#include "Set_Functions.h" // for operator<<

using namespace std;

9.1 Associative Container Requirements 515

int main()
{
set<string> set1;
set<string> set2;
set<string> set_u;
set<string> set_d;
set<string> set_i;

string data1[] = {"Apples", "Oranges", "Pineapples"};
string data2[] = {"Peaches", "Apples", "Grapes"};

set1.insert(data1, data1+3);
set2.insert(data2, data2+3);
cout << "set1 is " << set1 << endl;
cout << "set2 is " << set2 << endl;

set_union(set1.begin(), set1.end(),
set2.begin(), set2.end(),
inserter(set_u, set_u.begin()));

cout << "set1 + set2 is " << set_u << endl;

set_difference(set1.begin(), set1.end(),
set2.begin(), set2.end(),
inserter(set_d, set_d. begin()));

cout << "set1 - set2 is " << set_d << endl;

set_intersection(set1.begin(), set1.end(),
set2.begin(), set2.end(),
inserter(set_i, set_i. begin()));

cout << "set1 * set2 is " << set_i << endl;

bool is_member = (set1.find(string("Apples")) != set1.end());
cout << "\"Apples\" is an element of set1 is "

<< boolalpha << is_member << endl;

return 0;
}

The set Operators +, -, *, and <<
We showed how to perform the set operators union (+), difference (-), and intersec-
tion (*) using the functions in the algorithm header. However, it would be instruc-
tive to implement these operators using the set member operators. The code for
these operators and function contains is in file Set_Functions.h.

The union operation can be defined as:
/** Construct the union of two sets. */
template<typename Key_Type, typename Compare>
std::set<Key_Type, Compare> operator+(

const std::set<Key_Type, Compare>& left,
const std::set<Key_Type, Compare>& right) {

typename std::set<Key_Type, Compare> result(left);
result.insert(right.begin(), right.end());
return result;

}

516 Chapter 9 Sets and Maps

This function begins by loading set result with the elements in the left set. Then
all elements in the right set are inserted.

Set difference is a bit more complicated. Again we load set result with the elements
in the left set. Then we use a loop to erase each element in the right set from the
result set.

/** Construct the difference of two sets. */
template<typename Key_Type, typename Compare>
std::set<Key_Type, Compare> operator-(

const std::set<Key_Type, Compare>& left,
const std::set<Key_Type, Compare>& right) {

typename std::set<Key_Type, Compare> result(left);
for (typename std::set<Key_Type, Compare>::const_iterator

itr = right.begin(); itr != right.end(); ++itr)
result.erase(*itr);

return result;
}

There is no function in class set that performs a test for set membership. However,
we can implement a function contains using the result of the set search function find.

template<typename Key_Type, typename Compare>
bool contains(const std::set<Key_Type, Compare>& s,

const Key_Type& k) {
return s.find(k) != s.end();

}

The ostream insertion operator << inserts each set element in output stream out, pre-
ceding each element except for the first with a comma. The first element is preceded
by an open brace, and the last element is followed by a close brace.

// Overloading the ostream insertion operator
template<typename Item_Type>
std::ostream& operator<<(std::ostream& out,

const std::set<Item_Type>& a_set) {
out << "{";
bool first = true;
for (typename std::set<Item_Type>::const_iterator

itr = a_set.begin(); itr != a_set.end(); ++itr) {
if (first)
out << *itr;

else
out << ", " << *itr;

first = false;
}
return out << "}";

}

Comparison of vectors and sets
The vector and set both implement the common requirements of the container
classes. They also both have insert and erase functions, but these functions have
different signatures and slightly different meanings. With the vector you must spec-
ify the location where the item is to be inserted, but with the set you do not. The
set has an insert function (not shown in Table 9.1) that takes a position argument
as a “hint” to speed up the insertion, but the exact position where the item goes is

9.1 Associative Container Requirements 517

not under the caller’s control. Also, in addition to the iterator referencing the
inserted item, the set’s insert function also returns a bool value indicating whether
or not the item was inserted.

Unlike a vector, a set does not have an subscript operator function (operator[]).
Therefore, elements cannot be accessed by index. So if seta is a set object, the
expression seta[0] would cause the syntax error

no match for 'std::set<int, std::less<int>, std::allocator<int> >&
[int]' operator

Although you can’t reference a specific element of a set, you can iterate through all
its elements using an iterator object. The following loop accesses each element of
set object seta, and the elements will be accessed in sorted order. We used such a
loop in the functions shown earlier for overloading operator - and operator <<.
Note that the iterator itr must be type const_iterator because you can’t change a
set’s contents using an iterator.

// Create an iterator to seta.
for (set<string>::const_iterator itr = seta.begin();

itr != seta.end(); ++itr) {
string next_item = *itr;
// Do something with next_item
...

}

The multiset
The multiset is the same as the set except that it does not impose the requirement
that the items be unique. Thus the insert function always inserts a new item, and
duplicate items will be retained. However, the erase function removes all occur-
rences of the specified item because there may be duplicates.

The functions lower_bound and upper_bound can be used to select the group of
entries that match a desired value. If the item is present, function lower_bound
returns an iterator to the first occurrence of the specified value. Function
upper_bound returns an iterator to the smallest item that is larger than the speci-
fied value. The desired entries are between the iterators returned by these two func-
tions. If the item is not present, function lower_bound returns an iterator to the
smallest element that is larger than the specified entry, and function upper_bound
returns the same value. The following function determines the number of occur-
rences of the string target in the multiset<string> words_set.

int count_occurrences(const multiset<string>& words_set,
const string& target) {

multiset<string>::const_iterator first_itr =
words_set.lower_bound(target);

multiset<string>::const_iterator last_itr =
words_set.upper_bound(target);

int count = 0;
for (multiset<string>::const_iterator itr = first_itr;

itr != last_itr; ++itr)
++count;

return count;
}

518 Chapter 9 Sets and Maps

These functions are also defined for the set. They can be used to define a subset
by setting a pair of iterators to two values within the set. For example, if the set
fruits is {"Apples", "Grapes", "Oranges", "Peaches", "Pears", "Pineapples",

"Tomatoes"}, then
lower_bound("Peaches")

would return an iterator to "Peaches", and
upper_bound("Pineapples")

would return an iterator to "Tomatoes". These two iterators would define the sub-
set of fruits between "Peaches" and "Pineapples".

Standard Library Class pair
The C++ standard library defines the class pair in the header <utility>. This class
is a simple grouping of two values of different types. The members are named first
and second. Pairs are used as the return type from functions that need to return two
values, such as the set::insert function, and as the element type for maps
(described in Section 9.2).

Since all of its members are public, it is declared as a struct. Listing 9.2 shows an
equivalent definition of class pair.

L I S T I N G 9 . 2
Equivalent Definition of the struct pair (Part of the Standard Header <utility>)

template<typename Type1, typename Type2>
struct pair {
Type1 first;
Type2 second;

// Construct a pair from two values
pair(const Type1& x, const Type2& y) : first(x), second(y) {}

// Construct a pair using default values for the types
pair() : first(Type1()), second(Type2()) {}

// Construct a pair from two values that are assignable to the
// target types
template<typename Other_T1, typename Other_T2>
pair(const pair<Other_T1, Other_T2>& other) {
first = other.first;
second = other.second;

}
};

The template form of the constructor allows for initialization of a pair using values
for which there is an assignment defined. For example, the declaration:

pair<string, double> my_pair("Hello", 5);

creates pair<string, double> my_pair and initializes its data fields to the arguments
listed. The argument types are const char * and int, which can be assigned to a
string and a double, respectively.

9.1 Associative Container Requirements 519

A template function is defined to create a pair object from two arguments.
template<typename Type1, typename Type2>
make_pair(const Type1& first_value, const Type2& second_value) {
return pair<Type1&, Type2&>(first_value, second_value);

}

Also, the less-than operator is defined for class pair. The results of this operator are
based on the first values, if they are not equal, and on the second values if the first
values are equal.

template<typename Type1, typename Type2>
bool operator<(pair<Type1, Type2>& left, pair<Type1, Type2>& right) {
return (left.first < right.first)

|| (!(right.first < left.first)
&& (left.second < right.second));

}

E X E R C I S E S F O R S E C T I O N 9. 1

S E L F - C H E C K

1. Explain the effect of the following function calls.
set<string> s;
s.insert("hello");
s.insert("bye");
s.insert(s.begin(), s.end());
set<string> t;
t.insert("123");
cout << t << endl;
cout << (t - s) << endl;
cout << (s - t) << endl;
cout << contains(s, "ace") << endl;
cout << contains(s, "123") << endl;
s = s * t;
cout << s << endl;
t = t * s;
cout << t << endl;

2. Rewrite the preceding fragment above replacing the set operators with the func-
tions from the algorithm header.

3. Redo Self-Check Exercise 1 for s and t declared as type multiset<string>.
4. Show the sets m and n after each of the following operations.

multiset<int> m;
set<int> n;
m.insert(25); m.insert(37); m.insert(27); m.insert(37);
n.insert(25); n.insert(37); n.insert(27); n.insert(37);
m.erase(25); m.erase(37);
n.erase(25); n.erase(37);

P R O G R A M M I N G

1. Implement the set intersection operator * using set member functions.

520 Chapter 9 Sets and Maps

2. Implement the set union operator + by delegating to function set_union from the
algorithm header.

3. Implement the set difference operator - by delegating to function set_difference.
4. Implement the set intersection operator * by delegating to function set_intersection.

9.2 Maps and Multimaps

The map is related to the set. Mathematically a map is a set of ordered pairs whose
elements are known as the key and the value. The key is required to be unique, as
are the elements of a set, but the value is not necessarily unique. For example, the
following would be a map:

{(J, Jane), (B, Bill), (S, Sam), (B1, Bob), (B2, Bill)}

The keys in this example are strings consisting of one or two characters, and each
value is a person’s name. The keys are unique but not the values (there are two Bills).
The key is based on the first letter of the person’s name. The keys B1 and B2 are the
keys for the second and third person whose name begins with the letter B.

You can think of each key as “mapping” to a particular value (hence the name
map). For example, the key J maps to the value Jane. The keys B and B2 map to the
value Bill. You can also think of the keys as forming a set (keys) and the values as
forming a set (values). Each element of keys maps to a particular element of values,
as shown in Figure 9.2. In mathematical set terminology, this is a many-to-one map-
ping (that is, more than one element of keys may map to a particular element of val-
ues). For example, both keys B and B2 map to the value Bill. This is also an onto
mapping in that all elements of values have a corresponding member in keys.

A map can be used to enable efficient storage and retrieval of information in a table.
The key is a unique identification value associated with each item stored in a table.
The “value” in the key/value pair might be an object, or even a pointer to an object,
with objects in the class distinguished by some attribute associated with the key that
is then mapped to the value.

F I G U R E 9 . 2
Example of Mapping

9.2 Maps and Multimaps 521

keys values

J

B

B2

S

B1

Jane

Bill

Sam

Bob

E X A M P L E 9 . 2 When information about an item is stored in a table, the information stored may
consist of a unique ID (identification code, which may or may not be a number) as
well as descriptive data. The unique ID would be the key, and the rest of the infor-
mation would represent the value associated with that key. Some examples follow:

522 Chapter 9 Sets and Maps

In the preceding examples, the student ID number may be assigned by the univer-
sity, or it may be the student’s social security number. The e-mail address is a unique
address for each customer, but it is not numeric. Similarly, a part ID could consist
of a combination of letters and digits.

In comparing maps to indexed collections, you can think of the keys as selecting the
elements of a map, just as indexes select elements in a vector object. The keys for a
map, however, can have arbitrary values (not restricted to 0, 1, 2, and so on, as for
indexes). As you will see later, the subscript operator is overloaded for the map class,
so you can have statements of the form:

v = a_map[k]; // Assign to v the value for key k
a_map[k] = v1; // Set the value for key k to v1

where k is of the key type, v and v1 are of the value type, and a_map is a map.

The map Functions
A map is effectively defined as a set whose items are pairs. The member functions
defined for both are the same except for the type of the parameters. The map is a
template class that takes the following template parameters:

• Key_Type: The type of the keys contained in the key set
• Value_Type: The type of the values in the value set
• Compare: A function class that determines the ordering of the keys. By default

this is the less-than operator.
• Allocator: The memory allocator for key objects. We will use the library-

supplied default.
Items are stored in a map as ordered by their Compare function. Thus, if you iterate
through a map, you will get a sorted list of the contents. The Compare function is used
to create the function class Key_Compare, which compares only the Key_Type part of
the pair<const Key_Type, Value_Type> items (called Entry_Type) that are stored in
a map. (Note that the key for an entry can’t be changed, but the value can be.)

Type of Item Key Value

University student Student ID number Student name, address, major,
grade-point average

Customer for on-line store E-mail address Customer name, address, credit
card information, shopping cart

Inventory item Part ID Description, quantity, manufac-
turer, cost, price

struct Key_Compare {
bool operator()(const Entry_Type& left,

const Entry_Type& right) const {
return left.first < right.first;

}
};

If the set is defined, the map could be defined as shown in Listing 9.3. The map functions
are all implemented by delegation to the corresponding set function. For example:

std::pair<iterator, bool> insert(const Entry_Type& item) {
return the_set.insert(item);

}

In addition to the set functions, the map class overloads the subscript operator such
that the key is used as an index (for example, a_map[k]). For this reason, a map is
also known as an associative array.

The code that overloads the subscript operator is placed at the end of the public part
of the class definition and begins as follows:

Value_Type& operator[](const Key_Type& key) {
std::pair<iterator, bool> ret
= the_set.insert(Entry_Type(key, Value_Type()));

This statement inserts into the_set a pair consisting of the key and a dummy value.
The return value (assigned to ret) will be a pair<iterator, bool>. The iterator
will reference the Entry_Type object that was inserted if the key was not already
mapped. Thus, using the subscript operator to access a key in a map has the side
effect of inserting that key with a default value if it is not already present. However,
the iterator will reference the Entry_Type object that was already in the_set if the
key is already mapped.

Because changing a value that is in a set could destroy the ordering of the items, the
set::iterator’s dereferencing operators always return a const reference to the
object referenced. We need to return a non-const reference to the Value_Type part
of the Entry_Type object. Thus we need to use a const_cast to remove the const
qualification.

Entry_Type& entry(const_cast<Entry_Type&>(*(ret.first)));

SYNTAX const_cast

FORM:
const_cast<target_type>(value)

EXAMPLE:
const_cast(Entry_Type&)(*(ret.first))

MEANING:

If the type of value was a const reference type (or const pointer type), it is con-
verted to target_type, where target_type is the corresponding non-const reference

9.2 Maps and Multimaps 523

(or pointer) type. You must be careful using this construct, because it allows you
to violate the protection provided by the language. For example, a const_cast
could be used to change the key of the item stored in either a set or a map. The
set and map use binary search trees, so changing a value could make the tree
cease to be a binary search tree. The insert, erase, and find operations would
no longer work. In this case we knew that the Value_Type part of the Entry_Type
could be changed without harming the structure of the_set.

L I S T I N G 9 . 3
map.h

#ifndef MAP_H_
#define MAP_H_

#include <set>
#include <utility>

namespace KW
{
/** Definition of the map class using the std::set. */
template<typename Key_Type, typename Value_Type>
class map {

public:

// Define the Entry_Type.
typedef std::pair<const Key_Type, Value_Type> Entry_Type;

// Compare only the keys.
struct Key_Compare {
bool operator()(const Entry_Type& left,

const Entry_Type& right) const {
return left.first < right.first;

}
};

// Define the iterator types
typedef typename std::set<Entry_Type,

Key_Compare>::iterator iterator;
typedef typename std::set<Entry_Type,

Key_Compare>::const_iterator const_iterator;

// Delegate the functions.
iterator begin() {
return the_set.begin();

}

const_iterator begin() const {
return the_set.begin();

}

524 Chapter 9 Sets and Maps

iterator end() {
return the_set.end();

}

const_iterator end() const {
return the_set.end();

}

bool empty() {
return the_set.empty();

}

int size() {
return the_set.size();

}

std::pair<iterator, bool> insert(const Entry_Type& item) {
return the_set.insert(item);

}

void erase(const Key_Type& key) {
the_set.erase(Entry_Type(key, Value_Type()));

}

iterator find(const Key_Type& key) {
return the_set.find(Entry_Type(key, Value_Type()));

}

// Overload the subscript operator
Value_Type& operator[](const Key_Type& key) {
std::pair<iterator, bool> ret
= the_set.insert(Entry_Type(key, Value_Type()));

Entry_Type& entry(const_cast<Entry_Type&>(*(ret.first)));
return entry.second;

}

private:
std::set<Entry_Type, Key_Compare> the_set;

}; // End map

} // End namespace KW

#endif

The implementation of the map shown in Listing 9.3 is for illustration purposes only,
and other than operator[] it is not fully functional. Specifically, the iterator can-
not be defined as shown. Instead, an iterator class needs to be defined so that its
dereferencing operators perform the const_cast. Then we wouldn’t need to do the
const_cast in operator[], and the iterator returned from insert and find would
be useful.

9.2 Maps and Multimaps 525

E X A M P L E 9 . 3 The following statements build a map object that contains the mapping shown in
Figure 9.2.

map<string, string> a_map;
a_map["J"] = "Jane";
a_map["B"] = "Bill";
a_map["S"] = "Sam";
a_map["B1"] = "Bob";
a_map["B2"] = "Bill";

The statement
cout << "B1 maps to " << a_map["B1"] << endl

would display B1 maps to Bob. The statement
cout << "Bill maps to " << a_map["Bill"] << endl;

would display "Bill maps to " because "Bill" is a value, not a key. However, a side
effect of this statement is that "Bill" would now be a key in the map associated with
the empty string. Recall that if a key is not in a map when the subscript operator is
applied, the key is inserted and mapped to the default value for the value type. For
string, the default value is an empty string.

E X A M P L E 9 . 4 In Section 8.4 we examined a case study that used a binary search tree to store an
index of words occurring in a term paper. Each data element in the tree was a string
consisting of a word followed by a 3-digit line number.

Although this is one approach to storing an index, it would be more useful to store
each word and all the line numbers for that word as a single index entry. We could
do this by storing the index in a map in which each word is a key and its associated
value is a list of all the line numbers at which the word occurs. As we build the
index, each time a word is encountered, its list of line numbers would be retrieved
(using the word as a key), and the most recent line number would be appended to
this list (a list<int>). For example, if the word fire has already occurred on lines 4
and 8 and we encounter it again on line 20, the list<int> associated with fire would
reference the three ints 4, 8, and 20.

Listing 9.4 shows function build_index (adapted from build_index in Listing 8.8).
Parameter index is a map with key type string and value type list<int>.

typedef std::map<std::string, std::list<int> > map_type;

If we wanted to use the map class shown in Listing 9.3, we would change this decla-
ration to

typedef KW::map<std::string, std::list<int> > map_type;

The statement
index[word].push_back(line_num);

retrieves the value (a list<int>) associated with the next word. If there was no value
associated with the next word, an empty list (the default for list<int>) is inserted
into the map. The push_back function is then called on this list object to append the
line_num. Recall that the String_Tokenizer class was also described in Section 8.4.

526 Chapter 9 Sets and Maps

L I S T I N G 9 . 4
Function build_index

/** Reads each word (a key) in the data file in and stores it
in a map along with a list of line numbers (a value).
pre: index is an empty map.
post: lowercase form of each word with all its

line numbers is stored in index.
@param in An istream attached to the data file
@param index The index

*/
void build_index(istream& in, map_type& index) {
string next_line; // Each data line
int line_num = 0; // Line number
// Keep reading lines until done
while (getline(in, next_line)) {
line_num++;
// Create a String_Tokenizer for the current data line
// using punctuation and white space as delimiters
String_Tokenizer tokenizer(next_line, " ,.:-!?/%\'\"");
// Insert each token in the index
while (tokenizer.has_more_tokens()) {
string word = tokenizer.next_token();
to_lower(word);
index[word].push_back(line_num);

}
}

}

9.2 Maps and Multimaps 527

P I T F A L L

Side Effect of Retrieving a Missing Key
In function build_index, the statement

index[word].push_back(line_num);

uses the expression index[word] to retrieve the value (a list) associated with string
word. If this is the first occurrence of word, a side effect of the retrieval is that an empty
list is inserted in index as the value associated with word, and the line number is
inserted into this list. This is just what we want to happen. However, there are other situ-
ations when we don’t want to insert a new entry into the map if the key is missing. In
these cases, we should use find to perform the retrieval, as in the following fragment.
const_iterator itr_word = index.find(word);
if (itr_word != index.end())
cout << "first occurrence is on line # " << itr_word->second.front())

<< endl;
else
cout << word << " is not in the index\n"

The if statement displays either the line number of the first occurrence of word
(itr_word->second.front()) or a message that word is not present.

Defining the Compare Function
The default value for the Compare template parameter is the Key_Type’s less-than
operator. If Key_Type is a primitive type or the string class, the < operator is defined.
However, let us assume that we wanted to use the class Person, with data fields fam-
ily_name and given_name to be the key in a map. The family_name should determine
the ordering of Person objects. However, if two Person objects have the same fam-
ily_name, then we need to use the given_name. We would define the following func-
tion class to compare Person objects.

struct Compare_Person {
bool operator()(const Person& p1, const Person& p2) {
if (p1.family_name < p2.family_name)
return true;

else
return (p1.family_name == p2.family_name)

&& (p1.given_name < p2.given_name);
}

}

528 Chapter 9 Sets and Maps

P I T F A L L

Not Defining the Compare Function as a Total Ordering Relationship
Suppose we defined Compare_Person as follows:
struct Compare_Person {
bool operator()(const Person& p1, const Person& p2) {
if (p1.family_name < p2.family_name)
return true;

else
return p1.given_name < p2.given_name;

}
}

Then “Jones, Tom” (family_name is "Jones", given_name is "Tom") would be less than
“Smith, John” (family_name is "Smith", given_name is "John") as expected, but
“Smith, John” would also be less than “Jones, Tom” (since "John" < "Tom"). A map with
this as a Compare function will give very strange results.

The multimap
Like the multiset, the multimap removes the restriction that the keys are unique.
The subscript operator is not defined for the multimap. Instead, lower_bound and
upper_bound must be used to obtain a range of iterators that reference the values
mapped to a given key.

E X A M P L E 9 . 5 Earlier we showed how to use a map<string, list<int> > to create an index. We
could use a multimap<string, int> instead for this purpose. Each word would be
inserted into the multimap along with the line number. There could be duplicate

entries for the same word. The function to create the index is the same as shown in
Listing 9.4 except that the statement

index.insert(pair<string, int>(word, line_num));

is used instead of
index[word].push_back(line_num);

Listing 9.5 shows the print_index function. It uses a for loop to iterate through the
multimap index.

for (multimap<string, int>::const_iterator itr = index.begin();
itr != index.end();) {

Notice that we do not increment the iterator; this will be done in the loop body. At
the top of the loop the iterator itr is positioned at a new word, and references the
pair<string, int> that contains this word and the first line number on which it
occurs. The word and the first line number are output using the statement:

// Print the word
string word = itr->first;
cout << word << ": ";
// Print the first line number
cout << itr->second;

Now we use the upper_bound function to obtain an iterator that is at the next word
(or the end).

multimap<string, int>::const_iterator next_word
= index.upper_bound(word);

This iterator is used as the upper bound on the loop that prints the remaining line
numbers.

while (itr != next_word) {
cout << ", " << itr->second;
++itr;

}

L I S T I N G 9 . 5
The print_index Function (Part of multimap_index_generator.cpp)

void print_index(const multimap<string, int>& index) {
for (multimap<string, int>::const_iterator itr = index.begin();

itr != index.end();) {
// Print the word
string word = itr->first;
cout << word << ": ";
// Print the first line number
cout << itr->second;
// Print the rest of the line numbers
multimap<string, int>::const_iterator next_word
= index.upper_bound(word);

++itr;
while (itr != next_word) {
cout << ", " << itr->second;
++itr;

}
cout << '\n';

}
}

9.2 Maps and Multimaps 529

E X E R C I S E S F O R S E C T I O N 9. 2

S E L F - C H E C K

1. If you were using a map to store the following lists of items, which data field
would you select as the key and why?
a. textbook title, author, ISBN (International Standard Book Number), year,

publisher
b. player’s name, uniform number, team, position
c. computer manufacturer, model number, processor, memory, disk size
d. department, course title, course ID, section number, days, time, room

2. Show the map a_map created by the following statements. What would be dis-
played if you accessed the entries using an iterator and displayed the values of the
first and second data fields of each entry on a line separated by a colon?
a_map.insert(1234, "sam");
a_map.insert(2456, "bill");
a_map[2222] = "hal";
a_map[1234] = "sally";
cout << a_map[1111];

3. Suppose the fragment in Self-Check Exercise 2 were modified to create a mul-
timap, b_map, instead. Show that multimap. What would be displayed if you
accessed the entries using an iterator and displayed the value of the first and
second data fields of each entry on a line separated by a colon? All values for a
given key should appear on the same line separated by commas.

P R O G R A M M I N G

1. Write statements to create a map object that stores each word occurring in a term
paper along with the number of times the word occurs.

2. Write statements to perform the display described in Self-Check Exercise 2.
3. Write statements to perform the display described in Self-Check Exercise 3.

9.3 Hash Tables

The C++ standard library uses a special type of binary search tree, called a balanced
binary search tree, to implement the set and map classes. This provides access to
items in O(log n) time. Sets and maps can also be implemented using a data struc-
ture known as a hash table, which has some advantages over balanced search trees.
The goal behind the hash table is to be able to access an entry based on its key value,
not its location. In other words, we want to be able to access an element directly
through its key value (associative retrieval), rather than having to determine its loca-
tion first by searching for the key value in an array or a tree. Using a hash table
enables us to retrieve an item in constant time (expected O(1)). We say expected
O(1) rather than just O(1), because there will be some cases where the performance

530 Chapter 9 Sets and Maps

will be much worse than O(1) and may even be O(n), but on the average we expect
that it will be O(1).

Hash Codes and Index Calculation
The basis of hashing (and hash tables) is to transform the item’s key value to an inte-
ger value (its hash code) which will then be transformed into a table index. Figure
9.3 illustrates this process for a table of size n. We discuss how this might be done
in the next few examples.

E X A M P L E 9 . 6 Consider the Huffman code problem discussed in Section 8.6. To build the Huffman
tree, you needed to know the number of occurrences of each character in the text
being encoded. Let’s assume that the text contained only the ASCII characters. We
could use a table of size 128, one element for each possible character, and let the
char value for each character be its location in the table. Using this approach, table
element 65 would give us the number of occurrences of the letter A, table element
66 would give us the number of occurrences of the letter B, and so on. The hash
code for each character is its char value (a number), which is also its index in the
table. In this case, we could calculate the table index for character ascii_char using
the following assignment statement, where ascii_char represents the character we
are seeking in the table.

int index = ascii_char;

E X A M P L E 9 . 7 Let’s consider a slightly harder problem: Assume that out text is not in English and
instead uses the Unicode characters, and we want to know the number of occur-
rences of each character. There are over 65,000 Unicode characters, however. For
any file, let’s assume that at most 100 different characters actually appear. So, rather
than use a table with 65,536 elements, it would make sense to try to store these
items in a much smaller table (say 200 elements). If the hash code for each charac-
ter is its Unicode value, we need to convert this value (between 0 and 65,536) to an
array index between 0 and 199. We can calculate the array index for character
uni_char (type wchar_t) as:

int index = uni_char % 200

Because the range of Unicode values (the key range) is much larger than the index
range, it is likely that some characters in our text will have the same index value.
Because we can store only one key-value pair in a given array element, a situation
known as a collision results. We discuss how to deal with collisions shortly.

F I G U R E 9 . 3
Index Calculation for
a Key

9.3 Hash Tables 531

[0]
[1]
[2]
.
.
.

[n-1]

Key Index calculation

Table index

Functions for Generating Hash Codes
In most applications, the keys that we will want to store in a table will consist of
strings of letters or digits rather than a single character (for example, a social secu-
rity number, a person’s name, or a part ID). We need a way to map each string to a
particular table index. Again, we have a situation in which the number of possible
key values is much larger than the table size. For example, if a string can store up
to 10 letters or digits, the number of possible strings is 6210 (approximately 8.4 ×
1017), assuming the English alphabet with 52 letters (upper- and lower-case) and 10
digit characters.

Generating good hash codes for arbitrary strings or arbitrary objects is somewhat
of an experimental process. Simple algorithms tend to generate a lot of collisions.
For example, simply summing the char values for all characters in a string would
generate the same hash code for words that contained the same letters, but in dif-
ferent orders, such as “sign” and “sing”, which would have the same hash code
using this algorithm ('s' + 'i' + 'n' + 'g'). One algorithm that has shown good
results uses the following formula.

s0 × 31n–1 � s1 × 31n–2 � s2 × 31n–3 � · · · � sn–1

where si is the ith character of the string and n is the length of the string. (The num-
ber 31 is a prime number; the use of prime numbers in hash functions tends to
reduce the number of collisions.)

This is the formula used by a hash function in the Java String class. Since C++ does
not provide a standard hash function for the string class, we will borrow this one.
Using it, the string "Cat" would have a hash code of 'C' � 312 + 'a' � 31 � 't'.
This is the number 67,510. To get a table index, the hash function must take this
result modulo the table size.

As previously discussed, the integer value returned by this function can’t be unique,
because there are too many possible strings. However, the probability of two strings
having the same hash code value is relatively small, because this function distributes
the hash code values fairly evenly throughout the range of int values.

Because the hash codes are distributed evenly throughout the range of int values,
this function will appear to produce a random value that can be used as the table
index for retrieval. If the object is not already present in the table, the probability
that the table slot with this index will be empty is proportional to how full the
table is.

Although the hash function result appears to be random and gives a random distri-
bution of keys, keep in mind that the calculation is deterministic. This means that
you will always get the same hash code for a particular key.

One additional criterion for a good hash function, besides providing a random dis-
tribution, is that it be relatively simple and efficient (fast) to compute. It doesn’t
make much sense to use a hash function whose computation is an O(n) process to
avoid doing an O(n) search.

532 Chapter 9 Sets and Maps

Open Addressing
Next we consider two ways to organize hash tables: open addressing and chaining.
In open addressing, each hash table element (type Entry_Type*) points to a single
key-value pair. We can use the following simple approach (called linear probing) to
access an item in a hash table. If the index calculated for an item’s key is occupied
by an item with that key, we have found the item. If that element contains an item
with a different key, we increment the index by one. We keep incrementing the index
(modulo the table size) until either we find the key we are seeking or we reach a NULL
entry. A NULL entry indicates that the key is not in the table.

Algorithm for Accessing an Item in a Hash Table with Linear Probing
1. Compute the index by taking the key’s hash function modulo the size of the

table.
2. if table[index] is NULL
3. The item is not in the table.
4. else if table[index]->first is equal to the key
5. The item is in the table.

else

6. Continue to search the table by incrementing the index until either the
item is found or a NULL entry is found.

Step 1 ensures that the index is within the table range (0 through table.size() – 1).
If the condition in Step 2 is true, the table index does not reference an object, so the
item is not in the table. The condition in Step 4 is true if the item being sought is at
position index, in which case the item is located. Steps 1 through 5 can be done in
O(1) expected time.

9.3 Hash Tables 533

D E S I G N C O N C E P T

Proposed Standard Hash Function Class
Although hash tables were not included in the original C++ standard, there has long
been a desire for their inclusion. Currently the C++ standard is undergoing revision, and
hash tables are one of the proposed additions. One issue with including hash tables is
how to designate the hash function. The proposed solution is to define a template func-
tion class hash. This class would be specialized for the primitive types and other library-
defined types such as string. The type hash<type> would then designate the hash
function class for the type type, and hash<type>() would designate the function
object. The expression hash<type>()(key) would then evaluate the function for the
value key.

Step 6 is necessary for two reasons. The values returned by the hash function are
not unique, so the item being sought can have the same hash code as another one in
the table. Also, the remainder calculated in Step 1 can yield the same index for dif-
ferent hash code values. Both of these cases are examples of collisions.

Table Wraparound and Search Termination
Notice that as you increment the table index, your table should wrap around (as in a
circular array), so that the element with subscript 0 “follows” the element with sub-
script table.size() - 1. This enables you to use the entire table, not just the part with
subscripts larger than the hash code value, but it leads to the potential for an infinite
loop in Step 6 of the algorithm. If the table is full and the objects examined so far do
not match the one you are seeking, how do you know when to stop? One approach
would be to stop when the index value for the next probe is the same as the initial
hash code value computed for the key. This means that you have come full circle to
the starting value for the index. A second approach would be to ensure that the table
is never full by increasing its size after an insertion if its occupancy rate exceeds a spec-
ified threshold. This is the approach that we take in our implementation.

E X A M P L E 9 . 8 We illustrate the insertion of five names in a table of size 5 and in a table of size 11.
Table 9.3 shows the names, the corresponding hash code (result of the hash func-
tion hash_fcn), the hash code modulo 5, and the hash code modulo 11. We picked
prime numbers (5 and 11) because empirical tests have shown that hash tables with
a size that is a prime number often give better results.

For a table of size 5 (an occupancy rate of 100 percent), "Tom", "Dick", and "Sam"
have hash indexes of 4, and "Harry" and "Pete" have hash indexes of 3; whereas for
a table length of 11 (an occupancy rate of 45 percent), "Dick" and "Sam" have hash
indexes of 5, but the others have hash indexes that are unique. We see how the inser-
tion process works next.

For a table of size 5, if "Tom" and "Dick" are the first two entries, "Tom" would be
stored at the element with index 4, the last element in the table. Consequently, when
"Dick" is to be added, element 4 is already occupied, so the hash index is incre-
mented to 0 (the table wraps around to the beginning), and "Dick" is stored there.

TA B L E 9 . 3
Names and hash_fcn Values for Table Sizes 5 and 11

534 Chapter 9 Sets and Maps

Name hash_fcn() hash_fcn()%5 hash_fcn()%11

"Tom" 84274 4 3

"Dick" 2129869 4 5

"Harry" 69496448 3 10

"Sam" 82879 4 5

"Pete" 2484038 3 7

"Harry" is stored in position 3 (the hash index), and "Sam" is stored in position 1,
because its hash index is 4 but the elements at 4 and 0 are already filled.

Finally, "Pete" is stored in position 2, because its hash index is 3 but the elements
at positions 3, 4, 0, and 1 are filled.

For the table of size 11, the entries would be stored as shown in the following table,
assuming that they were inserted in the order "Tom", "Dick", "Harry", "Sam", and
finally "Pete". Insertions go more smoothly for the table of size 11. The first collision
occurs when "Sam" is stored, so "Sam" is stored at position 6 instead of position 5.

For the table of size 5, retrieval of "Tom" can be done in one step. Retrieval of all of
the others would require a linear search because of collisions that occurred when
they were inserted. For the table of size 11, retrieval of all but "Sam" can be done in
one step, and retrieval of "Sam" requires only two steps. This example illustrates that
the best way to reduce the probability of a collision is to increase the table size.

Traversing a Hash Table
One thing that you cannot do is traverse a hash table in a meaningful way. If you
visit the hash table elements in sequence and display the objects stored, you would
display the strings "Dick", "Sam", "Pete", "Harry", "Tom" for the table of length 5

NULL
NULL
NULL
"Tom"
NULL

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

"Dick"
"Sam"
"Pete"
NULL
NULL

"Harry"

"Dick"
"Sam"
"Pete"
"Harry"
"Tom"

[0]
[1]
[2]
[3]
[4]

"Dick"
"Sam"
NULL

"Harry"
"Tom"

[0]
[1]
[2]
[3]
[4]

"Dick"
NULL
NULL
NULL
"Tom"

[0]
[1]
[2]
[3]
[4]

9.3 Hash Tables 535

and the strings "Tom", "Dick", "Sam", "Pete", "Harry" for a table of length 11. In
either case, the list of names is in arbitrary order.

Deleting an Item Using Open Addressing
When an item is deleted, we cannot just set its table entry to NULL. If we do, then
when we search for an item that may have collided with the deleted item, we may
incorrectly conclude that the item is not in the table. (Because the item that collided
was inserted after the deleted item, we will have stopped our search prematurely.)
By storing a dummy value when an item is deleted, we force the search algorithm to
keep looking until either the desired item is found or a NULL value, representing a
free cell, is located.

Although the use of a dummy value solves the problem, keep in mind that it can lead
to search inefficiency, particularly when there are many deletions. Removing items
from the table does not reduce the search time, because the dummy value is still in
the table and is part of a search chain. In fact, you cannot even replace a deleted
value with a new item, because you still need to go to the end of the search chain to
ensure that the new item is not already present in the table. So deleted items waste
storage space and reduce search efficiency. In the worst case, if the table is almost
full and then most of the items are deleted, you will have O(n) performance when
searching for the few items remaining in the table.

Reducing Collisions by Expanding the Table Size
Even with a good hashing function, there is still the problem of collisions resulting
from taking the hash value modulo the table size. The first step in reducing these
collisions is to use a prime number for the size of the table.

Additionally, the probability of a collision is proportional to how full the table is.
Therefore, when the hash table becomes sufficiently full, a larger table should be
allocated and the entries reinserted.

We previously saw examples of expanding the size of an array. Generally, what we
did was to allocate a new array with twice the capacity of the original, copy the val-
ues in the original array to the new array, and then reference the new array instead
of the original. This approach will not work with hash tables. If you use it, some
search chains will be broken because the new table does not wrap around in the
same way as the original table. The last element in the original table will be in the
middle of the new table, and it does not wrap around to the first element of the new
table. Therefore, you expand a hash table using the following rehashing algorithm:

Algorithm for Rehashing
1. Allocate a new hash table with twice the capacity of the original.
2. Reinsert each old table entry that has not been deleted into the new hash

table.
3. Reference the new table instead of the original.

Step 2 reinserts each item from the old table into the new table instead of copying
it over to the same location. Notice that deleted items are not reinserted into the new

536 Chapter 9 Sets and Maps

table, thereby saving space and reducing the length of some search chains. We illus-
trate this in the hash table implementation.

Reducing Collisions Using Quadratic Probing
The problem with linear probing is that it tends to form clusters of keys in the table,
causing longer search chains. For example, if the table already has keys with hash
codes of 5 and 6, a new item that collides with either of these keys will be placed at
index 7. An item that collides with any of these three items will be placed at index
8, and so on. Figure 9.4 shows a hash table of size 11 after inserting elements with
hash codes in the sequence 5, 6, 5, 6, 7. Each new collision expands the cluster by
one element, thereby increasing the length of the search chain for each element in
that cluster. For example, if another element is inserted with any hash code in the
range 5 through 9, it will be placed at position 10, and the search chain for items
with hash codes of 5 and 6 would include the elements at indexes 7, 8, 9, and 10.

One approach to reduce the effect of clustering is to use quadratic probing instead
of linear probing. In quadratic probing, the increments form a quadratic series (1 +
22 � 32 � · · ·). Therefore, the next value of index is calculated using the steps:

probe_num++;
index = (start_index + probe_num * probe_num % table.size());

where start_index is the index calculated using the hash function and probe_num
starts at 0. Ignoring wraparound, if an item has a hash code of 5, successive values
of index will be 6 (5 � 1), 9 (5 � 4), 14 (5 � 9), . . . , instead of 6, 7, 8,
Similarly, if the hash code is 6, successive values of index will be 7, 10, 15, and so
on. Unlike linear probing, these two search chains have only one table element in
common (at index 6).

Figure 9.5 illustrates the hash table after elements with hash codes in the same
sequence as in the preceding table (5, 6, 5, 6, 7) have been inserted with quadratic
probing. Although the cluster of elements looks similar, their search chains do not
overlap as much as before. Now the search chain for an item with a hash code of 5
consists of the elements at 5, 6, and 9, and the search chain for an item with a hash
code of 6 consists of the elements at positions 6 and 7.

9.3 Hash Tables 537

F I G U R E 9 . 4
Clustering with Linear Probing

F I G U R E 9 . 5
Insertion with Quadratic Probing

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

1st item with hash code 5
1st item with hash code 6
2nd item with hash code 5
2nd item with hash code 6
1st item with hash code 7

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

1st item with hash code 5
1st item with hash code 6
2nd item with hash code 6
1st item with hash code 7
2nd item with hash code 5

Problems with Quadratic Probing
One disadvantage of quadratic probing is that the next index calculation is a bit
time consuming as it involves a multiplication, an addition, and a modulo division.
A more efficient way to calculate the next index follows:

k += 2;
index = (index + k) % table.size();

which replaces the multiplication with an addition. If the initial value of k is –1, suc-
cessive values of k will be 1, 3, 5, 7, If the hash code is 5, successive values of
index will be 5, 6 (5 + 1), 9 (5 + 1 + 3), 14 (5 + 1 + 3 + 5), The proof of the
equality of these two approaches to calculating index is based on the following
mathematical series:

n2 = 1 � 3 � 5 � · · · � 2n – 1

A more serious problem with quadratic probing is that not all table elements are
examined when looking for an insertion index, so it is possible that an item can’t be
inserted even when the table is not full. It is also possible that your program can get
stuck in an infinite loop while searching for an empty slot. It can be proved that if
the table size is a prime number and the table is never more than half-full, this can’t
happen. However, requiring that the table be half-empty at all times wastes quite a
bit of memory. For these reasons, we will use linear probing in our implementation.

Chaining
An alternative to open addressing is a technique called chaining, in which each table
element references a linked list that contains all the items that hash to the same table
index. This linked list is often called a bucket, and this approach is sometimes called
bucket hashing. Figure 9.6 shows the result of chaining for our earlier example with
a table of size 5. Each new element with a particular hash index can be placed at the
beginning or the end of the associated linked list. The algorithm for accessing such
a table is the same as for open addressing, except for the step for resolving collisions.
Instead of incrementing the table index to access the next item with a particular
hash code value, you traverse the linked list referenced by the table element with
index hash<Key_Type>()(key) % table.size(), where hash<type>() is the hash
function for the Key_Type and key is the key.

One advantage of chaining is that only items that have the same value for
hash<Key_Type>()(key) % table.size() will be examined when looking for an
object. In open addressing, search chains can overlap, so a search chain may include
items in the table that have different starting index values.

A second advantage is that you can store more elements in the table than the num-
ber of table slots (indexes), which is not the case for open addressing. If each table
index already references a linked list, additional items can be inserted in an existing
list without increasing the table size (number of indexes).

Once you have determined that an item is not present, you can insert it either at the
beginning or at the end of the list. To delete an item, simply remove it from the list.
In contrast to open addressing, removing an item actually deletes it, so it will not be
part of future search chains.

538 Chapter 9 Sets and Maps

F I G U R E 9 . 6
Example of Chaining

9.3 Hash Tables 539

Performance of Hash Tables
The load factor for a hash table is the number of filled cells divided by table size.
The load factor has the greatest effect on hash table performance. The lower the
load factor, the better the performance, because there is less chance of a collision
when a table is sparsely populated. If there are no collisions, the performance for
search and retrieval is O(1), regardless of the table size.

Performance of Open Addressing Versus Chaining
Donald Knuth (in Searching and Sorting, vol. 3 of The Art of Computer Program-
ming, Addison-Wesley, 1973) derived the following formula for the expected num-
ber of comparisons, c, required for finding an item that is in a hash table using open
addressing with linear probing and a load factor L:

Table 9.4 (second column) shows the value of c for different values of load factor
(L). It shows that if L is 0.5 (half-full), the expected number of comparisons
required is 1.5. If L increases to 0.75, the expected number of comparisons is 2.5,
which is still very respectable. If L increases to 0.9 (90 percent full), the expected
number of comparisons is 5.5. This is true regardless of the size of the table.

Using chaining, if an item is in the table, on average we have to examine the table
element corresponding to the item’s hash code and then half of the items in each list.
The average number of items in a list is L, the number of items divided by the table
size. Therefore, we get the formula

for a successful search. Table 9.4 (third column) shows the results for chaining. For
values of L between 0.0 and 0.75, the results are similar to those of linear probing,
but chaining gives better performance than linear probing for higher load factors.
Quadratic probing (not shown) gives performance that is between those of linear
probing and chaining.

c
L

= +1
2

c
L

= +
−

⎛
⎝⎜

⎞
⎠⎟

1

2
1

1

1

next =
data = "Harry"

Node

next =
data = "Tom"

next = NULL
data = "Pete"

Node

next =
data = "Dick"

NULL
NULL
NULL

[0]
[1]
[2]
[3]
[4]

Node

next = NULL
data = "Sam"

Node Node

TA B L E 9 . 4
Number of Probes for Different Values of Load Factor (L)

540 Chapter 9 Sets and Maps

L Number of Probes with Linear Probing Number of Probes with Chaining

0 1.00 1.00

0.25 1.17 1.13

0.5 1.50 1.25

0.75 2.50 1.38

0.85 3.83 1.43

0.9 5.50 1.45

0.95 10.50 1.48

Performance of Hash Tables Versus Sorted Arrays and Binary Search Trees
If we compare hash table performance with binary search of a sorted array, the
number of comparisons required by binary search is O(log n), so the number of
comparisons increases with table size. A sorted array of size 128 would require up
to 7 probes (27 is 128), which is more than for a hash table of any size that is 90
percent full. A sorted array of size 1024 would require up to 10 probes (210 is 1024).
A binary search tree would yield the same results.

You can insert into or remove elements from a hash table in O(1) expected time.
Insertion or removal from a binary search tree is O(log n), but insertion or removal
from a sorted array is O(n) (you need to shift the larger elements over). Worst-case
performance for a hash table or a binary search tree is O(n).

Storage Requirements for Hash Tables, Sorted Arrays, and Trees
The performance of hashing is certainly preferable to that of binary search of an array
(or a binary search tree), particularly if L is less than 0.75. However, the tradeoff is that
the lower the load factor, the more unfilled storage cells there are in a hash table,
whereas there are no empty cells in a sorted array. Because a binary search tree requires
two pointers per node (the left subtree and the right subtree), more storage would be
required for a binary search tree than for a hash table with a load factor of 0.75.

E X A M P L E 9 . 9 A hash table of size 100 with open addressing could store 75 items with a load fac-
tor of 0.75. This would require storage for 100 pointers. Storage would be required
for 150 pointers to store the 75 items in a binary search tree.

Storage Requirements for Open Addressing and Chaining
Next, we consider the effect of chaining on storage requirements. For a table with
a load factor of L, the number of table elements required is n (the size of the table).
For open addressing, the number of pointers to an item (a key-value pair) is n. For
chaining, the average number of nodes in a list is L. If we use the C++ list class,

there will be two pointers in each node (the next list element and the previous ele-
ment). However, we could use our own single-linked list and eliminate the previous-
element pointer (at some time cost for deletions). Therefore, we will require storage
for n + L references.

E X A M P L E 9 . 1 0 If we have 60,000 items in our hash table and use open addressing, we would need
a table size of 80,000 to have a load factor of 0.75 and an expected number of com-
parisons of 2.5. Next, we calculate the table size, n, needed to get similar perform-
ance using chaining:

A hash table of size 20,000 requires storage space for 20,000 lists. There will be
60,000 nodes in the table (one for each item). If we use single-linked lists of nodes,
we will need storage for 60,000 pointers (1 pointer per node). This is the same as
the storage needed for open addressing.

E X E R C I S E S F O R S E C T I O N 9. 3
S E L F - C H E C K

1. For the hash table search algorithm shown in this section, why was it unneces-
sary to test whether all table entries had been examined as part of Step 5?

2. For the items in the 5-element table of Table 9.3, compute hash_fcn(key) %

table.size() for table sizes of 7 and 13. What would be the position of each item
in tables of these sizes using open addressing and linear probing? Answer the
same question for chaining.

3. The following table stores int keys with the values shown. Show one sequence of
insertions that would store the keys as shown. Which elements were placed in
their current position because of collisions? Show the table that would be formed
by chaining.

Index Key

[0] 24

[1] 6

[2] 20

[3]

[4] 14

2 5 1
2

5 0 2

3
60 000

20 000

.

.

,

,

= +

= +

=

=

L

L

n
n

9.3 Hash Tables 541

4. For Table 9.3 and the table size of 5 shown in Example 9.8, discuss the effect of
deleting the entry for "Dick" and replacing it with a NULL value. How would this
affect the search for "Sam", "Pete", and "Harry"? Answer both questions if you
replace the entry for "Dick" with the string "deleted" instead of NULL.

5. Explain what is wrong with the following strategy to reclaim space that is filled
with deleted items in a hash table: When attempting to insert a new item in the
table, if you encounter an item that has been deleted, replace the deleted item
with the new item.

6. Compare the storage requirement for a hash table with open addressing, a table
size of 500, and a load factor of 0.5 with a hash table that uses chaining and gives
the same performance.

P R O G R A M M I N G

1. Code the following algorithm for finding the location of an object as a function.
Assume that table (a hash table vector), and a key (of type Key_Type) to be
located in the table are passed as arguments, and hash_fcn(Key_Type) is a hash
function defined for Key_Type. Return the object’s position if it is found;
table.size() if the object is not found.

1. Compute the index by taking the hash_fcn(key) % table.size().
2. if table[index] is NULL
3. The object is not in the table.

else if table[index]->first is equal to the key
4. The object is in the table.

else

5. Continue to search the table (by incrementing index) until either the
object is found or a NULL entry is found.

9.4 Implementing the Hash Table

In this section, we discuss how to implement a hash table. We will show implemen-
tations for hash tables using open addressing and chaining.

The KW::hash_map ADT
We will show more than one way to implement a hash table. Both will be imple-
mentations of a class called hash_map (in namespace KW). The interface for these
classes is shown in Table 9.5.

The Entry_Type
A hash table stores key-value pairs, therefore the hash_map will define the type
Entry_Type as follows:

typedef std::pair<const Key_Type, Value_Type> Entry_Type;

542 Chapter 9 Sets and Maps

TA B L E 9 . 5
Interface for the hash_map Class

9.4 Implementing the Hash Table 543

Function Behavior

iterator begin(); Returns an iterator to the first entry in the map.
const iterator begin() const

iterator end(); Returns an iterator to one past the last entry in the map.
const_iterator end()

bool empty() Returns true if there are no entries in the map.

size_t size() Returns the number of entries in the map.

pair<iterator, bool> insert(const Inserts an entry into the map. If the key is not in the map, the
Entry_Type& entry) returned iterator will reference the inserted entry, and the bool

result will be true. If the key is already in the map, the returned
iterator will reference the entry that is currently in the map with
this key, and the bool result will be false.

void erase(const Key_Type& key) Removes the item from the map.

iterator find(const Key_Type& key) Returns an iterator that references the item in the map. If the
item is not present, end() is returned.

Value_Type& operator[](const Returns a reference to the value associated with key. If key is not
Key_Type& key) associated with a value, inserts a default value into the map and

returns a reference to the inserted object.

Data Field Attribute

hash<Key_Type> hash_fcn The function object that will compute the hash function for the
Key_Type.

size_t num_keys The number of keys in the table, excluding keys that were
deleted.

std::vector<Entry_Type*> the_table The hash table vector.

static const size_t INITIAL_CAPACITY The initial capacity.

const double LOAD_THRESHOLD The maximum load factor.

size_t num_deletes The number of deleted keys.

const Entry_Type dummy A dummy entry to represent deleted keys.

const Entry_Type* DELETED A pointer to the dummy entry.

TA B L E 9 . 6
Data Fields for the Class hash_map as Implemented by Hash_Table_Open.h

Class hash_map as Implemented by Hash_Table_Open.h
Data Declarations and Constructor
In a hash table that uses open addressing, we represent the hash table as a vector of
pointers to Entry_Type objects (initial size is INITIAL_CAPACITY). We describe the
data fields in Table 9.6. The Entry_Type* object DELETED is used to indicate that the
entry at a particular table element has been deleted; a NULL pointer indicates that a
table element was never occupied.

We will use the proposed standard hash function class described earlier to represent
the hash function. Thus the data field hash_fcn will contain an instance of this func-
tion class instantiated for the Key_Type. We will describe how to define this class for
a given type in Section 9.5.

The data field declarations and constructor for KW::hash_map (as implemented by
Hash_Table_Open.h) follow.

/** Definition of the hash_map class. This definition is similar
to the unordered_map that has been proposed for the next
version of the C++ standard.
@param Key_Type The type of the keys
@param Value_Type The type of the values

*/
template<typename Key_Type, typename Value_Type>
class hash_map {

public:

// Typedefs
typedef std::pair<const Key_Type, Value_Type> Entry_Type;

// Forward declaration of iterator
class iterator;
class const_iterator;

/** Construct an empty hash_map. */
hash_map() :
hash_fcn(hash<Key_Type>()), num_keys(0),
the_table(INITIAL_CAPACITY, NULL),
LOAD_THRESHOLD(0.75),
num_deletes(0) {}

...

private:

/** The hash function object */
hash<Key_Type> hash_fcn;

/** The number of items currently in the map */
size_t num_keys;

/** The vector containing the hash_table */
std::vector<Entry_Type*> the_table;

/** The initial capacity */
static const size_t INITIAL_CAPACITY = 100;

544 Chapter 9 Sets and Maps

/** The maximum load factor */
const double LOAD_THRESHOLD;

/** The number of deleted keys */
size_t num_deletes;

/** A dummy entry and a pointer to it */
static Entry_Type dummy;
static Entry_Type* const DELETED;

}; // End hash_map

template<typename Key_Type, typename Value_Type>
typename hash_map<Key_Type, Value_Type>::Entry_Type
hash_map<Key_Type, Value_Type>::dummy =
std::pair<const Key_Type, Value_Type>(

Key_Type(), Value_Type());

template<typename Key_Type, typename Value_Type>
typename hash_map<Key_Type, Value_Type>::Entry_Type* const
hash_map<Key_Type, Value_Type>::DELETED =
&hash_map<Key_Type, Value_Type>::dummy;

The static data member DELETED is used to indicate that an entry in the table has
been deleted. It is initialized to point to a unique object (dummy). Static data mem-
bers must be initialized outside of the class declaration. The syntax is similar to that
used for member function implementations. For nontemplate classes, the initializa-
tion statements would appear in the .cpp file along with the member function imple-
mentations. However, for a template class they must appear in the include file (.h)
and must be qualified by the class name, including template parameters.

SYNTAX Initializing Static Data Members of a Template Class

FORM:
template<template parameter declarations>

type class_name<template parameters>::member_name = value;

EXAMPLE:
template<typename Key_Type, typename Value_Type>
typename hash_map<Key_Type, Value_Type>::Entry_Type
hash_map<Key_Type, Value_Type>::dummy =
std::pair<const Key_Type, Value_Type>(Key_Type(), Value_Type());

MEANING:

Memory is allocated for the static object class_name::member_name, and it is ini-
tialized to the specified value. This can become quite complicated, especially where
the type of the data member is also defined within the template class. In this exam-
ple typename hash_map<Key_Type, Value_Type>::Entry_Type is the type of the data
field, hash_map is the class, dummy is the member name, and std::pair<const
Key_Type, Value_Type>(Key_Type(), Value_Type()) is the value.

9.4 Implementing the Hash Table 545

We want DELETED to represent a unique value that will not point to a valid item.
Furthermore, once initialized, we do not want the value of DELETED to change.
Notice in the declaration for DELETED that the const qualification appears after the
* and before the data member name. This declares DELETED to be a constant pointer
(i.e., the value of the pointer does not change) as compared with a pointer to const
(i.e., the value pointed to does not change).

SYNTAX Constant Pointer Declaration

FORM:
type* const name;

EXAMPLE:
static Entry_Type* const DELETED;

MEANING:

By placing the const qualifier after the *, the identifier name is declared to be a
constant pointer. That is the value of the pointer (the address of the location
pointed to) remains constant. The value pointed to, however, is not declared to
be a constant.

The locate Function
Several functions use a private function locate that searches the table (using linear
probing) until it finds either the target key or an empty slot. By expanding the table
when its load factor exceeds the LOAD_THRESHOLD, we ensure that there will always
be an empty slot in the table. Table 9.7 summarizes these private functions.

The algorithm for function locate follows. Listing 9.6 shows the function.

Algorithm for hash_map::locate(const Key_Type& key)
1. Set index to hash_fcn(key) % the_table.size(), where hash_fcn is the hash

function.
2. while the_table[index] is not empty and the key is not at the_table[index]
3. Increment index modulo the_table.size().
4. Return the index.

TA B L E 9 . 7
Private Functions for Class hash_map as Implemented by Hash_Table_Open.h

546 Chapter 9 Sets and Maps

Function Behavior

size_t locate(const Key_Type& key) Returns the index of the specified key if present in the table;
otherwise, returns the index of the first available slot.

void rehash() Doubles the capacity of the table and permanently removes
deleted items.

L I S T I N G 9 . 6
Function hash_map::locate (in Hash_Table_Open.h)

/** Locates the entry in the hash table that contains the target key
or finds the next free entry.
@param key The key being sought
@return The position of the key or the first empty slot if

the key is not in the table
*/
size_t locate(const Key_Type& key) {
size_t index = hash_fcn(key) % the_table.size();
while (the_table[index] != NULL

&& (the_table[index] == DELETED
|| the_table[index]->first != key))

index = (index + 1) % the_table.size();
return index;

}

Notice that the function call hash_fcn(key) calls the hash function object for the Key_Type.
We will discuss how this is provided below. Loop exit occurs if the_table[index] is NULL
(an empty entry is reached) or if the key is at the_table[index]. This will happen if the
condition (the_table[index] == DELETED || the_table[index]->first != key) is false.
The condition can be false only if the table item at index was not deleted and the key at
the_table[index] is the key being sought. The order of these conditions is critical. Short-
circuit evaluation ensures that the key at the_table[index] is checked only after it is deter-
mined that the_table[index] is not a deleted item.

The insert Function
Next we write the algorithm for function insert. After inserting a new entry, the
function checks to see whether the load factor exceeds the LOAD_THRESHOLD. If so, it
calls function rehash to expand the table and reinsert the entries. By checking the
load factor before searching the table, we are assured that if the item is not in the
table, we will find an empty slot quickly, and that is the slot where the item will be
inserted. If we checked the load threshold after inserting a new item, the new item
would get moved and we would have to look for it to create the return iterator
value. Listing 9.7 shows the code for function insert.

9.4 Implementing the Hash Table 547

P R O G R A M S T Y L E

Use of size_t versus int for Indexes
Notice that we declared index to be of type size_t. This is an unsigned type, which is
the type returned by the vector size() function. The C++ compiler defines this type as
an unsigned integer type that has sufficient range to represent all index values. (The
specific type depends on the architecture of the computer on which the program is to be
executed.) By using an unsigned value we are sure that the result of the modulo opera-
tor (%) is in the range 0 to the_table.size() - 1. If we defined index and hash_fcn
to return int values, then the result of hash_fcn could be negative and the result of the
modulo operator could also be negative.

Algorithm for hash_map::insert(const Entry_Type& entry)
1. Check for need to rehash.
2. Find the first table element that is empty or the table element that contains

the key.
3. if an empty element was found
4. Insert the new item and increment num_keys.
5. Return make_pair(iterator to the inserted item, true)

6. else // key was found
7. Return make_pair(iterator to the found item, false)

L I S T I N G 9 . 7
Function hash_map::insert (in Hash_Table_Open.h)

/** Inserts an item into the map.
post: The key is associated with the value in the map.
@param entry The key, value pair to be inserted
@return An iterator to the inserted item and true

if the entry was inserted; an iterator to the existing
item and false if the item is already present

*/
std::pair<iterator, bool> insert(const Entry_Type& entry) {
double load_factor = double(num_keys + num_deletes) / the_table.size();
if (load_factor > LOAD_THRESHOLD) {
rehash(); // Double the size of the table.

}
// Find the position in the table.
size_t index = locate(entry.first);
// See whether it is empty.
if (the_table[index] == NULL) {
// Create a new entry.
the_table[index] = new Entry_Type(entry);
num_keys++;
return std::make_pair(iterator(this, index), true);

} else {
// Item is already in the table.
return std::make_pair(iterator(this, index), false);

}
}

548 Chapter 9 Sets and Maps

P I T F A L L

Integer Division for Calculating Load Factor
Before calling function rehash, function insert calculates the load factor by dividing
the number of filled slots by the table size. This is a simple computation, but if you for-
get to convert the numerator or denominator to double, the load factor will be zero
(because of integer division), and the table will not be expanded. This will slow down
the performance of the table when it becomes nearly full, and it will cause an infinite
loop (in function locate) when the table is completely filled.

The Subscript Operator (operator[])
The code for the subscript operator is similar to what was shown before when we
implemented the map using the set (see Section 9.2). The difference is that the
insert function for hash_map returns an iterator that can be used directly. The algo-
rithm follows, and the code is shown in Listing 9.8

Algorithm for the Subscript Operator (operator[])
1. Call insert to insert a new entry consisting of the key and a default

Value_Type object.
2. Use the iterator returned from the call to insert to return a reference to the

value that corresponds to the key.

Remember that insert adds an item if the key is not found in the map. If the key is
currently associated with a value in the map, then Step 1 will return an iterator
that references that entry. Otherwise, Step 1 will return an iterator that references
the inserted default value.

L I S T I N G 9 . 8
Subscript Operator (in Hash_Table_Open.h)

/** Accesses a value in the map, using the key as an index.
@param key The key of the item being sought
@return A reference to the associated value. If the

key was not in the map, a default value is inserted and
a reference to this value is returned.

*/
Value_Type& operator[](const Key_Type& key) {
// Try to insert a dummy item.
std::pair<iterator, bool> ret = insert(Entry_Type(key, Value_Type()));
// Return a reference to the value found or inserted.
return ret.first->second;

}

The erase Function
Next, we write the algorithm for function erase. Note that we “remove” a table element
by setting it to point to object DELETED. We leave the implementation as an exercise.

Algorithm for erase(const Key_Type& key)
1. Find the first table element that is empty or the table element that contains

the key.
2. if an empty element is found
3. Return.
4. else

5. The key is found.
Remove this table element by setting it to point to DELETED, increment
num_deletes, and decrement num_keys.

The rehash Function
Finally, we write the algorithm for private function rehash. Listing 9.9 shows the
function.

9.4 Implementing the Hash Table 549

Algorithm for rehash
1. Allocate a new hash table that is double the size.
2. Reset the number of keys and number of deletions to 0.
3. Reinsert each table entry that has not been deleted in the new hash table.

L I S T I N G 9 . 9
Function hash_map::rehash (in Hash_Table_Open.h)

/** Expand the table size when load_factor exceeds LOAD_THRESHOLD.
post: The size of the table is doubled.

Each nondeleted entry from the original table is
reinserted into the expanded table.
The value of num_keys is reset to the number of items
actually inserted; num_deletes is reset to 0.

*/
void rehash() {
// Create a new table whose size is double the current table.
std::vector<Entry_Type*> other_table(the_table.size() * 2, NULL);

// Swap this table with the current table.
the_table.swap(other_table);

// Reinsert all items from old table to new.
num_deletes = 0;
for (size_t i = 0; i < other_table.size(); i++) {
if ((other_table[i] != NULL) && (other_table[i] != DELETED)) {
size_t index = locate(other_table[i]->first);
the_table[index] = other_table[i];

}
}

}

The Copy Constructor, Assignment Operator, and Destructor
Because the vector<Entry_Type*> table contains pointers to dynamically allocated
Entry_Type objects, we need to implement the copy constructor and assignment oper-
ators so that they make copies of the objects pointed to when a hash_map is copied. We
also need to delete these dynamically allocated objects when a hash_map is destroyed.

The copy constructor initializes the data fields to the same values as the no-param-
eter constructor and then calls the insert function to insert each item from hash_map
other into the_table.

/** Copy Constructor.
@param other The other map to be copied

*/
hash_map(const hash_map<Key_Type, Value_Type>& other) :

hash_fcn(hash<Key_Type>()), num_keys(0),
the_table(other.the_table.size(), NULL),

LOAD_THRESHOLD(0.75),
num_deletes(0) {

for (size_t i = 0; i < other.the_table.size(); i++) {
if (other.the_table[i] != NULL && other.the_table[i] != DELETED)
insert(Entry_Type(other.the_table[i]->first,

other.the_table[i]->second));
}

}

The assignment operator and destructor are left as exercises.

550 Chapter 9 Sets and Maps

TA B L E 9 . 8
Data Fields for Class hash_map Implemented by Hash_Table_Chain.h

9.4 Implementing the Hash Table 551

Data Field Attribute

hash<Key_Type> hash_fcn The hash function object.

size_t num_keys The number of keys in the map.

std::vector<std::list<Entry_Type> > A vector of lists containing the items.
the_buckets

static const size_t INITIAL_CAPACITY The initial size of the vector.

static double LOAD_THRESHOLD The maximum load factor before rehashing.

Class hash_map as Implemented by Hash_Table_Chain.h
Next we turn our attention to Hash_Table_Chain.h, which implements hash_map
using chaining. We will represent the hash table as a vector of linked lists as shown
in Table 9.8. Even though a hash table that uses chaining can store any number of
elements in the same slot, we will expand the table if the number of entries becomes
three times the number of slots (LOAD_THRESHOLD is 3.0) to keep the performance at
a reasonable level.

Listing 9.10 shows the data fields and the constructor for Hash_Table_Chain.h.

L I S T I N G 9 . 1 0
Data Fields and Constructor for hash_map as Implemented by Hash_Table_Chain.h

/** Definition of the hash_map class. This definition is similar
to the unordered_map that has been proposed for the next
version of the C++ standard.
@param Key_Type The type of the keys
@param Value_Type The type of the values

*/
template<typename Key_Type, typename Value_Type>
class hash_map {

public:

// Typedefs
typedef std::pair<const Key_Type, Value_Type> Entry_Type;

// Forward declaration of iterator
class iterator;
class const_iterator;

/** Construct an empty hash_map. */
hash_map() :
hash_fcn(hash<Key_Type>()), num_keys(0),

the_buckets(INITIAL_CAPACITY), LOAD_THRESHOLD(3.0) {
}
...

private:

/** The hash function object */
hash<Key_Type> hash_fcn;

/** The number of items currently in the map */
size_t num_keys;

/** Vector of lists containing the buckets */
std::vector<std::list<Entry_Type> > the_buckets;

/** The initial capacity */
static const size_t INITIAL_CAPACITY = 100;

/** The maximum load factor */
const double LOAD_THRESHOLD;

}; // End hash_map

Next we discuss functions insert and erase. Instead of introducing a locate func-
tion to search a list for the key, we will include a search loop in each function.

We begin with the algorithm for insert. Listing 9.11 shows its code.

Algorithm for insert(const Entry_Type& entry)
1. Check for need to rehash.
2. Set index to hash_fcn(key) % the_buckets.size().
3. Search the list at the_buckets[index] to find the key.
4. if not found
5. Append a new entry to the end of this list.
6. Return make_pair(iterator to the inserted item, true)

7. else

8. Return make_pair(iterator to the found item, false)

L I S T I N G 9 . 1 1
Function hash_map::insert(const Entry_Type& entry) (in Hash_Table_Chain.h)

/** Inserts an item into the map.
post: The key is associated with the value in the map.
@param entry The key, value pair to be inserted
@return an iterator to the inserted item and true

if the entry was inserted, an iterator to the existing
item and false if the item is already present

*/
std::pair<iterator, bool>
insert(const Entry_Type& entry) {

// Check for the need to rehash.
double load_factor = double(num_keys) / the_buckets.size();
if (load_factor > LOAD_THRESHOLD) {
rehash();

}

// Find the position in the table.
size_t index = hash_fcn(entry.first) % the_buckets.size();

552 Chapter 9 Sets and Maps

// Search for the key.
typename std::list<Entry_Type>::iterator pos
= the_buckets[index].begin();

while (pos != the_buckets[index].end()
&& pos->first != entry.first) ++pos;

if (pos == the_buckets[index].end()) { // Not in table
the_buckets[index].push_back(Entry_Type(entry));
num_keys++;
return std::make_pair(iterator(this, index,

--(the_buckets[index].end())),
true);

} else { // Already there
return std::make_pair(iterator(this, index, pos), false);

}
}

Next, we write the algorithm for function erase. We leave the implementation of
rehash and erase as an exercise.

Algorithm for hash_map::erase(const Key_Type& key)
1. Set index to hash_fcn(key) % the_buckets.size().
2. Search the list at table[index] to find the key.
3. if the search is successful
4. Erase the entry with this key and decrement num_keys.

Copy Constructor, Assignment, and Destructor
Because Hash_Table_Chain.h uses a std::vector<std::list<Entry_Type> > to hold
the hash table, the default copy constructor and assignment operator will make a
deep copy of the hash_map, and the default destructor will delete any dynamically
allocated objects.

Testing the Hash Table Implementations
We discuss two approaches to testing the hash table implementations. One way is
to create a file of key-value pairs and then read each key-value pair and insert it in
the hash table, observing how the table is filled. To do this, you need to write a
to_string function for the table that captures the index of each table element that
is not NULL and then the contents of that table element. For open addressing, the
contents would be the string representation of the key-value pair. For chaining, you
could use an iterator to traverse the linked list at that table element and append each
key-value pair to the result string (see the Programming Exercises for this section).

If you use a data file, you can carefully test different situations. The following are
some of the cases you should examine:

• Does the array index wrap around as it should?
• Are collisions resolved correctly?
• Are duplicate keys handled appropriately? Is the new value retrieved instead of

the original value?
• Are deleted keys retained in the table, but no longer accessible via operator[]?
• Does rehashing occur when the load factor reaches 0.75 (3.0 for chaining)?

9.4 Implementing the Hash Table 553

By stepping through the insert function you can observe how the table is probed
and the search chain that is followed to access or retrieve a key.

An alternative to creating a data file is to insert randomly generated integers in the
hash table. This will allow you to create a very large table with little effort. The fol-
lowing loop generates SIZE key-value pairs. Each key is an integer between 0 and
RAND_MAX. For each table entry, the value is the same as the key. The hash<int> func-
tion returns a “random” value based on the int value provided. We describe one
possible implementation in the next section.

for (int i = 0; i < SIZE; i++) {
int next_int = rand();
hash_table[next_int] = next_int;

}

Because the keys are generated randomly, you can’t investigate the effect of dupli-
cate keys as you can with a data file. However, you can build arbitrarily large tables
and observe how the elements are placed in the table. After the table is complete,
you can interactively enter items to retrieve, delete, and insert and verify that they
are handled properly.

If you are using open addressing, you can add statements to count the number of
items probed each time an insertion is made. You can accumulate these totals and
display the average search chain length. If you are using chaining, you can also
count the number of probes made and display the average. After all items have been
inserted, you can calculate the average length of each linked list and compare that
with the number predicted by the formula provided in the discussion of perform-
ance in Section 9.3.

E X E R C I S E S F O R S E C T I O N 9. 4

S E L F - C H E C K

1. The following table stores int keys and needs to be rehashed. Where would each
key be placed in the new table resulting from rehashing the current table?

P R O G R A M M I N G

1. Write an erase function for Hash_Table_Open.h.
2. Write rehash and erase functions for class Hash_Table_Chain.h.
3. Write a to_string function for class Hash_Table_Open.h.

Index Key

[0] 24

[1] 6

[2] 20

[3]

[4] 14

554 Chapter 9 Sets and Maps

4. Write a to_string function for class Hash_Table_Chain.h.
5. Write a function size for both hash table implementations.
6. Modify function locate to count and display the number of probes made each

time it is called. Accumulate these in a data field num_probes and count the num-
ber of times locate is called in another data field. Provide a function that returns
the average number of probes per call to locate.

9.5 Implementation Considerations for the hash_map

Defining the Hash Function Class
The definition for the template hash function class is as follows

/** Hash Function Objects Template */
template<typename Key_Type>
struct hash {
size_t operator()(const Key_Type&);

};

Since this is a function class, it declares the function call operator (operator()).
However, no implementation is provided. Instead, specializations are provided for
the built-in types and library-defined types such as string.

Specialization for string
The specialization for the string class is shown below. It evaluates the polynomial:

s0 � 31n–1 � s1 � 31n–2 � s2 � 31n–3 � · · · � sn–1

which we discussed previously. Once the hash class becomes part of the C++ stan-
dard, standard library implementors will provide an appropriate function, but it
may be different from what we have shown here.

// Specialization for string
#include <string>
template<>
struct hash<std::string> {
size_t operator()(const std::string& s) {
size_t result = 0;
for (size_t i = 0; i < s.length(); i++) {
result = result * 31 + s[i];

}
return result;

}
};

Specialization for int
One possible hash function for int values is the value itself. This, however, does not
tend to distribute the keys through the hash table. A better approach is to multiply
the int value by some large prime number and take the result modulo the word size.

9.5 Implementation Considerations for the hash_map 555

This is the approach used by the random number generator and demonstrated in the
following code. The number shown is a large prime number and the integer multi-
plication is performed modulo the word size. The size_t function casts the result to
type size_t.

// Specialization for int
template<>
struct hash<int> {
size_t operator()(int i) {
return size_t(4262999287U * i);

}
};

Specialization for Your Own Classes
To use objects of your own classes as keys in a hash_map, you need to define the
equality operator (==) and specialize the hash function class. The hash function will
be used to start the search, and the equality operator will be used to finish it. For
this to work, the hash function must obey the following contract:

If obj1 == obj2 is true, then hash<type>()(obj1) == hash<type>()(obj2)

where obj1 and obj2 are objects of type type.

Consequently, you should make sure that your function uses the same data field(s)
as your equality operator. We provide an example next.

E X A M P L E 9 . 1 1 Class Person has data field IDNumber, which is used to determine whether two
Person objects are equal. The equality operator returns true only if the objects’
IDNumber fields have the same contents.

bool operator==(const Person& other) const {
return IDNumber == other.IDNumber;

}

To satisfy its contract, function hash<Person> must also be specialized as follows.
Now two objects that are considered equal will also have the same hash code.

template<>
struct hash<Person> {
size_t operator()(const Person& p) {
return hash<string>()(p.IDNumber);

}
};

The hash_map::iterator and hash_map::const_iterator
Our goal in this chapter was to show you how to implement the operators in our
hash table, not to implement a hash_map that has the same functionality as the
std::map class. To complete the limited implementation we have shown so far, we
need to implement the iterator and const_iterator classes.

556 Chapter 9 Sets and Maps

TA B L E 9 . 9
Design of the hash_map::iterator for Hash_Table_Open.h

9.5 Implementation Considerations for the hash_map 557

Data Field Attribute

hash_map<Key_Type, Value_Type>* A pointer to the hash_map that this iterator is iterating through.
the_parent

size_t the_index The index in the table for the current entry.

Public Member Functions Behavior

Entry_Type& operator*() Returns a reference to the Entry_Type that is referenced by this
iterator.

Entry_Type* operator->() Returns a pointer to the Entry_Type that is referenced by this
iterator.

iterator& operator++() Prefix increment operator. Advances this iterator to the next
entry in the table that is occupied.

iterator operator++(int) Postfix increment operator. Saves the current value of this itera-
tor. Increments this iterator and then returns the saved value.

bool operator==(const iterator& Returns true if this iterator and the other iterator are the same.
other) const

Private Member Functions Behavior

iterator(const hash_map<Key_Type>* Constructs an iterator that starts at the specified index, or at
parent, size_t index) the next occupied table entry following index.

void advance() If the_index is not at an occupied position in the table,
advances it to the next occupied position.

The const_iterator is the same except that the return type from operator*() is a
const Entry_Type& and the return type from operator->() is a const Entry_Type*.
Also the const_iterator must provide a public constructor that converts from an
iterator to a const_iterator. The definition of this constructor is as follows:

const_iterator(const typename hash_map<Key_Type,
Value_Type>::iterator& other)

: the_parent(other.the_parent), the_index(other.the_index) {}

The other constructors for iterator and const_iterator are private because we do
not want the client programs to create arbitrary iterators. The only valid iterator
objects are ones created by the member functions of the hash_map that owns the
iterator. Therefore, the iterator and const_iterator classes must declare the
hash_map as a friend. The iterator must also declare the const_iterator as a friend
for the conversion constructor just described.

The iterator for the Hash_Table_Chain.h implementation is similar to that for
the Hash_Table_Open.h implementation. An additional data field of type
std::list<Entry_Type>::iterator is needed to keep track of the position within the
list in the_bucket[the_index].

Implementation of the iterators is left as a Programming Project (see Project 6).

558 Chapter 9 Sets and Maps

E X E R C I S E S F O R S E C T I O N 9. 5

P R O G R A M M I N G

1. Write statements to display all key, value pairs in hash_map object m, one pair per
line. You will need to create an iterator to access the map entries.

2. Assume a Person has data fields last_name and first_name. Write an equality
operator that returns true if two Person objects have the same first and last
names. Write a hash<Person> function class that satisfies the hash function con-
tract. Make sure that your hash<Person>() function does not return the same
value for Henry James and James Henry. Your equality operator should return a
value of false for these two people.

9.6 Additional Applications of Maps

In this section we will consider two case studies that use a Map object. We take
another look at the telephone directory case first presented in Chapter 1 and revis-
ited in Chapter 4.

CASE STUDY Implementing the Phone Directory Using a Map

Problem In Section 1.4 we introduced the Phone_Directory ADT (see Table 1.5), which con-
tained functions (load_data, lookup_entry, add_or_change_entry, remove_entry,
save) for processing a phone directory consisting of name-number pairs.

Initially we implemented this ADT using an array (Section 1.7) and later a vector
(Section 4.2) to store Directory_Entry objects. To look up a name or to change an
existing name, we performed a linear search of the array, which is an O(n) opera-
tion. By using a map we can obtain a more efficient implementation.

Analysis The Phone_Directory is essentially a map. It relates names (which must be unique)
to phone numbers. For the entries shown in the following table, the name is the key
field and the phone number is the value field.

Index Value

Jane Smith 215-555-1234

John Smith 215-555-1234

Bill Jones 508-555-6123

9.6 Additional Applications of Maps 559

TA B L E 9 . 1 0
PhoneDirectory
Interface versus map
Interface

Phone_Directory API map API

add_or_change_entry operator[]

lookup_entry find

remove_entry erase

load_data None

save None

Thus, we can implement the Phone_Directory ADT by using a map<string, string>

object for the phone directory. The map<string, string> object would contain the
key-value pairs { ("Jane Smith", "215-555-1234"), ("John Smith", "215-555-1234"),
("Bill Jones", "508-555-6123") }.

Design We need to design the class Map_Based_PD, which implements the Phone_Directory
ADT. Data field the_directory is type map<string, string>. Table 9.10 shows the
functions required by the Phone_Directory ADT and the corresponding function or
functions in the map interface. Three of these functions have direct correspondents.

Implementation In the following functions, data field the_directory is type map<string, string>.
Function add_or_change_entry uses the subscript operator to change or add a new
name-number pair to the directory.

string Phone_Directory::add_or_change_entry(
const string& name, const string& number) {

string old_number = the_directory[name];
the_directory[name] = number;
modified = true;
return old_number;

}

The first statement retrieves the old number associated with the name. If there was
none, a default value (empty string) is inserted. The second statement then changes
the value to the desired number.

This is slightly inefficient since we do two searches of the map. We could adapt the
code for operator[] (Listing 9.3) and use the insert function. If the returned
pair<iterator, bool> indicates that the name was already in the map, we could
then use the returned iterator to retrieve the old name and set the new one. The
revised function is as follows.

string Phone_Directory::add_or_change_entry(
const string& name, const string& number) {

string old_number = "";
pair<iterator, bool> ret =
the_directory.insert(pair<string, string>(name, number));

if (!ret.second) { // Name already in the directory
old_number = ret.first->second;
ret.first->second = number;

}
modified = true;
return old_number;

}

560 Chapter 9 Sets and Maps

The lookup_entry function uses the find function to locate the directory entry. The
entry key field (name) is passed as an argument. If the returned iterator is not equal
to end(), then the name is retrieved and returned. Otherwise, an empty string is
returned.

/** Look up an entry.
@param name The name of the person
@return The number. If not in the directory, an empty string

*/
string Phone_Directory::lookup_entry(const string& name) const
{
const_iterator itr = the_directory.find(name);
if (itr != the_directory.end())
return itr->second;

else
return "";

}

The remove_entry function uses the erase(const Key_Type& key) function to delete
a directory entry. First we use the subscript operator to retrieve the old number.
Thus we always are inserting a value and then removing it. We could avoid this by
using the find function and then the erase(iterator) function, but there may not
be any advantage to this. This is because for a binary search tree, the erase may
require searching the tree, even though an iterator is provided. It depends on the
implementation of the binary search tree and the iterator class.

string Phone_Directory::remove_entry(const string& name)
{
string old_number = the_directory[name];
the_directory.erase(name);
modified = old_number != string();
return old_number;

}

The load_data function reads the entries from a data file and stores them in a map.
We will write the loop that does the read and store operations. It uses the subscript
operator to add an entry with the given name and number.

while (getline(in, name)) {
if (getline(in, number)) {
the_directory[name] = number;

}
}

To save the directory, we need to extract each name-number pair sequentially from
the map and write them out. We can use a for loop and an iterator:

for (iterator itr = the_directory.begin();
itr != the_directory.end(); ++ itr) {

out << itr->first << "\n";
out << itr->second << "\n";

}

Testing To test this code, you need to modify the PD_Application.cpp file to include
Map_Based_PD.h and compile and link this modified source file with the
Map_Based_PD.cpp.

The rest of the main function used to test the application would be the same.

9.6 Additional Applications of Maps 561

CASE STUDY Completing the Huffman Coding Problem

Problem In Chapter 8 we showed how to compress a file by using a Huffman tree to encode
the symbols occurring in the file so that the most frequently occurring characters
had the shortest binary codes. The input to function build_tree of class
Huffman_Tree was a Huff_Data vector consisting of (weight, symbol) pairs, where the
weight in each pair was the frequency of occurrence of the corresponding symbol.
We need a function to build this vector for any data file so that we can create the
Huffman tree. Once the tree is built, we need to encode each symbol in the input file
by writing the corresponding bit string for that symbol to the output file.

Analysis A map is a very useful data structure for both these tasks: creating the vector of
Huff_Data elements and replacing each input character by its bit string code in the
output file. For either situation we need to look up a symbol in a table. Using a map
ensures that the table lookup is an O(log n) process.

To build the frequency table, we need to read a file and count the number of occur-
rences of each symbol in the file. The symbol will be the key for each entry in a
map<char, int> object, and the corresponding value will be the count of occur-
rences so far. As each symbol is read, we retrieve its map entry and increment the cor-
responding count. If the symbol is not yet in the frequency table, the map subscript
operator will insert a zero the first time we reference it.

Once we have the frequency table, we can construct the Huffman tree using a pri-
ority queue as explained in Section 8.6. Then we need to build a code table that
stores the bit string code associated with each symbol to facilitate encoding the data
file. Storing the code table in a map<char, Bit_String> object makes the encoding
process more efficient, because we can look up the symbol and retrieve its bit string
code (O(log n) process). To build the code table, we do a preorder traversal of the
Huffman tree.

Design The algorithm for building the frequency table follows. After all characters are read,
we iterate through the map and create the corresponding Huff_Data item, a (weight,
symbol) pair.

Algorithm for build_frequency_table
1. while there are more characters in the input file
2. Read a character.
3. Increment the entry in the map associated with this character.
4. for each entry in the map
5. Store its data as a weight-symbol pair in the vector<Huff_Data>.
6. Return the vector<Huff_Data>.

We can use a map<char, Bit_String> object that stores each symbol and its cor-
responding bit string code (a string of 0 and 1 bits) to encode the file. Class
Bit_String may be downloaded from the Web site for this textbook.

562 Chapter 9 Sets and Maps

Function build_code builds the code table by performing a preorder traversal of the
Huffman tree. The code table should be declared as a data field:

map<char, Bit_String> code_map;

As we traverse the tree, we keep track of the bit string code so far. When we traverse
left, we append a 0 to the bit string, and when we traverse right, we append a 1 to
the bit string. If we encounter a symbol in a node, we insert that symbol along with
a copy of the code so far (a new entry) in the code table. Because all symbols are
stored in leaf nodes, we return immediately without going deeper in the tree.

Algorithm for Function build_code
1. Get the data at the current root.
2. if reached a leaf node
3. Insert the symbol and bit string code so far as a new code table entry.
4. else

5. Append a 0 to the bit string code so far.
6. Apply the function recursively to the left subtree.
7. Append a 1 to the bit string code.
8. Apply the function recursively to the right subtree.

Finally, to encode the file, we read each character, look up its bit string code in the
code table map, and then write it to the output file.

Algorithm for Function encode
1. while there are more characters in the input file
2. Read a character and get its corresponding bit string code.
3. Write its bit string to the output file.

Implementation Listing 9.12 shows the code for function build_frequency_table. The while loop
builds the frequency table (map frequencies). Once the table is built, we use a for
loop to traverse the map, retrieving each entry from the map and using its data to
create a new Huff_Data element for vector result. When we finish, we return result
as the function result.

L I S T I N G 9 . 1 2
Function build_frequency_table

vector<Huff_Data> Huffman_Tree::build_frequency_table(istream& in) {
map<char, int> frequencies;
char c;
while (in.get(c)) {
frequencies[c]++;

}
vector<Huff_Data> result;
for (map<char, int>::iterator itr = frequencies.begin();

itr != frequencies.end(); ++itr) {
result.push_back(Huff_Data(itr->second, itr->first));

}
return result;

}

9.6 Additional Applications of Maps 563

Next, we show function build_code. We provide a starter function that initializes
code_map to an empty map and calls the recursive function that implements the algo-
rithm discussed in the Design section.

/** Starter function to build the code table.
post: The table is built.

*/
void build_code() {
code_map.clear();
build_code(huff_tree, Bit_String());

}
/** Recursive function to perform breadth-first traversal

of the Huffman tree and build the code table.
@param tree The current tree root
@param code The code string so far

*/
void Huffman_Tree::build_code(const Binary_Tree<Huff_Data>& tree,

const Bit_String& code) {
if (tree.is_leaf()) {
Huff_Data datum = tree.get_data();
code_map[datum.symbol] = code;

} else {
// Append 0 to code so far and traverse left
Bit_String left_code(code);
left_code.append(false);
build_code(tree.get_left_subtree(), left_code);
// Append 1 to code so far and traverse right
Bit_String right_code(code);
right_code.append(true);
build_code(tree.get_right_subtree(), right_code);

}
}

Function encode reads each character again, looks up its bit string code, and writes
it to the output file. We assume that the code table is in map code_map (a data field).

/** The map to store the code table. */
map<char, Bit_String> code_map

Following is the encode function.
/** Encodes a data file by writing it in compressed bit string form.

@param in The input stream
@param out The output stream

*/
void Huffman_Tree::encode(std::istream& in, std::ostream& out) {
Bit_String result;
char next_char;
while (in.get(next_char)) {
result += code_map[next_char];

}
result.write(out);

}

Testing To test these functions completely, you need to download class Bit_String (see
Project 1) and write a main function that calls them in the proper sequence. For

interim testing, you can read a data file and display the frequency table that is con-
structed to verify that it is correct. You can also use the string class instead of class
Bit_String in functions build_code and encode. The resulting code string would
consist of a sequence of digit characters '0' and '1' instead of a sequence of 0 and
1 bits. But this would enable you to verify that the program works correctly.

E X E R C I S E S F O R S E C T I O N 9. 6

P R O G R A M M I N G

1. Complete function load_data for class Map_Based_PD.
2. Complete function save for class Map_Based_PD.

C h a p t e r R e v i e w

◆ The standard library class set is a data type that supports the same operations as
a mathematical set. We use set objects to store a collection of elements that are
not ordered by position. Each element in the collection is unique. A set is a useful
data structure when we only need to determine whether or not a particular ele-
ment is in a collection, not its position or relative order.

◆ The standard library class map enables a user to access information (a value) cor-
responding to a specified key. Each key is unique and is mapped to a value that
may or may not be unique. Maps are useful for retrieving or updating the value
corresponding to a given key.

◆ A hash table uses hashing to transform an item’s key into a table index so that
insertions, retrievals, and deletions can be performed in expected O(1) time. When
the hash function is applied to a key, it should return an integer value that appears
to be a random number. A good hash function should be easy to compute and
should distribute its values evenly throughout the range of unsigned integer
(size_t) values. We use modulo division to transform the hash code value to a
table index.

◆ A collision occurs when two keys hash to the same table index. Collisions are
expected, and hash tables utilize either open addressing or chaining to resolve
collisions. In open addressing, each table element points to a key-value pair, or is
NULL if it is empty. During insertion, a new entry is stored at the table element
corresponding to its hash index if it is empty; otherwise, it is stored in the next
empty location following the one selected by its hash index. In chaining, each

564 Chapter 9 Sets and Maps

table element is a linked list of key-value pairs with that hash index. During
insertion, a new entry is stored in the linked list of key-value pairs for its hash
index.

◆ In open addressing, linear probing is often used to resolve collisions. In linear
probing, finding a target or an empty table location involves incrementing the
table index by 1 after each probe. This approach may cause clusters of keys to
occur in the table, leading to overlapping search chains and poor performance. To
minimize the harmful effect of clustering, quadratic probing increments the index
by the square of the probe number. Quadratic probing can, however, cause a table
to appear to be full when there is still space available, and it can lead to an infi-
nite loop.

◆ The best way to avoid collisions is to keep the table load factor relatively low by
rehashing when the load factor reaches a value such as 0.75 (75 percent full). To
rehash, you increase the table size and reinsert each table element.

◆ In open addressing, you can’t remove an element from the table when you delete
it, but you must mark it as deleted. In chaining, you can remove a table element
when you delete it. In either case, traversal of a hash table visits its entries in an
arbitrary order.

◆ Using a hash-table based implementation of the set and map gives search and
retrieval operations that have expected constant (O(1)) time.

◆ The standard library implementation of the set and map use a Red-Black tree.
Search and retrieval operations are O(log n)). The tree implementation enables
you to traverse the key-value pairs in a meaningful way and allows for subsets
based on a range of key values.

Quick-Check Exercises
1. If s is a set that contains the characters 'a', 'b', 'c', write a statement to insert the

character 'd'.
2. What is the effect of each of the following function calls, given the set in Exercise 1, and

what does it return? (Function contains is defined in Set_Functions.h.)
s.insert('a');
s.insert('A');
next = 'b';
contains(s, next);

For questions 3 through 7, a Map, m, contains the following entries: (1234, "Jane
Doe"), (1999, "John Smith"), (1250, "Ace Ventura"), (2000, "Bill Smythe"),
(2999, "Nomar Garciaparra").

3. What is the effect of the statement m[1234] = "Jane Smith";?
4. What is returned by m[1234]? What is returned by m[1500]?
5. If the entries for Map m are stored in a hash table of size 1000 with open addressing and

linear probing, where would each of the items be stored? Assume that the hash function
is the identity function.

6. Answer Question 5 for the case where the entries were stored using quadratic probing.
7. Answer Question 5 for the case where the entries were stored using chaining.

Chapter 9 Review 565

Answers to Quick-Check Exercises
1. s.add('d');

2. s.add('a'); // add 'a', duplicate – returns false
s.add('A'); // add 'A', returns true
next = 'b';
s.contains(next); // 'b' is in the set, returns true

3. The value associated with key 1234 is changed to "Jane Smith". The string "Jane
Doe" is returned.

4. The string "Jane Doe", and then the empty string.
5. 1234 at 234, 1999 at 999, 1250 at 250, 2000 at 000, 2999 at 001.
6. 1234 at 234, 1999 at 999, 1250 at 250, 2000 at 000, 2999 at 003.
7. 2000 in a linked list at 000, 1234 in a linked list at 234, 1250 in a linked list at 250,

1999 and 2999 in a linked list at 999.

Review Questions
1. Show where the following keys would be placed in a hash table of size 5 using open

addressing: 1000, 1002, 1007, 1003. Where would these keys be after rehashing to a
table of size 11?

2. Answer Question 1 for a hash table that uses chaining.
3. Write a to_string function for class hash_map. This function should display each table

element that is not NULL and is not deleted.
4. Class Hash_Table_Chain.h uses the class std::list, which is implemented as a double-

linked list. Write the insert function using a single-linked list to hold elements that hash
to the same index.

5. Write the operator[] function for the class in Question 4.
6. Write the erase function for the class in Question 4.

Programming Projects
1. Complete all functions of class Huffman_Tree and test them out using a document file

and a C++ source file on your computer. You can download class Bit_String from the
Web site for this textbook.

2. Use a map to store the frequency counts for all the words in a large text document.
When you are done, display the contents of this map. Next, store its contents in an array.
Sort the array in decreasing order by frequency and display it.

3. Modify Project 2 to save the line numbers for every occurrence of a word as well as the
count.

4. (Based on example in Brian W. Kernighan and Rob Pike, The Practice of Programming,
Addison Wesley, 1999) We want to generate “random text” in the style of another
author. Your first task is to collect a group of prefix strings of two words that occur in a
text file and associate them with a list of suffix strings using a map. For example, the
text for Charles Dickens’ “A Christmas Carol” contains the four phrases:

Marley was dead: to begin with.
Marley was as dead as a door-nail.
Marley was as dead as a door-nail.
Marley was dead.

566 Chapter 9 Sets and Maps

The prefix string "Marley was" would be associated with the vector containing the
four suffix strings "dead:", "as", "as", "dead.". You must go through the text and
examine each successive pair of two-word strings to see whether that pair is already in
the map as a key. If so, add the next word to the vector that is the value for that prefix
string. For example, in examining the first two sentences shown, you would first add to
the entry ("Marley was", vector "dead:"). Next you would add the entry ("was
dead", vector "as"). Next you would add the entry ("dead as", vector "a"), and so
on. When you retrieve the prefix "Marley was" again, you would modify the vector
that is its value, and the entry would become ("Marley was", vector "dead:", "as").
When you are all finished, add the entry "THE_END" to the suffix list for the last prefix
placed in the map.

Once you have scanned the complete text, it is time to use the map to begin generat-
ing new text that is in the same style as the old text. Output the first prefix you placed
in the map: "Marley was". Then retrieve the vector that is the value for this prefix.
Randomly select one of the suffixes, and then output the suffix. For example, the output
text so far might be "Marley was dead" if the suffix "dead" was selected from the
vector of suffixes for "Marley was". Now continue with the two-word sequence con-
sisting of the second word from the previous prefix and the suffix (that would be the
string "was dead"). Look it up in the map, randomly select one of the suffixes, and out-
put it. Continue this process until the suffix "THE_END" is selected.

5. Complete Hash_Table_Open.h so that it fully implements the map interface described in
Table 9.5. As part of this, implement the iterator and const_iterator as described in
Section 9.5.

6. Complete Hash_Table_Chain.h so that it fully implements the map interface, and test it
out. Complete class iterator and const_iterator as described in Project 5.

7. Revise function insert for Hash_Table_Open to place a new item into an already
deleted spot in the search chain. Don’t forget to check the scenario where the key has
already been inserted.

Chapter 9 Review 567

C h a p t e r O b j e c t i v e s

◆ To learn how to use the standard sorting functions in algorithm.h
◆ To learn how to implement the following sorting algorithms: selection sort, bubble sort,

insertion sort, Shell sort, merge sort, heapsort, and quicksort
◆ To understand the difference in performance of these algorithms, and which to use for

small arrays, which to use for medium arrays, and which to use for large arrays

569

Sorting

C h a p t e r 10

Sorting is the process of rearranging the data in an array or container so that the
data elements are in increasing (or decreasing) order. Because sorting is done
so frequently, computer scientists have devoted much time and effort to devel-

oping efficient algorithms for sorting arrays. Even though many languages (includ-
ing C++) provide sorting utilities, it is still very important to study these algorithms,
because they illustrate several well-known ways to solve the sorting problem, each
with its own merits. You should know how they are written so that you can dupli-
cate them if you need to use them with languages that don’t have sorting utilities.

Another reason for studying these algorithms is that they illustrate some very
creative approaches to problem solving. For example, the insertion sort algorithm
adapts an approach used by card players to arrange a hand of cards; the merge sort
algorithm builds on a technique used to sort external data files. Several algorithms
use divide-and-conquer to break a larger problem into more manageable subprob-
lems. The Shell sort is a very efficient sort that works by sorting many small subar-
rays using insertion sort, which is a relatively inefficient sort when used by itself.
The merge sort and quicksort algorithms are both recursive. The heapsort uses a
heap as its underlying data structure. The final reason for studying sorting is to learn
how computer scientists analyze and compare the performance of several different
algorithms that do the same operation.

We will cover three quadratic (O(n2)) sorting algorithms that are fairly simple
and appropriate for sorting small arrays but are not recommended for large arrays.
We will also discuss three sorting algorithms that give improved performance (O(n
log n)) on large arrays and one that gives performance that is much better than
O(n2), but not as good as O(n log n).

Our goal is to provide a sufficient selection of quadratic sorts and faster sorts.
A few other sorting algorithms are described in the programming projects.

570 Chapter 10 Sorting

S o r t i n g

10.1 Using C++ Sorting Functions
10.2 Selection Sort
10.3 Bubble Sort
10.4 Insertion Sort
10.5 Comparison of Quadratic Sorts
10.6 Shell Sort: A Better Insertion Sort
10.7 Merge Sort
10.8 Heapsort
10.9 Quicksort
10.10 Testing Sort Algorithms
10.11 The Dutch National Flag Problem (Optional Topic)

Case Study: The Problem of the Dutch National Flag

10.1 Using C++ Sorting Functions

The Standard C++ Library (in algorithm.h) provides two sorting functions with the
following prototypes:

template template<typename RI>
void sort(RI first, RI last);

template<typename RI, typename Compare>
void sort(RI first, RI last, Compare comp);

Each function uses a pair of random-access iterators (typename RI). Recall from
Chapter 4 that a random-access iterator is an iterator that can move forward or
backward and in increments greater than 1. The first iterator in the pair references
the first element of the sequence to be sorted, and the second iterator in the pair ref-
erences 1 past the last element in the sequence. The second version of the function
has a type Compare parameter, through which the user can specify a comparison
operator. If a Compare parameter is not specified, the operator < is used to compare
adjacent elements of a sequence. Therefore, the elements of the sequence will be
sorted in increasing order.

Because these functions require random-access iterators, they can be used only with
vectors, deques, and ordinary C pointers (for sorting arrays). The list container
supports only bidirectional iterators, so it provides its own sort member function.

There are also two functions named stable_sort, which are similar to the sort
functions. The primary difference is that elements that are equal may not retain their
relative ordering when sort is used, but they will retain their relative ordering when
stable_sort is used. In other words, if there are two occurrences of an item, the one
that is first in the unsorted array is only guaranteed to be first in the sorted array if
stable_sort is used. The sort function is slightly faster than stable_sort, so it
should be used whenever the relative ordering of equal elements is not of concern.

The actual type of random-access iterator passed to function sort will depend on
whether we are sorting an array, vector, or deque. The compiler attempts to match
the actual types of the arguments to the template parameters. If we use the second
version of function sort, we must also pass an object that implements a comparison
function.

E X A M P L E 1 0 . 1 If array items stores a collection of 16 integers, the statement
sort(items, items + 16);

sorts the array. The statement

sort(items, items + 8);

sorts only the first half of the array, leaving the rest untouched. The function call

sort(items, items + 16, greater<int>());

sorts the array in descending order using function greater<int>, which implements
the comparison operator > for integers (defined in library functional).

E X A M P L E 1 0 . 2 The following statements sort the elements of vector v and deque d.
sort(v.begin(), v.end());
sort(d.begin(), d.end());

The following statement shows how to sort the elements in vector v in descending
order by using the comparison function greater<int>().

sort(v.begin(), v.end(), greater<int>());

E X A M P L E 1 0 . 3 In Section 9.2, we wrote the following Compare_Person function class:
struct Compare_Person {
bool operator()(const Person& p1, const Person& p2) {
return (p1.family_name < p2.family_name)

|| (p1.family_name == p2.family_name)
&& (p1.given_name < p2.given_name);

}

10.1 Using C++ Sorting Functions 571

If people_list is a vector of Person objects, the statement

sort(people_list.begin(), people_list.end(), Compare_Person());

sorts the elements in people_list in ascending order based on their names. The
client program must include header file "People.h", which defines class Person and
struct Compare_Person.

E X E R C I S E S F O R S E C T I O N 1 0 . 1

S E L F - C H E C K

1. Assume ar is an array of int, v is a vector of double, and people is a vector of
Person objects. Describe the effect of executing each of the following function
calls.
a. sort(ar, ar + 10);

b. sort(people.begin(), people.end(), Compare_Person());
c. sort(v.begin(), v.end(), greater<double>());

P R O G R A M M I N G

1. Write a function call to sort the last half of vector people using the ordering
determined by class Compare_Person.

2. Write a function call to sort the first 20 elements of array ar in descending order.
3. Write a function call to sort people using the natural ordering.

10.2 Selection Sort

Selection sort is a relatively easy-to-understand algorithm that sorts an array (or
sequence) by making several passes through the array, selecting the next smallest
item in the array each time and placing it where it belongs in the array. We illustrate
all the sorting algorithms using an array of integer values for simplicity.

We show the algorithm next, where n is the number of elements in an array with
subscripts 0 through n – 1, and fill is the subscript of the element that will store
the next smallest item in the array.

Selection Sort Algorithm
1. for fill = 0 to n – 2 do
2. Set pos_min to the subscript of the smallest item in the subarray starting

at subscript fill.
3. if the next smallest item is not at position fill

Exchange the item at pos_min with the one at fill.

572 Chapter 10 Sorting

Step 2 involves a search for the smallest item in each subarray. It requires a loop in
which we compare each element in the subarray, starting with the one at position
fill + 1, with the smallest value found so far. In the refinement of Step 2 shown in
the following algorithm (Steps 2.1 through 2.4), we use pos_min to store the sub-
script of the smallest value found so far. We assume that its initial position is fill.

Refinement of Selection Sort Algorithm (Step 2)
2.1 Initialize pos_min to fill.
2.2 for next = fill + 1 to n - 1

2.3 if the item at next is less than the item at pos_min
2.4 Reset pos_min to next.

First the selection sort algorithm finds the smallest item in the array (smallest is 20)
and moves it to position 0 by exchanging it with the element currently at position
0. At this point, the sorted part of the array (in color in the diagrams on the right)
consists of the new element at position 0. The values to be exchanged are shaded
dark in the diagrams on the left.

Next the algorithm finds the smallest item in the subarray starting at position 1
(next smallest is 30) and exchanges it with the element currently at position 1:

At this point, the sorted portion of the array consists of the elements at positions
0 and 1. Next the algorithm selects the smallest item in the subarray starting at
position 2 (next smallest is 35) and exchanges it with the element currently at posi-
tion 2:

At this point, the sorted portion of the array consists of the elements at positions 0,
1, and 2. Next the algorithm selects the smallest item in the subarray starting at
position 3 (next smallest is 60). Because 60 is already at position 3, there is no
exchange:

The element at position 4, the last position in the array, must store the largest value
(largest is 65), so the array is sorted.

Analysis of Selection Sort
Steps 2 and 3 are performed n – 1 times. Step 3 performs an exchange of items if
required; consequently, there are at most n – 1 exchanges (O(n)).

20 6530 35 60 20 30 6535 60No exchange needed

20 6530 3560 20 30 6535 60Exchange 35, 65

20 65 30 3560 20 30 65 3560Exchange 30, 65

35 65 30 2060 20 65 30 3560Exchange 20, 35

10.2 Selection Sort 573

Step 2.3 involves a comparison of items and is performed (n – 1 – fill) times for
each value of fill. Because fill takes on all values between 0 and n – 2, the fol-
lowing series computes the number of executions of Step 2.3:

(n – 1) � (n – 2) � · · · � 3 � 2 � 1

This is a well-known series that can be written in closed form as

For very large n we can ignore all but the most significant term in this expression,
so the number of comparisons is O(n2). Because the number of comparisons
increases with the square of n, the selection sort is called a quadratic sort.

If the array happens to be sorted before selection sort begins, no exchanges will be
required. The number of comparisons will still be O(n2), but the number of
exchanges is O(1).

Code for Selection Sort Using Iterators
Listing 10.1 shows the code for two sort functions that follow the algorithm just
described. In writing the code for these functions and all the other functions in this
chapter, we follow the approach taken by the C++ implementors of function
std::sort. However, we give each sort function a distinct name, rather than calling
them all sort. To use these functions, you must include file SelectionSort.h. You
must also prefix the sort function with KW::.

#include "SelectionSort.h"
...

KW::selection_sort(x, x + 100);

Both sort functions in Listing 10.1 can sort arrays, vectors, or deques. The first one
can sort a container that stores elements of any object type for which the operator
< is defined. The second sort function has a template parameter Compare, which rep-
resents a comparison object. The first function uses the condition (*next <

*pos_min) to compare the elements referenced by the two iterators; the second func-
tion uses the condition (comp(next, pos_min)), which calls the comparison opera-
tor to compare these elements.

L I S T I N G 1 0 . 1
SelectionSort.h

#ifndef SELECTIONSORT_H_
#define SELECTIONSORT_H_

#include <algorithm>

namespace KW {

n n n n× = −(–)1
2 2 2

2

574 Chapter 10 Sorting

/** Sort data in the specified sequence using selection sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references the first element

of the sequence to be sorted
@param last An iterator that references one past the

end of the sequence to be sorted
*/
template<typename RI>
void selection_sort(RI first, RI last) {
for (RI fill = first; fill != last - 1; ++fill) {
// Invariant: Elements at positions first through fill - 1 are sorted.
RI pos_min = fill;
for (RI next = fill + 1; next != last; ++next) {
// Invariant: pos_min references the smallest item in
// positions fill through next - 1.
if (*next < *pos_min) {
pos_min = next;

}
}
// Assert: pos_min references the smallest item in positions fill
// through last - 1.
// If the next smallest item is not at fill, exchange *fill and
// *pos_min.
if (fill != pos_min)
std::iter_swap(pos_min, fill);

}
}

/** Sort data in the specified range using selection sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references the beginning

of the sequence to be sorted
@param last An iterator that references 1 past the

end of the sequence to be sorted
@param comp An object that implements a comparison function

*/
template<typename RI, typename Compare>
void selection_sort(RI first, RI last,

Compare comp) {
for (RI fill = first; fill != last - 1; ++fill) {
// Invariant: Elements at positions first through fill - 1 are sorted.
RI pos_min = fill;
for (RI next = fill + 1; next != last; ++next) {
// Invariant: pos_min references the smallest item in
// positions fill through next - 1.
if (comp(*next, *pos_min)) {
pos_min = next;

}
}
// Assert: pos_min references the smallest item in positions fill
// through last - 1.

10.2 Selection Sort 575

// If the next smallest item is not at fill, exchange *fill and
// *pos_min.
if (fill != pos_min)
std::iter_swap(pos_min, fill);

}
}

} // End namespace KW

#endif

Code for an Array Sort
Many textbooks provide functions that sort a specific kind of array, usually type
int[], rather than a container. Although these functions are less general, they are
often a little easier to code. Listing 10.2 shows a selection sort function that sorts
an array of ints. As you might expect, it is very similar to the first selection_sort
function in Listing 10.1.

L I S T I N G 1 0 . 2
SelectionSortArray.h

#ifndef SELECTIONSORTARRAY_H_
#define SELECTIONSORTARRAY_H_

#include <algorithm>

namespace KW {

/** Sort data in an int[] array using selection sort.
@param the_array The array to be sorted
@param size The number of elements in the_array

*/
void selection_sort_array(int the_array[], int size) {
for (int fill = 0; fill != size - 1; ++fill) {
// Invariant: Elements at positions first through fill - 1 are sorted.
int pos_min = fill;
for (int next = fill + 1; next != size; ++next) {
// Invariant: pos_min references the smallest item in
// positions fill through next - 1.
if (the_array[next] < the_array[pos_min]) {
pos_min = next;

}
}
// Assert: pos_min references the smallest item in positions fill
// through last - 1.
// If the next smallest item is not at fill, exchange *fill and
// *pos_min.
if (fill != pos_min)
std::swap(the_array[pos_min], the_array[fill]);

}
}

} // End namespace KW

#endif

576 Chapter 10 Sorting

E X E R C I S E S F O R S E C T I O N 1 0 . 2
S E L F - C H E C K

1. Show the progress of each pass of the selection sort for the following array. How
many passes are needed? How many comparisons are performed? How many
exchanges? Show the array after each pass.
40 35 80 75 60 90 70 75

2. How would you modify the code for selection sort to arrange an array of values
in decreasing sequence? How could you accomplish this without changing the
function shown in Listing 10.1?

3. Modify the selection sort algorithm to exchange the elements at positions fill
and pos_min even when they are equal. How does this affect big-O for exchanges?
Discuss whether the time saved by eliminating unnecessary exchanges would
exceed the cost of testing whether pos_min equals fill.

P R O G R A M M I N G

1. Modify the first selection sort function to incorporate the change in Self-Check
Exercise 3.

2. Add statements to trace the progress of the first selection sort. Display the con-
tainer contents after each exchange.

10.3 Bubble Sort

The next quadratic sorting algorithm, bubble sort, compares adjacent array ele-
ments and exchanges their values if they are out of order. In this way the smaller
values bubble up to the top of the array (toward the first element) while the larger
values sink to the bottom of the array; hence the name.

Bubble Sort Algorithm
1. do

2. for each pair of adjacent array elements
3. if the values in a pair are out of order
4. Exchange the values
5. while the array is not sorted.

As an example, we will trace through one execution of Step 2, or one pass through
an array being sorted. By scanning the diagrams of Figure 10.1 from left to right,
you can see the effect of each comparison. The pair of array elements being com-
pared is shown in a darker color in each diagram. The first pair of values (table[0]
is 60, table[1] is 42) is out of order, so the values are exchanged. The next pair of
values (table[1] is now 60, table[2] is 75) is compared in the second array shown
in Figure 10.1; this pair is in order, and so is the next pair (table[2] is 75, table[3]

10.3 Bubble Sort 577

is 83). The last pair (table[3] is 83, table[4] is 27) is out of order, so the values are
exchanged as shown is the last diagram, and 83 has sunk to the bottom of the array.

The last array shown in Figure 10.1 is closer to being sorted than is the original. The
only value that is out of order is the number 27 in table[3]. Unfortunately, it will
be necessary to complete three more passes through the array before this value bub-
bles up to the top of the array. In each of these passes only one pair of values will
be out of order, so only one exchange will be made. The contents of array table
after the completion of each pass is shown in Figure 10.2; the portion that is sorted
is shown in color.

At the end of pass 1 only the last array element must be in its correct place, at the
end of pass 2 the last two array elements must be in their correct places, and so on.
There is no need to examine array elements that are already in place, so there is one
less pair to test in the next pass. Only one pair will be tested during the last pass.

After the completion of four passes (n – 1 is 4), the array is now sorted. Sometimes
an array will become sorted before n – 1 passes. This situation can be detected if a
pass is made through the array without doing any exchanges. This is the reason for
the bool flag exchanges in the following refined bubble sort algorithm: to keep track
of whether any exchanges were made during the current pass (exchanges is set to
false when the pass begins and is reset to true after an exchange).

Refinement of Bubble Sort Algorithm (Steps 2–4)
2.1 Initialize exchanges to false. // No exchanges yet—array may be sorted
2.2 for each pair of adjacent array elements
3. if the values in a pair are out of order
4.1 Exchange the values.
4.2 Set exchanges to true. // Made an exchange, array not sorted

Analysis of Bubble Sort
Because the actual numbers of comparisons and exchanges performed depend on
the array being sorted, the bubble sort algorithm provides excellent performance in

578 Chapter 10 Sorting

F I G U R E 1 0 . 1
One Pass of Bubble
Sort

F I G U R E 1 0 . 2
Array After Completion
of Each Pass

60

42

75

83

27

42

60

75

83

27

[0]

[1]

[2]

[3]

[4]

42

60

75

83

27

42

60

75

83

27

42

60

75

27

83

42

60

75

27

83

42

60

27

75

83

[0]

[1]

[2]

[3]

[4]

42

27

60

75

83

27

42

60

75

83

some cases and very poor performance in other cases. It works best when an array
is nearly sorted to begin with.

Because all adjacent pairs of elements in the unsorted region are compared in each
pass and there may be n – 1 passes, the number of comparisons is represented by
the series

(n – 1) � (n – 2) � · · · � 3 � 2 � 1

However, if the array becomes sorted early, the later phases and comparisons are not
performed. In the worst case the number of comparisons is O(n2). Unfortunately,
each comparison can lead to an exchange if the array is badly out of order. The
worst case occurs when the array is inverted (that is, the array elements are in
descending order), and the number of exchanges is O(n2).

The best case occurs when the array is already sorted. Only one pass will be
required, in which there are n – 1 comparisons (O(n) comparisons). If the array is
sorted, there will be no exchanges, so the number of exchanges is 0 (O(1)
exchanges).

In estimating the worst-case performance of a sorting algorithm on a large array
whose initial element values are determined arbitrarily, the definition of big-O
requires us to be pessimistic. For this reason, bubble sort is considered a quadratic
sort, and its performance is usually worse than selection sort (O(n)) because the
number of exchanges can be O(n2).

Code for Bubble Sort
Listing 10.3 shows the code for the bubble sort function in file BubbleSort.h. Notice
that the outer do . . . while loop terminates when the condition (exchanges) is false.
This indicates the array is sorted, because no exchanges occurred during the pass
just completed. If the array does not become sorted until all n – 1 passes are com-
pleted, then an extra pass will be required. However, the inner loop will be exited
immediately, because last - pass will be equal to first. The variable pass is the
number of the current pass, starting at 1 for the first pass.

The inner loop control variable, first_of_pair, is the subscript of the first element
of each pair. The initial value of first_of_pair is first. The final value must be 1
less than the last subscript in the unsorted region. If the last element in the array is
referenced by last - 1, the final value of first_of_pair is last – pass. Coding the
bubble sort function with a comparison function object as a parameter is left as an
exercise.

L I S T I N G 1 0 . 3
BubbleSort.h

#ifndef BUBBLESORT_H_
#define BUBBLESORT_H_

#include <algorithm>

namespace KW {

10.3 Bubble Sort 579

/** Sort data in the specified sequence using bubble sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
*/
template<typename RI>
void bubble_sort(RI first, RI last) {
int pass = 1;
bool exchanges;
do {
// Invariant: Elements after position last - pass
// are in place.
exchanges = false; // No exchanges yet.
// Compare each pair of adjacent elements.
for (RI first_of_pair = first;

first_of_pair != last - pass; ++first_of_pair) {
RI second_of_pair = first_of_pair + 1;
if (*second_of_pair < *first_of_pair) {
// Exchange pair.
std::iter_swap(first_of_pair, second_of_pair);
exchanges = true; // Set flag.

}
}
pass++;

} while (exchanges);
// Assert: Array is sorted.

}

} // End namespace KW

#endif

E X E R C I S E S F O R S E C T I O N 1 0 . 3
S E L F - C H E C K

1. How many passes of bubble sort are needed to sort the following array of inte-
gers? How many comparisons are performed? How many exchanges? Show the
array after each pass.
40 35 80 75 60 90 70 75

2. How would you modify the bubble sort function to arrange an array of values in
decreasing sequence?

P R O G R A M M I N G

1. Add statements to trace the progress of bubble sort. Display the container con-
tents after each pass is completed.

2. Code bubble sort with a Compare function template parameter.
3. Implement a bubble sort function that sorts an array of type int[] using sub-

scripts instead of iterators.

580 Chapter 10 Sorting

10.4 Insertion Sort

Our next quadratic sorting algorithm, insertion sort, is based on the technique used
by card players to arrange a hand of cards. The player keeps the cards that have
been picked up so far in sorted order. When the player picks up a new card, the
player makes room for the new card and then inserts it in its proper place.

The left diagram of Figure 10.3 shows a hand of cards (ignoring suits) after three
cards have been picked up. If the next card is an 8, it should be inserted between the
6 and 10, maintaining the numerical order (middle diagram). If the next card is a 7,
it should be inserted between the 6 and 8 as shown on the right in Figure 10.3.

To adapt this insertion algorithm to an array that has been filled with data, we start
with a sorted subarray consisting of the first element only. For example, in the left-
most array of Figure 10.4, the initial sorted subarray consists of only the first value,
30. The array element(s) that are in order after each pass are in color, and the ele-
ments waiting to be inserted are in gray. We first insert the second element (25).
Because it is smaller than the element in the sorted subarray, we insert it before the
old first element (30), and the sorted subarray has two elements (25, 30 in second
diagram). Next, we insert the third element (15). It is also smaller than all the ele-
ments in the sorted subarray, so we insert it before the old first element (25), and
the sorted subarray has three elements (15, 25, 30 in third diagram). Next, we insert
the fourth element (20). It is smaller than the second and third elements in the sorted
subarray so we insert it before the old second element (25), and the sorted subarray
has four elements (15, 20, 25, 30 in the fourth diagram). Finally we insert the last
element (28). It is smaller than the last element in the sorted subarray, so we insert
it before the old last element (30) and the array is sorted. The algorithm follows.

F I G U R E 1 0 . 3
Picking Up a Hand
of Cards

10.4 Insertion Sort 581

F I G U R E 1 0 . 4
An Insertion Sort

30

25

15

20

28

25

30

15

20

28

15

25

30

20

28

End of
pass 1

End of
pass 2

End of
pass 3

End of
pass 4

15

20

25

30

28

15

20

25

28

30

Insertion Sort Algorithm
1. for each array element from the second element to the last element
2. Insert the selected element where it belongs in the array, increasing the

length of the sorted subarray by 1 element.

To accomplish Step 2, the insertion step, we need to make room for the element to
be inserted (saved in next_val) by shifting all values that are larger than it, starting
with the last value in the sorted subarray.

Refinement of Insertion Sort Algorithm (Step 2)
2.1 next_pos is a pointer to the element to insert.
2.2 Save the value of the element to insert in next_val.
2.3 while next_pos > first and the element at next_pos – 1 > next_val
2.4 Shift the element at next_pos – 1 to position next_pos.
2.5 Decrement next_pos by 1.
2.6 Insert next_val at next_pos.

We illustrate these steps in Figure 10.5. For the array shown on the left, the first
three elements are in the sorted subarray, and the next element to insert is 20, ref-
erenced by next_pos. First we save 20 in next_val. Then we shift the value just
above it (30) down one position (see the second array in Figure 10.5), and then we
shift the value just above the last one moved (25) down one position (see third array
in Figure 10.5). After these shifts (third array), there will temporarily be two copies
of the last value shifted (25). The first of these (shown in white background in
Figure 10.5) is overwritten when the value in next_val is moved into its correct posi-
tion. The four-element sorted subarray is shown in color on the right of Figure 10.5.

Analysis of Insertion Sort
The insertion step is performed n – 1 times. In the worst case, all elements in the
sorted subarray are compared to next_val for each insertion, so the maximum num-
ber of comparisons is represented by the series

1 � 2 � 3 � · · · � (n – 2) � (n – 1)

which is O(n2). In the best case (when the array is already sorted), only one com-
parison is required for each insertion, so the number of comparisons is O(n). The
number of shifts performed during an insertion is one less than the number of com-
parisons or, when the new value is the smallest so far, the same as the number of

582 Chapter 10 Sorting

15

25

30

20

28

20

next_val 20

15

25

30

30

28

Shift 30
down

Shift 25
down

Insert next_val
in place of
last value moved

next_pos

15

25

25

30

28

15

20

25

30

28

next_pos

next_valF I G U R E 1 0 . 5
Inserting the Fourth
Array Element

comparisons. However, a shift in an insertion sort requires the movement of only
one item, whereas in a bubble sort or a selection sort an exchange involves a tem-
porary item and requires the movement of three items. A C++ array of objects con-
tains the actual objects, and it is these actual objects that are changed.

Code for Insertion Sort
Listing 10.4 shows header file InsertionSort.h. We use function KW::insert to per-
form the insertion step shown earlier. It would be more efficient to insert this code
inside the for statement; however, using a function will make it easier later to imple-
ment the Shell sort algorithm.

Function insert is supposed to shift all elements in the range first through
next_pos - 1 that are greater than the next element to be inserted (next_val). We
can’t declare variable next_val without knowing the data type of the array elements,
so we use the following while loop, which actually exchanges each element to be
shifted with its successor (using function std::iter_swap).

while (next_pos != first && *next_pos < *(next_pos - 1)) {
std::iter_swap(next_pos, next_pos - 1); // Exchange.
--next_pos; // Check next smaller element.

}

Loop exit will occur if the first element has been shifted (next_pos equals first), or
if the next element to shift (*(next_pos – 1)) is less than or equal to the element
just shifted (*next_pos). Notice that you can’t transpose the order of the two tests
in the while condition, because *(next_pos - 1) would reference a storage location
outside the array when next_pos equals first. Although this does more work than
necessary (swapping a pair of elements instead of shifting an element), it does imple-
ment the insertion sort algorithm and the performance is still O(n2).

L I S T I N G 1 0 . 4
InsertionSort.h

#ifndef INSERTIONSORT_H_
#define INSERTIONSORT_H_

#include <algorithm>

namespace KW {

/** Sort data in the specified range using insertion sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator iterator that references

1 past the end of the sequence
*/
template<typename RI>
void insertion_sort(RI first, RI last) {
for (RI next_pos = first + 1; next_pos != last; ++next_pos) {
// Invariant: elements at position first through
// next_pos - 1 are sorted.

10.4 Insertion Sort 583

584 Chapter 10 Sorting

// Insert element at position next_pos in the sorted subarray.
insert(first, next_pos);

}
}

/** Insert the element at position next_pos in the sorted subarray
using swap.
pre: elements at position 0 through next_pos – 1 are sorted.
post: elements at position 0 through next_pos are sorted.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param next_pos An iterator that references

the element to insert
*/
template<typename RI>
void insert(RI first, RI next_pos) {
while (next_pos != first && *next_pos < *(next_pos - 1)) {
std::iter_swap(next_pos, next_pos - 1); // Exchange pair of values
--next_pos; // Check next smaller element

}
}

} // End namespace KW

#endif

Using iterator_traits to Determine the Data Type
of an Element
The following version of function insert follows the algorithm more closely. The
statement

typename std::iterator_traits<RI>::value_type next_val = *next_pos;

declares variable next_val and stores the element referenced by next_pos in it. The
template class iterator_traits is defined in the header <iterator>, and value_type
represents the data type of the element referenced by the iterator next_pos.

template<typename RI>
void insert(RI first, RI next_pos) {
typename std::iterator_traits<RI>::value_type next_val

= *next_pos; // next_val is element to insert.
while (next_pos != first

&& next_val < *(next_pos - 1)) {
*next_pos = *(next_pos - 1);
--next_pos; // Check next smaller element.

}
*next_pos = next_val; // Store next_val where it belongs.

}

10.4 Insertion Sort 585

D E S I G N C O N C E P T

Iterator Traits
You may wonder how the iterator_traits determines the type of the object that the
iterator references. Basically, the iterator provides this information. In Chapter 4 we
described the list container and showed how to implement its iterator. To keep the
explanation simple, we omitted several details, one of which we will now explain.

Each container class is required to provide certain typedefs, including one named
value_type. Thus, our list class should have had the following declaration:
template<typename Item_Type>
class list {
public:
typedef Item_Type value_type;
...

Likewise, the iterator class (defined within the list class) should have the declaration:
class iterator {
typedef typename list<Item_Type>::value_type value_type;

The iterator_traits class is then defined as follows:
template<typename Iterator>
struct iterator_traits {
typedef typename Iterator::value_type value_type;
...

};

When the compiler sees the function call:
sort(v.begin(), v.end())

it determines that the type of the expressions v.begin() and v.end() is
vector<int>::iterator and thus the template parameter Iterator is bound to this
type. Therefore the expression
typename iterator_traits<Iterator>::value_type

becomes
typename iterator_traits<vector<int>::iterator>::value_type

Since ordinary pointers can be used as iterators, we need to add an additional special-
ization for iterator_traits.
template<typename T>
struct iterator_traits<T*> {
typedef T value_type;
...

};

Now in the function call
sort(a, a + 20)

where a is an array of int, the parameter type is int*, and the template parameter
Iterator is bound to this type. Thus the expression
typename iterator_traits<Iterator>::value_type

E X E R C I S E S F O R S E C T I O N 1 0 . 4

S E L F - C H E C K

1. Sort the following array using insertion sort. How many passes are needed? How
many comparisons are performed? How many exchanges? Show the array after
each pass.
40 35 80 75 60 90 70 75

P R O G R A M M I N G

1. Eliminate function insert in Listing 10.4 and write its code inside the for
statement.

2. Add statements to trace the progress of insertion sort. Display the container con-
tents after the insertion of each value.

3. Write the insertion sort with a Compare template parameter.
4. Implement an insertion sort function that sorts an array of type int[] using sub-

scripts instead of iterators.

10.5 Comparison of Quadratic Sorts

Table 10.1 summarizes the performance of the three quadratic sorts for large values
of n. Although these algorithms are O(n2) on average, the best-case performance for
bubble sort and insertion sort is only O(n). To give you some idea as to what these
numbers mean, Table 10.2 shows some values of n and n2. If n is not too large (say,
100 or less), it really doesn’t matter which sorting algorithm you use. Of the three,
insertion sort gives the best performance for most arrays, because it takes advantage
of any partial sorting that is in the array and uses less costly shifts instead of
exchanges to rearrange array elements. In the next section, we discuss a variation
on insertion sort, known as Shell sort, that has O(n3/2) or better performance.

The best-case performance occurs when an array is already sorted. In this case, there
are no exchanges performed in bubble sort and only n comparisons because only

586 Chapter 10 Sorting

becomes
typename iterator_traits<int*>::value_type

The compiler then associates T with int, so that the declaration
typedef T value_type;

becomes
typedef int value_type;

one pass through the array is required. However, unless the array is nearly sorted,
bubble sort’s performance usually exhibits its worst-case behavior, O(n2). For this
reason, bubble sort generally performs much worse than the others.

Since the time to sort an array of n elements is proportional to n2, none of these
algorithms is particularly good for large arrays (that is, n > 100). The best sorting
algorithms provide n log n average-case behavior and are considerably faster for
large arrays. In fact, one of the algorithms that we will discuss has n log n worst-
case behavior. You can get a feel for the difference in behavior by comparing the last
column of Table 10.2 with the middle column.

Recall from Chapter 2 that big-O analysis ignores any constants that might be
involved or any overhead that might occur from function calls needed to perform
an exchange or comparison. However, the tables give you an estimate of the relative
performance of the different sorting algorithms.

We haven’t talked about storage usage for these algorithms. All the quadratic sorts
require storage for the array being sorted. However, there is only one copy of this
array, so the array is sorted in place. There are also requirements for variables that
store iterators to particular elements, loop control variables, and temporary vari-
ables. However, for large n, the size of the array dominates these other storage
considerations.

TA B L E 1 0 . 1
Comparison of Quadratic Sorts

10.5 Comparison of Quadratic Sorts 587

Number of Comparisons Number of Exchanges

Best Worst Best Worst

Selection sort O(n2) O(n2) O(n) O(n)

Bubble sort O(n) O(n2) O(1) O(n2)

Insertion sort O(n) O(n2) O(n) O(n2)

n n 2 n log n

8 64 24

16 256 64

32 1,024 160

64 4,096 384

128 16,384 896

256 65,536 2,048

512 262,144 4,608

TA B L E 1 0 . 2
Comparison of Rates of Growth

Comparisons versus Exchanges
We have analyzed comparisons and exchanges separately, but you may be wonder-
ing whether one is more costly (in terms of computer time) than the other. In C++,
an exchange requires your computer to swap two objects using a third object as an
intermediary. A comparison requires your computer to evaluate the < operator, or
call a comparison function. The cost of executing a comparison function depends
on its complexity, but it will probably be more than that of an exchange because of
the overhead to call and execute the function. An exchange requires physically mov-
ing the information in each object. The cost of an exchange is proportional to the
size of the objects being exchanged and, therefore, may be more costly than a com-
parison for large objects.

E X E R C I S E S F O R S E C T I O N 1 0 . 5

S E L F - C H E C K

1. Complete Table 10.2 for n = 1024 and n = 2048.
2. What do the new rows of Table 10.2 tell us about the increase in time required

to process an array of 1024 elements versus an array of 2048 elements for O(n),
O(n2), and O(n log n) algorithms?

10.6 Shell Sort: A Better Insertion Sort

Next we describe the Shell sort, which is a type of insertion sort, but with O(n3/2)
or better performance. Unlike the other algorithms, Shell sort is named after its dis-
coverer, Donald Shell (D. L. Shell, “A High-Speed Sorting Procedure,” Communi-
cations of the ACM, Vol. 2, No. 7 [1959], pp. 30–32). You can think of the Shell
sort as a divide-and-conquer approach to insertion sort. Instead of sorting the entire
array at the start, the idea behind Shell sort is to sort many smaller subarrays using
insertion sort before sorting the entire array. The initial subarrays will contain two
or three elements, so the insertion sorts will go very quickly. After each collection of
subarrays is sorted, a new collection of subarrays with approximately twice as many
elements as before will be sorted. The last step is to perform an insertion sort on the
entire array, which has been presorted by the earlier sorts.

As an example, let’s sort the following array using initial subarrays with only two
and three elements. We determine the elements in each subarray by setting a gap
value between the subscripts in each subarray. We will explain how we pick the gap
values later. We will use an initial gap of 7.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 6075 90 70 75 55 90 85 34 45 62 57 65

588 Chapter 10 Sorting

A gap of 7 means the first subarray has subscripts 0, 7, 14 (element values 40, 75,
57, shown in light color); the second subarray has subscripts 1, 8, 15 (element val-
ues 35, 55, 65, shown in dark color); the third subarray has subscripts 2, 9 (element
values 80, 90, shown in gray); and so on. There are seven subarrays. We start the
process by inserting the value at position 7 (value of gap) into its subarray (elements
at 0 and 7). Next, we insert the element at position 8 into its subarray (elements at
1 and 8). We continue until we have inserted the last element (at position 15) in its
subarray (elements at 1, 8, and 15). The result of performing insertion sort on all
seven subarrays with two or three elements follows.

Next we use a gap of 3. There are only three subarrays, and the longest one has six
elements. The first subarray has subscripts 0, 3, 6, 9, 12, 15; the second subarray
has subscripts 1, 4, 7, 10, 13; the third subarray has subscripts 2, 5, 8, 11, 14.

We start the process by inserting the element at position 3 (value of gap) into its sub-
array. Next, we insert the element at position 4, and so on. The result of all inser-
tions is as follows.

Finally, we use a gap of 1, which performs an insertion sort on the entire array.
Because of the presorting, it will require 1 comparison to insert 34, 1 comparison to
insert 45 and 60, 3 comparisons to insert 35, 2 comparisons to insert 55, 1 com-
parison to insert 62, 2 comparisons to insert 57, 2 comparisons to insert 60, and
only 1 comparison to insert each of the remaining values.

The algorithm for Shell sort follows. Steps 2 through 4 correspond to the insertion
sort algorithm shown earlier. Because the elements with subscripts 0 through gap -
1 are the first elements in their subarrays, we begin Step 4 by inserting the element
at position gap instead of at position 1 as we did for the insertion sort. Step 1 sets
the initial gap between subscripts to n/2, where n is the number of array elements.
To get the next gap value, Step 6 divides the current gap value by 2.2 (chosen by
experimentation). We want the gap to be 1 during the last insertion sort so that the
entire array will be sorted. Step 5 ensures this by resetting gap to 1 if it is 2.

Shell Sort Algorithm
1. Set the initial value of gap to n/2.
2. while gap > 0

3. for each array element from position gap to the last element
4. Insert this element where it belongs in its subarray.
5. if gap is 2, set it to 1.
6. else gap = gap/2.2.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 34 45 3560 55 62 57 60 65 70 75 75 85 80 90

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 3475 45 62 57 55 90 85 60 90 70 75 65

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 3475 45 62 57 55 90 85 60 90 70 75 65

10.6 Shell Sort: A Better Insertion Sort 589

Refinement of Step 4, the Insertion Step
4.1 next_pos is an iterator to the element to insert.
4.2 Save the value of the element to insert in next_val.
4.3 while next_pos > first + gap and the element at next_pos – gap >

next_val

4.4 Shift the element at next_pos – gap to position next_pos.
4.5 Decrement next_pos by gap.
4.6 Insert next_val at next_pos.

Analysis of Shell Sort
You may wonder why Shell sort is an improvement over regular insertion sort,
because it ends with an insertion sort of the entire array. Each later sort (including
the last one) will be performed on an array whose elements have been presorted by
the earlier sorts. Because the behavior of insertion sort is closer to O(n) than to
O(n2) when an array is nearly sorted, the presorting will make the later sorts, which
involve larger subarrays, go more quickly. As a result of presorting, only 19 com-
parisons were required to perform an insertion sort on the last 15-element array
shown in the previous section. This is critical, because it is precisely for larger arrays
where O(n2) behavior would have the most negative impact. For the same reason,
the improvement of Shell sort over insertion sort is much more significant for large
arrays.

A general analysis of Shell sort is an open research problem in computer science.
The performance depends on how the decreasing sequence of values for gap is cho-
sen. It is known that Shell sort is O(n2) if successive powers of 2 are used for gap
(that is, 32, 16, 8, 4, 2, 1). If successive values for gap are of the form 2k – 1 (that
is, 31, 15, 7, 3, 1), however, it can be proven that the performance is O(n3/2). This
sequence is known as Hibbard’s sequence. There are other sequences that give sim-
ilar or better performance.

We have presented an algorithm that selects the initial value of gap as n/2 and then
divides by 2.2 and truncates to the next lowest integer. Empirical studies of this
approach show that the performance is O(n5/4) or maybe even O(n7/6), but there is
no theoretical basis for this result (M. A. Weiss, Data Structures and Problem
Solving Using Java [Addison Wesley, 1998], p. 230).

Code for Shell Sort
Listing 10.5 shows the code for Shell sort. Function insert has a third parameter,
gap. The expression after &&,

while ((next_pos > first + gap - 1) // First element not shifted.
&& (next_val < *(next_pos - gap))) {

compares elements that are separated by the value of gap instead of by 1. The
expression before && is false if next_pos is an iterator to the first element in a sub-
array. The statements in the while loop shift the element at next_pos down by gap
(one position in the subarray) and reset next_pos to refer to the element just moved.

590 Chapter 10 Sorting

L I S T I N G 1 0 . 5
ShellSort.h

#ifndef SHELLSORT_H_
#define SHELLSORT_H_

namespace KW {

/** Sort data in the specified range using Shell sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
*/
template<typename RI>
void shell_sort(RI first, RI last) {
// Set initial gap between adjacent elements.
int gap = (last - first) / 2;
while (gap > 0) {
for (RI next_pos = first + gap;

next_pos != last; ++next_pos) {
// Insert element at next_pos in its subarray.
KW::insert(first, next_pos, gap);

} // End for.

// Reset gap for next pass.
if (gap == 2) {
gap = 1;

} else {
gap = int(gap / 2.2);

}
}

}

/** Insert the element at position next_pos in the sorted subarray.
pre: elements at position 0 through next_pos – 1 are sorted.
post: elements at position 0 through next_pos are sorted.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param next_pos An iterator that references

the element to insert
@param gap The gap between elements in the sequence to be sorted

*/
template<typename RI>
void insert(RI first, RI next_pos,

int gap) {
typename std::iterator_traits<RI>::value_type next_val = *next_pos;
// Shift all values > next_val in subarray down by gap.
while ((next_pos > first + gap - 1) // First element not shifted.

&& (next_val < *(next_pos - gap))) {
*next_pos = *(next_pos - gap); // Shift down.
next_pos -= gap; // Check next position in subarray.

10.6 Shell Sort: A Better Insertion Sort 591

}
*next_pos = next_val;

}

} // End namespace KW

#endif

E X E R C I S E S F O R S E C T I O N 1 0 . 6

S E L F - C H E C K

1. Trace the execution of Shell sort on the following array. Show the array after all
sorts when the gap is 3 and after the final sort when the gap is 1. List the num-
ber of comparisons and exchanges required when the gap is 3 and when the gap
is 1. Compare this with the number of comparisons and exchanges that would be
required for a regular insertion sort.
40 35 80 75 60 90 70 65

2. For the example of Shell sort shown in this section, determine how many com-
parisons and exchanges are required to insert all the elements for each gap value.
Compare this with the number of comparisons and exchanges that would be
required for a regular insertion sort.

P R O G R A M M I N G

1. Eliminate function insert in Listing 10.5 and write its code inside the for
statement.

2. Add statements to trace the progress of Shell sort. Display each value of gap and
display the container contents after all subarrays for that gap value have been
sorted.

3. Implement a Shell sort function that sorts an array of type int[] using subscripts
instead of iterators.

10.7 Merge Sort

The next algorithm that we will consider is called merge sort. A merge is a common
data processing operation that is performed on two sequences of data (or data files)
with the following characteristics:

• The objects in both sequences are ordered by the same comparison operator
(that is, both sequences are sorted).

The result of the merge operation is to create a third sequence that contains all of
the objects from the first two sorted sequences. For example, if the first sequence is
3, 5, 8, 15 and the second sequence is 4, 9, 12, 20, the final sequence will be 3, 4,
5, 8, 9, 12, 15, 20. The algorithm for merging the two sequences is as follows:

592 Chapter 10 Sorting

Merge Algorithm
1. Access the first item from both sequences.
2. while not finished with either sequence
3. Compare the current items from the two sequences, copy the smaller

current item to the output sequence, and access the next item from the
input sequence whose item was copied.

4. Copy any remaining items from the first sequence to the output sequence.
5. Copy any remaining items from the second sequence to the output sequence.

The while loop (Step 2) merges items from both input sequences to the output
sequence. The current item from each sequence is the one that has been most recently
accessed but not yet copied to the output sequence. Step 3 compares the two current
items and copies the smaller one to the output sequence. If input sequence A’s cur-
rent item is the smaller one, the next item is accessed from sequence A and becomes
its current item. If input sequence B’s current item is the smaller one, the next item is
accessed from sequence B and becomes its current item. After the end of either
sequence is reached, Step 4 or Step 5 copies the items from the other sequence to the
output sequence. Note that either Step 4 or Step 5 is executed, but not both.

As an example, consider the sequences shown in Figure 10.6. Steps 2 and 3 will first
copy the items from sequence A with the values 244 and 311 to the output sequence;
then items from sequence B with values 324 and 415 will be copied; and then the
item from sequence A with value 478 will be copied. At this point, we have copied
all items in sequence A, so we exit the while loop and copy the remaining items from
sequence B (499, 505) to the output (Steps 4 and 5).

Analysis of Merge
For two input sequences that contain a total of n elements, we need to move each
element from its input sequence to its output sequence, so the time required for a
merge is O(n). How about the space requirements? We need to be able to store both
initial sequences and the output sequence. So the array cannot be merged in place,
and the additional space usage is O(n).

Code for Merge
Listing 10.6 shows the code for the merge algorithm. Iterators left and right select
the next element to be inserted in the output sequence from the left and right input

10.7 Merge Sort 593

244 311 478 324 415 499 505

244 311 324

Sequence A Sequence B

Output Sequence

415 478 499 505

F I G U R E 1 0 . 6
Merge Operation

sequences, respectively. Algorithm Steps 4 and 5 are implemented as while loops at
the end of the function.

L I S T I N G 1 0 . 6
Merge Function

/** Merge data in two sorted input sequences
into a sorted output sequence.
pre: Both input sequences are sorted.
post: The output sequence is sorted and contains all elements

in both input sequences.
@param RI An iterator that meets the

random-access iterator requirements
@param left An iterator that references

the first element in the left sequence
@param end_left An iterator that references

1 past the end of the left sequence
@param right An iterator that references

the first element in the right sequence
@param end_right An iterator that references

1 past the end of the right sequence
@param out An iterator that references

the first element in the output sequence
*/
template<typename RI>
void merge(RI left, RI end_left,

RI right, RI end_right,
RI out) {

// While there is data in both input sequences
while (left != end_left && right != end_right) {
// Find the smaller and
// insert it into the output sequence.
if (*left < *right) {
*out++ = *left++;

} else {
*out++ = *right++;

}
}

// Assert: one of the sequences has more items to copy.
// Copy remaining input from left sequence into the output.
while (left != end_left) {
*out++ = *left++;

}

// Copy remaining input from right sequence into output.
while (right != end_right) {
*out++ = *right++;

}
}

594 Chapter 10 Sorting

Algorithm for Merge Sort
We can modify merging to serve as an approach to sorting a single, unsorted table
as follows:

1. Split the table into two halves.
2. Sort the left half.
3. Sort the right half.
4. Merge the two.

What sort algorithm should we use to do Steps 2 and 3? We can use the merge sort
algorithm we are developing! The base case will be a table of size 1, which is already
sorted, so there is nothing to do for the base case. We write the algorithm next,
showing its recursive step.

Algorithm for Merge Sort
1. if the table has more than one element
2. Store the first half of the table in left_table.
3. Store the second half of the table in right_table.
4. Recursively apply the merge sort algorithm to left_table.
5. Recursively apply the merge sort algorithm to right_table.
6. Call the merge function with left_table and right_table as the input

sequences and the original table as the output sequence.

Trace of Merge Sort Algorithm
Each recursive call to function merge_sort with a table that has more than one ele-
ment splits the array argument into a left array and a right array, where each new
array is approximately half the size of the array argument. We then sort each of these
arrays, beginning with the left half, by recursively calling function merge_sort with
the left array and right array as arguments. After returning from the sort of the left
array and right array at each level, we merge these two halves together back into the

10.7 Merge Sort 595

P R O G R A M S T Y L E

By using the postincrement operator on the iterators, you can copy the current item from
one input sequence, append it to the end of the output sequence, and then increment the
iterators to that input sequence and the output sequence in one statement. The statement:

*out++ = *left++;

is equivalent to the following three statements, executed in the order shown:
*out = *left;
++out;
++left;

Both the single statement and the group of three statements maintain the invariant that
the iterator left references the next item to insert from the left input sequence.

space occupied by the array that was split. Figure 10.7 illustrates this process. The
left subarray in each recursive call (in gray) will be sorted before the processing of its
corresponding right subarray (in color) begins. Lines 4 and 6 merge two one-element
arrays to form a sorted two-element array. At line 7, the two sorted two-element
arrays (50, 60 and 30, 45) are merged into a sorted four-element array. Next the right
subarray in color on line 1 would be sorted in the same way. When done, the sorted
subarray (15, 20, 80, 90) will be merged with the sorted subarray on line 7.

F I G U R E 1 0 . 7
Trace of Merge Sort

596 Chapter 10 Sorting

1. Split array into two 4-element arrays

2. Split left array into two 2-element arrays

3. Split left array (50, 60) into two 1-element arrays

4. Merge two 1-element arrays into a 2-element array

5. Split right array from Step 2 into two 1-element
arrays

6. Merge two 1-element arrays into a 2-element array

7. Merge two 2-element arrays into a 4-element array

1. Split the 8-element array

2. Split the 4-element arrays

3. Split the 2-element arrays

4. Merge the 1-element arrays into 2-element arrays

5. Merge the 2-element arrays into 4-element arrays

6. Merge the 4-element arrays into an 8-element array

Analysis of Merge Sort
In Figure 10.7, the size of the arrays being sorted decreases from 8 to 4 (line 1) to 2
(line 2) to 1 (line 3). After each pair of subarrays is sorted, the pair will be merged
to form a larger sorted array. Rather than showing a time sequence of the splitting
and merging operations, we summarize them as follows.

50 60 45 30 90 20 80 15

50 60 3045

50 60

50 60

3045

30 45

30 45 6050

50 60 45 30 90 20 80 15

50 60 45 30 90 20 80 15

50 60 45 30 90 20 80 15

50 60 30 45 20 90 15 80

30 45 50 60 15 20 80 90

15 20 30 45 50 60 80 90

Lines 1 through 3 show the splitting operations, and lines 4 through 6 show the
merge operations. Line 4 shows the two-element arrays formed by merging one-
element arrays, line 5 shows the four-element arrays formed by merging 2-element
arrays, and line 6 shows the sorted array. Because each of these lines involves a
movement of n elements from smaller-size arrays to larger arrays, the effort to do
each merge is O(n). The number of lines that require merging (three in this case) is
log n because each recursive step splits the array in half. So the total effort to recon-
struct the sorted array through merging is O(n log n).

Recall from our discussion of recursion that whenever a recursive function is called,
a copy of the local variables is saved on the run-time stack. Thus, as we go down
the recursion chain, sorting the left_tables, a sequence of right_tables of size n/2,
n/4, . . . , n/2k is allocated. Since n/2 � n/4 � · · · � 2 + 1 = n – 1, a total of n addi-
tional storage locations are required.

Code for Merge Sort
Listing 10.7 shows file MergeSort.h with code for the merge sort algorithm. The
statement

typedef typename
std::iterator_traits<RI>::value_type value_type;

uses class iterator_traits to define value_type as the data type of the elements
being sorted. The statement

RI middle = first + (last - first) / 2;

positions iterator middle at the middle element in the sequence being sorted. The
vectors left_table and right_table store the elements in the left and right
sequences, respectively. After these vectors are sorted, their contents are merged into
the original array, starting at the position selected by the current value of iterator
first.

L I S T I N G 1 0 . 7
MergeSort.h

#ifndef MERGESORT_H_
#define MERGESORT_H_

namespace KW {

/** Sort data in the specified range using merge sort.
@param RI An iterator that meets the

random-access iterator requirements
@param first A random access iterator that references

the first element in the sequence to be sorted
@param last A random-access iterator that references

1 past the end of the sequence
*/

10.7 Merge Sort 597

template<typename RI>
void merge_sort(RI first, RI last) {
if (last - first > 1) {
// Split table into two new half tables.
typedef typename
std::iterator_traits<RI>::value_type value_type;

RI middle = first + (last - first) / 2;
std::vector<value_type> left_table(first, middle);
std::vector<value_type> right_table(middle, last);

// Sort the halves.
KW::merge_sort(left_table.begin(), left_table.end());
KW::merge_sort(right_table.begin(), right_table.end());

// Merge the halves back into the original table.
merge(left_table.begin(), left_table.end(),

right_table.begin(), right_table.end(),
first);

}
}
// See Listing 10.6 for merge function
...
} // End namespace KW

#endif

E X E R C I S E S F O R S E C T I O N 1 0 . 7

S E L F - C H E C K

1. Trace the execution of the merge sort on the following array, providing a figure
similar to Figure 10.7.
55 50 10 40 80 90 60 100 70 80 20

2. For the array in Question 1, show the vectors left_table and right_table for
each recursive call to function merge_sort in Listing 10.7 and show the array ele-
ments after returning from each call to merge. How many times is merge_sort
called, and how many times is merge called?

P R O G R A M M I N G

1. Add statements that trace the progress of the merge function by displaying the
container after each merge operation. Also display the vectors left_table and
right_table.

2. Implement a merge sort function that sorts an array of type int[] using subscripts
instead of iterators.

598 Chapter 10 Sorting

10.8 Heapsort

The merge sort algorithm has the virtue that its time is O(n log n), but it still
requires, at least temporarily, n extra storage locations. This next algorithm can be
implemented without requiring any additional storage. It uses a heap to store the
array and so is called heapsort.

Heapsort Algorithm
We introduced the heap in Section 8.5. As stated there, a max heap is a data struc-
ture that maintains the largest value at the top. Figure 10.8 shows an example of
such a heap.

Once we have a heap, we can remove one item at a time from the heap. The item
removed is always the top element, and we will place it at the bottom of the heap.
When we reheap, the larger of a node’s two children is always moved up the heap,
so the new heap will have the next largest item as its root. Figure 10.9 shows the
heap after we have removed one item, and Figure 10.10 shows the heap after we
have removed two items. In both figures, the items in color have been removed from
the heap. As we continue to remove items from the heap, the heap size shrinks as
the number of the removed items increases. Figure 10.11 shows the heap after we
have emptied it.

If we implement the heap using an array, each element removed will be placed at the
end of the array, but in front of the elements that were removed earlier. After we
remove the last element, the array will be sorted. We illustrate this next.

10.8 Heapsort 599

37 32

20 26 18 28

39 66

29 6

76 74

89

26 32

20 6 18 28

39 29

76 89

37 66

74

26 32

20 6 18 28

39 66

29 89

37 74

76

26 28

37 39 66 74

29 32

76 89

18 20

6

F I G U R E 1 0 . 8
Example of a Heap with Largest Value in Root

F I G U R E 1 0 . 9
Heap After Removal of Largest Item

F I G U R E 1 0 . 1 0
Heap After Removal of Two Largest Items

F I G U R E 1 0 . 1 1
Heap After Removal of All Its Items

F I G U R E 1 0 . 1 2
Internal Representation of the Heap Shown in Figure 10.8

600 Chapter 10 Sorting

89 76 74 3237 39 66 20 26 18 28 29 6

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

F I G U R E 1 0 . 1 3
Internal Representation of the Heaps Shown in Figures 10.9 through 10.11

Figure 10.12 shows the array representation of the original heap. As before, the
root, 89, is at position 0. The root’s two children, 76 and 74, are at positions 1 and
2. For a node at position p, the left child is at 2p � 1 and the right child is at 2p �

2. A node at position c can find its parent at (c – 1) / 2.

Figure 10.13 shows the array representation of the heaps in Figures 10.9 through
10.11. The items in color have been removed from the heap and are sorted. Each
time an item is removed, the heap part of the array decreases by one element and
the sorted part of the array increases by one element. In the array at the bottom of
Figure 10.13, all items have been removed from the heap and the array is sorted.

From our foregoing observations, we can sort the array that represents a heap in the
following way.

Algorithm for In-Place Heapsort
1. Build a heap by rearranging the elements in an unsorted array.
2. while the heap is not empty
3. Remove the first item from the heap by swapping it with the last item

in the heap and restoring the heap property.

Each time through the loop (Steps 2 and 3), the largest item remaining in the heap
is placed at the end of the heap, just before the previously removed items. Thus,
when the loop terminates, the items in the array are sorted. In Section 8.5 we dis-
cussed how to remove an item from a heap and restore the heap property. We also
implemented a pop function for a heap in a vector.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

76 37 74 3226 39 66 20 6 18 28 29 89

74 37 66 3226 39 29 20 6 18 28 76 89

6 18 20 2826 29 32 37 39 66 74 76 89

.

.

.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Algorithm to Build a Heap
Step 1 of the algorithm builds a heap. If we want to sort the sequence table
bounded by the iterators first through last, we can consider the first item to be a
heap of one item. We now consider the general case where the items in the sequence
from table[first] through table[first + n - 1] form a heap; the items from
table[first + n] through table[last – 1] are not in the heap. As each item is
inserted, we must “reheap” to restore the heap property.

Refinement of Step 1 for In-Place Heapsort
1.1. while n is less than the number of items in the sequence
1.2. Increment n by 1. This inserts a new item into the heap.
1.3. Restore the heap property.

Analysis of Heapsort Algorithm
From our knowledge of binary trees, we know that a heap of size n has log n lev-
els. Building a heap requires finding the correct location for an item in a heap with
log n levels. Because we have n items to insert and each insert (or remove) is O(log
n), building a heap is O(n log n). Similarly, we have n items to remove from the
heap, so that is also O(n log n). Because we are storing the heap in the original
sequence, no extra storage is required.

Code for Heapsort
Listing 10.8 shows file HeapSort.h. The heap_sort function merely calls the
build_heap function which codes Step 1 of the in-place heapsort algorithm. Next, it
calls the shrink_heap function, which codes Steps 2 and 3 of the algorithm. Function
shrink_heap is based on the pop function shown earlier in Section 8.5. Both func-
tions use function std::iter_swap to swap the items in the sequence.

You have to be careful with pointer arithmetic in functions build_heap and
shrink_heap. In build_heap, the statements

RI child = first + n - 1;
RI parent = first + (child – first - 1) / 2; // Find parent.

set child to reference the next element to be inserted. The subscript of the parent
would normally be obtained by subtracting one from the child subscript and divid-
ing by 2. The second statement above accomplishes this. Similarly, in shrink_heap,
you need to calculate the left child subscript by adding 1 to 2 times the parent sub-
script. This is accomplished by the statement

RI left_child = first + 2 * (parent - first) + 1;

10.8 Heapsort 601

L I S T I N G 1 0 . 8
HeapSort.h

#ifndef HEAPSORT_H_
#define HEAPSORT_H_

#include <algorithm>

namespace KW {

/** Sort data in the specified range using heapsort.
@param RI An iterator that meets the

random-access iterator requirements
@param first A random access iterator that references

the first element in the sequence to be sorted
@param last A random-access iterator that references

1 past the end of the sequence
*/
template<typename RI>
void heap_sort(RI first, RI last) {
build_heap(first, last);
shrink_heap(first, last);

}

/** build_heap transforms the sequence into a heap.
@param RI An iterator that meets the

random-access iterator requirements
@param first A random-access iterator that references

the first element in the sequence to be sorted
@param last A random-access iterator that references

1 past the end of the sequence
*/
template<typename RI>
void build_heap(RI first, RI last) {
int n = 1;

602 Chapter 10 Sorting

P I T F A L L

Invalid Pointer Arithmetic
In the statement
RI parent = first + (child – first - 1) / 2; // Find parent.

the expression part is algebraically equivalent to (first + child – 1)/2. However,
using this expression would cause a syntax error indicating invalid pointer addition.
You can't add pointers, because pointers represent addresses and the result of adding
two addresses is not logically meaningful. However, you can subtract two pointers, or
you can add or subtract a constant (an offset) to a pointer. An analogy would be com-
paring times. If you arrived at place A at 4 PM and at place B at 6 PM, you could sub-
tract the two times to determine that it took you 2 hours to go from place A to place B.
But adding the two times would not be meaningful.

// Invariant: table[first] through table[first + n - 1] is a heap.
while (n < (last - first)) {
++n; // Add a new item to the heap and reheap.
RI child = first + n - 1;
RI parent = first + (child – first - 1) / 2; // Find parent.
while (parent >= first

&& *parent < *child) {
std::iter_swap(parent, child); // Exchange elements.
child = parent;
parent = first + (child - first - 1) / 2;

}
}

}

/** shrink_heap transforms a heap into a sorted sequence.
@param RI An iterator that meets the

random-access iterator requirements
@param first A random-access iterator that references

the first element in the sequence to be sorted
@param last A random-access iterator that references

1 past the end of the sequence
*/
template<typename RI>
void shrink_heap(RI first, RI last) {
RI n = last;
/* Invariant: table[first] through table[first + n - 1] forms a heap.

table[first + n] through table[last - 1] is sorted.
*/
while (n != first) {
--n;
std::iter_swap(first, n);
RI parent = first;
while (true) {
RI left_child = first + 2 * (parent - first) + 1;
if (left_child >= n) {
break; // No more children.

}
RI right_child = left_child + 1;
// Find the larger of the two children.
RI max_child = left_child;
if (right_child < n // There is a right child.

&& *left_child < *right_child) {
max_child = right_child;

}
// If the parent is smaller than the larger child,
if (*parent < *max_child) {
// Swap the parent and child.
std::iter_swap(parent, max_child);
// Continue at the child level.
parent = max_child;

} else { // Heap property is restored.
break; // Exit the loop.

}
}

}
}

} // End namespace KW

#endif

10.8 Heapsort 603

E X E R C I S E S F O R S E C T I O N 1 0 . 8

S E L F - C H E C K

1. Build the heap from the numbers in the following list. How many exchanges were
required? How many comparisons?
55 50 10 40 80 90 60 100 70 80 20

2. Shrink the heap from Question 1 to create the array in sorted order. How many
exchanges were required? How many comparisons?

3. Implement a heap sort function that sorts an array of type int[] only.

10.9 Quicksort

The next algorithm we will study is called quicksort. Developed by C. A. R. Hoare
in 1962, it works in the following way: Given an array (or sequence) to sort, quick-
sort rearranges this array into two parts so that all the elements in the left subarray
are less than or equal to a specified value (called the pivot) and all the elements in
the right subarray are greater than the pivot. The pivot is placed between the two
parts. Thus all of the elements on the left of the pivot value are smaller than all ele-
ments on the right of the pivot value, so the pivot value is in its correct position. By
repeating this process on the two halves, the whole array becomes sorted.

As an example of this process, let’s sort the following array.

We will assume that the first array element (44) is arbitrarily selected as the pivot
value. A possible result of rearranging, or partitioning, the element values follows.

After the partitioning process, the pivot value, 44, is at its correct position. All val-
ues less than 44 are in the left subarray, and all values larger than 44 are in the right
subarray, as desired. The next step would be to apply quicksort recursively to the
two subarrays on either side of the pivot value, beginning with the left subarray (12,
33, 23, 43). Here is the result when 12 is the pivot value:

The pivot value is in the first position. Because the left subarray does not exist, the
right subarray (33, 23, 43) is sorted next, resulting in the following situation.

12 23 33 43

12 33 23 43

12 33 23 4443 55 64 77 75

44 75 23 5543 12 64 77 33

604 Chapter 10 Sorting

The pivot value 33 is in its correct place, and the left subarray (23) and right sub-
array (43) have single elements, so they are sorted. At this point, we are finished
sorting the left part of the original subarray, and quicksort is applied to the right
subarray (55, 64, 77, 75). In the following array, all the elements that have been
placed in their proper position are in the darker color.

If we use 55 for the pivot, its left subarray will be empty after the partitioning
process, and the right subarray 64, 77, 75 will be sorted next. If 64 is the pivot, the
situation will be as follows, and we sort the right subarray (77, 75) next.

If 77 is the pivot and we move it where it belongs, we end up with the following
array. Because the left subarray (75) has a single element, it is sorted, and we are
done.

Algorithm for Quicksort
The algorithm for quicksort follows. We will describe how to do the partitioning
later. We assume that the sequence is bounded by the iterators first and last and
that pivot is a pointer to the pivot value after partitioning. There are two recursive
calls, which execute if the sequence has more than one element. In the first call, the
new sequence to be sorted is in the iterator range first through pivot; in the sec-
ond call, the new sequence to be sorted is in the iterator range pivot + 1 through
last. Note that the element pointed to by pivot is ignored, since it is in its proper
position. If either new sequence contains just one element (or zero elements), an
immediate return will occur.

Algorithm for Quicksort
1. if the sequence has more than one element
2. Partition the elements in the sequence in the iterator range first

through last so that the pivot value is in its correct place and is
pointed to by pivot.

3. Recursively apply quicksort to the sequence in the iterator range first
through pivot.

4. Recursively apply quicksort to the sequence in the iterator range pivot
+ 1 through last.

Analysis of Quicksort
If the pivot value is a random value selected from the current sequence, then statis-
tically it is expected that half of the items in the sequence will be less than the pivot
value and half will be greater than the pivot value. After partitioning, if the left and

75 77

55 64 77 75

12 23 33 43 44 55 64 77 75

10.9 Quicksort 605

right sequences have the same number of elements (the best case), there will be log
n levels of recursion. At each level, the partitioning process involves moving every
element into its correct partition, so quicksort is O(n log n), just like merge sort.

But what if the split is not 50-50? Let us consider the case where each split is 90-10.
Instead of a 100-element array being split into two 50-element arrays, there will be
one array with 90 elements and one with just 10. The 90-element array may be split
50-50, or it may also be split 90-10. In the latter case, there would be one array with
81 elements and one with just 9 elements. Generally, for random input, the splits
will not be exactly 50-50, but neither will they all be 90-10. An exact analysis is dif-
ficult and beyond the scope of this book, but the running time will be bound by a
constant � n log n.

There is one situation, however, where quicksort gives very poor behavior. If, each
time we partition the array, we end up with a subarray that is empty, the other sub-
array will have one less element than the one just split (only the pivot value will be
removed). Therefore, we will have n levels of recursive calls (instead of log n), and
the algorithm will be O(n2). Because of the overhead of recursive function calls (ver-
sus iteration), quicksort will take longer and require more extra storage on the run-
time stack than any of the earlier quadratic algorithms for this particular case. We
will discuss a way to handle this situation later.

Code for Quicksort
Listing 10.9 shows file QuickSort.h with function quick_sort. We discuss the
partition function next.

L I S T I N G 1 0 . 9
QuickSort.h

#ifndef QUICKSORT_H_
#define QUICKSORT_H_

#include <algorithm>

namespace KW {

/** Sort data in the specified range using quicksort.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
*/
template<typename RI>
void quick_sort(RI first, RI last) {
if (last - first > 1) { // There is data to be sorted.
// Partition the table.
RI pivot = partition(first, last);

// Sort the left half.
KW::quick_sort(first, pivot);

606 Chapter 10 Sorting

// Sort the right half.
KW::quick_sort(pivot + 1, last);

}
}
// Insert partition function. See Listing 10.10
...

} // End namespace KW

#endif

Algorithm for Partitioning
The partition function selects the pivot and performs the partitioning operation.
When we are selecting the pivot, it does not really matter which element is the pivot
value (if the arrays are randomly ordered to begin with). For simplicity we chose the
element at position first. We then begin searching for the first value at the left end
of the subarray that is greater than the pivot value. When we find it, we search for
the first value at the right end of the subarray that is less than or equal to the pivot
value. These two values are exchanged, and we repeat the search and exchange
operations. This is illustrated in Figure 10.14, where iterator up points to the first
value greater than the pivot and iterator down points to the first value less than or
equal to the pivot value. The elements less than the pivot are in light color and the
elements greater than the pivot are in gray.

The value 75 is the first value at the left end of the array that is larger than 44, and 33
is the first value at the right end that is less than or equal to 44, so these two values are
exchanged. The iterators up and down are advanced again, as shown in Figure 10.15.

The value 55 is the next value at the left end that is larger than 44, and 12 is the
next value at the right end that is less than or equal to 44, so these two values are
exchanged, and up and down are advanced again, as shown in Figure 10.16.

F I G U R E 1 0 . 1 4
Locating First Values
to Exchange

F I G U R E 1 0 . 1 5
Array After the First
Exchange

F I G U R E 1 0 . 1 6
Array After the Second
Exchange

10.9 Quicksort 607

44 44 75

pivot_value

23

up

43 55 12 64 77 33

down

first last

44 44 33

pivot_value

23

up

43 55 12 64 77 75

downup down

first last

44 44 33

pivot_value

23 43 12 55 64 77 75

down up

first last

F I G U R E 1 0 . 1 7
Array After Pivot Value
Is Inserted

After the second exchange, the first five array elements contain the pivot value and
all values less than or equal to the pivot; the last four elements contain all values
larger than the pivot. The value 55 is selected once again by up as the next element
larger than the pivot; 12 is selected by down as the next element less than or equal to
the pivot. Since up has now “passed” down, these values are not exchanged. Instead,
the pivot value (subscript first) and the value at position down are exchanged. This
puts the pivot value in its proper position (the new subscript is down) as shown in
Figure 10.17.

The partition process is now complete, and the value of down is returned to the iter-
ator pivot. Function quick_sort will be called recursively to sort the left sequence
and the right sequence. The algorithm for partition follows.

Algorithm for partition Function
1. Define the pivot value as the contents of table[first].
2. Initialize up to first + 1 and down to last - 1.
3. do

4. Increment up until up selects the first element greater than the pivot
value or up has reached last - 1.

5. Decrement down until down selects the first element less than or equal
to the pivot value or down has reached first.

6. if up < down then
7. Exchange table[up] and table[down].
8. while up is to the left of down
9. Exchange table[first] and table[down].

10. Return the value of down to pivot.

Code for partition
The code for partition is shown in Listing 10.10. The while statement:

while ((up != last - 1) && !(*first < *up)) {
++up;

}

advances the iterator up until it is equal to last - 1 or until it references an item
that is greater than the pivot value (pointed to by first). Note that the condition
!(*first < *up) is equivalent to (*first >= *up); however, we can’t use >= as the
comparison operator. Similarly, the while statement:

while (*first < *down) {
--down;

}

608 Chapter 10 Sorting

44 12 33

pivot_value

23 43 44 55 64 77 75

down
pivot

first last

decrements the iterator down until it references an item in table that is less than or
equal to the pivot value. The do . . . while condition

(up < down)

ensures that the partitioning process will continue while up is to the left of down.

What happens if there is a value in the array that is the same as the pivot value? The
index down will stop at such a value. If up has stopped prior to reaching that value,
*up and *down will be exchanged, and the value equal to the pivot will be in the left
partition. If up has passed this value, and therefore passed down, *first will be
exchanged with *down (same value as *first), and the value equal to the pivot will
still be in the left partition.

What happens if the pivot value is the smallest value in the array? Since the pivot
value is at *first, the loop will terminate with down equal to first. In this case, the
left partition is empty. Figure 10.18 shows an array for which this is the case.

By similar reasoning we can show that up will stop at last – 1 if there is no element
in the array larger than the pivot. In this case, down will also stay at last - 1, and
the pivot value (*first) will be swapped with the last value in the array, so the right
partition will be empty. Figure 10.19 shows an array for which this is the case.

F I G U R E 1 0 . 1 8
Values of up, down, and
pivot If the Pivot Value
Is the Smallest Value

F I G U R E 1 0 . 1 9
Values of up, down, and
pivot If the Pivot Value
Is the Largest Value

10.9 Quicksort 609

30 30 43

pivot_value

55 66 37 35 33

down
pivot

up

first last

85 85 60

pivot_value

40 75 81 80 50

up
down

first last

85 50 60

pivot_value

40 75 81 80 85

up
down
pivot

first last

After swap

L I S T I N G 1 0 . 1 0
Quicksort partition Function (First Version)

/** Partition the table so that values in the iterator range
first through pivot are less than or equal to the pivot value,
and values in the iterator range pivot + 1 through last
are greater than the pivot value.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
@return The position of the pivot value (originally at first)

*/
template<typename RI>
RI partition(RI first, RI last) {
// Start up and down at either end of the sequence.
// The first table element is the pivot value.
RI up = first + 1;
RI down = last - 1;
do {
/* Invariant:

All items in table[first] through table[up - 1] <= table[first]
All items in table[down + 1] through table[last - 1] > table[first]

*/
while ((up != last - 1) && !(*first < *up)) {
++up;

}
// Assert: up equals last-1 or table[up] > table[first].
while (*first < *down) {
--down;

}
// Assert: down equals first or table[down] <= table[first].
if (up < down) { // if up is to the left of down,
// Exchange table[up] and table[down].
std::iter_swap(up, down);

}
} while (up < down); // Repeat while up is left of down.

// Exchange table[first] and table[down] thus putting the
// pivot value where it belongs.
// Return position of pivot.
std::iter_swap(first, down);
return down;

}

A Revised Partition Algorithm
We stated earlier that quicksort is O(n2) when each split yields one empty subarray.
Unfortunately, that would be the case if the array was sorted. So the worst possible
performance occurs for a sorted array, which is not very desirable.

A better solution is to pick the pivot value in a way that is less likely to lead to a
bad split. One approach is to examine the first, middle, and last elements in the

610 Chapter 10 Sorting

array and select the median of these three values as the pivot. We can do this by sort-
ing the three-element subarray (in color in Figure 10.20). After sorting, the smallest
of the three values is pointed to by first, the median is pointed to by middle, and
the largest of the three is pointed to by last - 1.

At this point, we can exchange the first element with the middle element (the
median) and use the partition algorithm shown earlier, which uses the first element
(now the median) as the pivot value. When we exit the partitioning loop, *first and
*down are exchanged, moving the pivot value where it belongs (back to the middle
position). This revised partition algorithm follows.

Algorithm for Revised partition Function
1. Sort table[first], table[middle], and table[last – 1].
2. Move the median value to the first position (the pivot value) by exchanging

table[first] and table[middle].
3. Initialize up to first + 1 and down to last - 1.
4. do

5. Increment up until up selects the first element greater than the pivot
value or up has reached last - 1.

6. Decrement down until down selects the first element less than or equal
to the pivot value or down has reached first.

7. if up < down then
8. Exchange table[up] and table[down]
9. while up is to the left of down.

10. Exchange table[first] and table[down].
11. Return the value of down to pivot.

You may be wondering whether you can avoid the double shift (Steps 2 and 10) and
just leave the pivot value at table[middle], where it belongs. The answer is “Yes”,
but you would also need to modify the partition algorithm further if you did this.
Programming Project 6 addresses this issue and the construction of an industrial-
strength quicksort function.

10.9 Quicksort 611

237544 43 55 12 64 77 33

middle last

237533 43 44 12 64 77 55

middle

first

first last

After sorting, median is in middle

F I G U R E 1 0 . 2 0
Sorting First, Middle,
and Last Elements in
Array

Code for Revised partition Function
Listing 10.11 shows the revised version of function partition with function bub-
ble_sort3, which applies the bubble sort algorithm to the three selected items in
table so that

table[first] <= table[middle] <= table[last - 1]

Function partition begins with a call to function bubble_sort3 and then calls swap
to make the median the pivot. The rest of the function is unchanged.

L I S T I N G 1 0 . 1 1
Revised partition Function and bubble_sort3

/** Partition the table so that values in the iterator range
first through pivot are less than or equal to the pivot value,
and values in the iterator range pivot + 1 through last
are greater than the pivot value. The pivot value is the
median of the first, middle, and last elements.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
@return The position of the pivot value (originally at first)

*/
template<typename RI>
RI partition(RI first, RI last) {
/* Put the median of table[first], table[middle], table[last - 1]

into table[first], and use this value as the pivot.
*/
bubble_sort3(first, last);
// Swap first element with middle element.
std::iter_swap(first, first + (last - first) / 2);

// Continue with rest of partition function in Listing 10.10.
// Start up and down at either end of the sequence.
// The first table element is the pivot value.
RI up = first + 1;
RI down = last - 1;
do {
/* Invariant:

All items in table[first] through table[up - 1] <= table[first]
All items in table[down + 1] through table[last - 1] > table[first]

*/
while ((up != last - 1) && !(*first < *up)) {
++up;

}
// Assert: up equals last - 1 or table[up] > table[first].
while (*first < *down) {
--down;

}

612 Chapter 10 Sorting

// Assert: down equals first or table[down] <= table[first].
if (up < down) { // if up is to the left of down,
// Exchange table[up] and table[down].
std::iter_swap(up, down);

}
} while (up < down); // Repeat while up is left of down.

// Exchange table[first] and table[down] thus putting the
// pivot value where it belongs.
// Return position of pivot.
std::iter_swap(first, down);
return down;

}

/** Sort first, middle, and last elements of sequence.
@param RI An iterator that meets the

random-access iterator requirements
@param first An iterator that references

the first element in the sequence to be sorted
@param last An iterator that references

1 past the end of the sequence
*/
template<typename RI>
void bubble_sort3(RI first, RI last) {
RI middle = first + (last - first) / 2;
/* Perform bubble sort on table[first], table[middle],

table[last - 1].
*/
if (*middle < *first) {
std::iter_swap(first, middle);

}
// Assert: table[first] <= table[middle].
if (*(last - 1) < *middle) {
std::iter_swap(middle, last - 1);

}
// Assert: table[last] is the largest value of the three.
if (*middle < *first) {
std::iter_swap(first, middle);

}
// Assert: table[first] <= table[middle] <= table[last - 1].

}

10.9 Quicksort 613

P I T F A L L

Falling Off Either End of the Array
A common problem when incrementing up or down during the partition process is
falling off either end of the array. We used the condition
((up != last - 1) && !(*first < *up))

to keep up from falling off the right end of the array. Self-Check Exercise 3 asks why we
don’t need to write similar code to avoid falling off the left end of the array.

E X E R C I S E S F O R S E C T I O N 1 0 . 9

S E L F - C H E C K

1. Trace the execution of quicksort on the following array, assuming that the first
item in each subarray is the pivot value. Show the elements referenced by first
and last - 1 for each recursive call and the elements in the iterator range first
through last after returning from each call. Also, show the pivot value during
each call and the value returned to pivot. How many times is quick_sort called,
and how many times is partition called?
55 50 10 40 80 90 60 100 70 80 20

2. Redo Question 1 using the revised partition algorithm, which does a prelimi-
nary sort of three elements and selects their median as the pivot value.

3. Explain why the condition (*first < *down) in the loop that decrements down
does not need to be written as ((*first < *down) && (down != first)). That is,
why is the expression after && unnecessary?

P R O G R A M M I N G

1. Insert statements to trace the quicksort algorithm. After each call to partition,
display the elements selected by first, pivot, and last - 1 and the sequence in
the iterator range first through last.

2. Implement a quicksort function that sorts an array of type int[] using subscripts
instead of iterators.

10.10 Testing the Sort Algorithms

To test the sorting algorithms, we need to exercise them with a variety of test cases.
We want to make sure that they work, and we also want to get some idea of their
relative performance when sorting the same container (array, vector, or deque). We
should test the functions with small containers, large containers, containers whose
elements are in random order, containers that are already sorted, and containers
with duplicate copies of the same value.

Listing 10.12 shows a driver program that tests the standard sort function and the
KW::quick_sort function on the same vector of random integer values. Function
next_int of class Random (see Listing 6.8) generates random integer values.

Function clock (in library file ctime) returns a value that approximates the amount
of time that a program has been running. We call it before and after a sort function
and display the difference. This gives us a measure of the sorting time and allows us
to compare its performance to that of the standard sort.

614 Chapter 10 Sorting

Function verify verifies that the vector elements are sorted by checking that each
element in the vector is not less than its predecessor. Function dump_table (not
shown) should display the first 10 elements and last 10 elements of the vector (or
the entire contents if the vector has 20 or fewer elements).

Because we used distinct names for the sorting functions in this chapter, you can
compare one to the other. Just replace the call to std::sort with the second sorting
function.

L I S T I N G 1 0 . 1 2
Driver to Test Sort Algorithms

/** Driver function to test sorts. */

#include <iostream>
#include <iterator>
#include <vector>
#include "Random.h"
#include "QuickSort.h"
#include <ctime>

using namespace std;

template<typename RI>
bool verify(RI first, RI last);

template<typename RI>
void dump_table(RI first, RI last);

int main() {
vector<int> a_vec;
int num_items;
Random rand;

// Fill vector a_vec with random numbers.
cout << "Enter vector size: ";
cin >> num_items;
for (int i = 0; i < num_items; i++) {
a_vec.push_back(rand.next_int(2 * num_items));

}
vector<int> copy_vec = a_vec; // A copy of a_vec.

// Sort and verify using standard sorting algorithm.
long int start = clock();
std::sort(a_vec.begin(), a_vec.end());
cout << "time for standard sort: " << (clock() - start) << endl;
if (verify(a_vec.begin(), a_vec.end()))
cout << "standard sort successful\n";

else
cout << "standard sort failed\n";

dump_table(a_vec.begin(), a_vec.end());

10.10 Testing the Sort Algorithms 615

// Sort and verify using KW sorting function.
start = clock();
KW::quick_sort(copy_vec.begin(), copy_vec.end());
cout << "time for KW sort: " << (clock() - start) << endl;
if (verify(copy_vec.begin(), copy_vec.end()))
cout << "KW sort successful\n";

else
cout << "KW sort failed\n";

dump_table(copy_vec.begin(), copy_vec.end());

return 0;
}

template<typename RI>
bool verify(RI first, RI last) {
while (first != last - 2) {
if (*(first + 1) < *first)
return false;

++first;
}
return true;

}

template<typename RI>
void dump_table(RI first, RI last) {
// Exercise

}

E X E R C I S E S F O R S E C T I O N 1 0 . 1 0
S E L F - C H E C K

1. Explain why function verify will always determine whether an array is sorted.
Does verify work if an array contains duplicate values?

P R O G R A M M I N G

1. Write function dump_table.
2. Modify the driver function to fill the vector with a collection of integers read

from a file.

10.11 The Dutch National Flag Problem (Optional Topic)

A variety of partitioning algorithms for quicksort have been published. Most are
variations on the one presented in this text. There is another popular variation that
uses a single left-to-right scan of the array (instead of scanning left and scanning
right as we did). The following case study illustrates a partitioning algorithm that
combines both scanning techniques to partition an array into three segments. The
famous computer scientist Edsger W. Dijkstra described this problem in his book A
Discipline of Programming (Prentice-Hall, 1976).

616 Chapter 10 Sorting

10.11 The Dutch National Flag Problem 617

CASE STUDY The Problem of the Dutch National Flag

Problem The Dutch national flag consists of three stripes that are colored (from top to bot-
tom) red, white, and blue as shown in Figure 10.21. Because we only have two col-
ors in this book, we use gray for red. Unfortunately, when the flag arrived, it looked
like Figure 10.22; threads of each of the colors were all scrambled together!
Fortunately, we have a machine that can unscramble it, but it needs software.

Analysis Our unscrambling machine has the following abilities:

• It can look at one thread in the flag and determine its color.
• It can swap the position of two threads in the flag.

Our machine can also execute while loops and if statements.

F I G U R E 1 0 . 2 1
The Dutch National Flag

F I G U R E 1 0 . 2 2
Scrambled Dutch National Flag

Design Loop Invariant
When we partitioned the array in quicksort, we split the array into three regions.
Values between first and up were less than or equal to the pivot; values between
down and last were greater than the pivot, and values between up and down were
unknown. We started with the unknown region containing the whole array (first
== up, and down == last). The partitioning algorithm preserves this invariant while
shrinking the unknown region. The loop terminates when the unknown region
becomes empty (up > down).

Values < pivot Values > pivotUnknown

first up down last

618 Chapter 10 Sorting

Because our goal is to have three regions when we are done, let us define four
regions: the red region, the white region, the blue region, and the unknown region.
Now initially the whole flag is unknown. When we get done, however, we would
like the red region on top, the white region in the middle, and the blue region on the
bottom. The unknown region must be empty.

Let us assume that the threads are stored in an array threads and that the total num-
ber of threads is HEIGHT. Let us define red to be the upper bound of the red region,
white to be the lower bound of the white region, and blue to be the lower bound of
the blue region. Then, if our flag is complete, we can say the following:

• If 0 ≤ i < red, then threads[i] is red.
• If white < i ≤ blue, then threads[i] is white.
• If blue < i < HEIGHT, then threads[i] is blue.

What about the case where red ≤ i ≤ white? When the flag is all sorted, red should
equal white, so this region should not exist. However, when we start, everything is
in this region, so a thread in that region can have any color.

Thus we can define the following loop invariant:

• If 0 ≤ i < red, then threads[i] is red.
• If red ≤ i ≤ white, then the color is unknown.
• If white < i ≤ blue, then threads[i] is white.
• If blue < i < HEIGHT, then threads[i] is blue.

This is illustrated in Figure 10.23. The red region is at the top.

F I G U R E 1 0 . 2 3
Dutch National Flag
Loop Invariant

[0]

[red]

[white]

[blue]

[HEIGHT]

Algorithm We can solve our problem by establishing the loop invariant and then executing a
loop that both preserves the loop invariant and shrinks the unknown region.

1. Set red to 0, white to HEIGHT – 1, and blue to HEIGHT - 1. This establishes
our loop invariant, with the unknown region the whole flag and the red,
white, and blue regions empty.

2. while red < white

3. Shrink the distance between red and white while preserving the loop
invariant.

10.11 The Dutch National Flag Problem 619

Preserving the Loop Invariant
Let us assume that we now know the color of threads[white] (the thread at posi-
tion white). Our goal is to either leave threads[white] where it is (in the white
region if it is white) or “move it” to the region where it belongs. There are three
cases to consider:

Case 1: The color of threads[white] is white. In this case we merely decrement the
value of white to restore the invariant. By doing so, we increase the size of the white
region by one thread.

Case 2: The color of threads[white] is red. We know from our invariant that the
color of threads[red] is unknown. Therefore, if we swap the thread at
threads[red] with the one at threads[white], we can then increment the value of
red and preserve the invariant. By doing this, we add the thread to the end of the
red region and reduce the size of the unknown region by one thread.

Case 3: The color of threads[white] is blue. We know from our invariant that the
color of threads[blue] is white. Thus, if we swap the thread at threads[white] with
the thread at threads[blue] and then decrement both white and blue, we preserve
the invariant. By doing this, we insert the thread at the beginning of the blue region
and reduce the size of the unknown region by one thread.

Implementation A graphical implementation of this program is beyond the scope of this text. We
show the coding of the sort algorithm in Listing 10.13.

L I S T I N G 1 0 . 1 3
Dutch National Flag Sort

void sort() {
int red = 0;
int white = height - 1;
int blue = height - 1;
/* Invariant:

0 <= i < red ==>threads[i].get_color() == RED
red <= i <= white ==>threads[i].get_color() is unknown
white < i < blue ==>threads[i].get_color() == WHITE
blue < i < height ==>threads[i].get_color() == BLUE

*/
while (red <= white) {
if (threads[white].get_color() == WHITE) {
white--;

} else if (threads[white].get_color() == RED) {
swap(red, white);
red++;

} else { // threads[white].get_color() == BLUE
swap(white, blue);
white--;
blue--;

}
}
// Assert: red == white so unknown region is now empty.

}

E X E R C I S E S F O R S E C T I O N 1 0 . 1 1
P R O G R A M M I N G

1. Adapt the Dutch National Flag algorithm to do the quicksort partitioning.
Consider the red region to be those values less than the pivot, the white region to
be those values equal to the pivot, and the blue region to be those values greater
than the pivot. You should initially sort the first, middle, and last items and use
the middle value as the pivot value.

C h a p t e r R e v i e w

◆ We analyzed several sorting algorithms; their performance is summarized in Table
10.3.

◆ The three quadratic algorithms, O(n2), are selection sort, bubble sort, and inser-
tion sort. They give satisfactory performance for small arrays (up to 100 ele-
ments). Generally, insertion sort is considered to be the best of the quadratic sorts.
Bubble sort is a good choice when the array is likely to be nearly sorted, but it
should be avoided otherwise.

◆ Shell sort, O(n5/4), gives satisfactory performance for arrays up to 5000 elements.

◆ Quicksort has average-case performance of O(n log n), but if the pivot is picked
poorly, the worst-case performance is O(n2).

◆ Merge sort and heapsort have O(n log n) performance.

◆ The standard library header <algorithm> defines a sort and stable_sort algo-
rithm. The sort algorithm is similar to the second version of quicksort that we
presented, except that when the partition length becomes less than a threshold,
insertion sort is used. The stable_sort algorithm is a merge sort.

TA B L E 1 0 . 3
Comparison of Sort Algorithms

620 Chapter 10 Sorting

Number of Comparisons

Best Average Worst

Selection sort O(n2) O(n2) O(n2)

Bubble sort O(n) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)

Shell sort O(n7/6) O(n5/4) O(n2)

Merge sort O(n log n) O(n log n) O(n log n)

Heapsort O(n log n) O(n log n) O(n log n)

Quicksort O(n log n) O(n log n) O(n2)

Quick-Check Exercises
1. Name three quadratic sorts.
2. Name two sorts with n log n worst-case behavior.
3. Which algorithm is particularly good for an array that is already sorted? Which is

particularly bad? Explain your answers.
4. What determines whether you should use a quadratic sort or a logarithmic sort?
5. Which quadratic sort’s performance is least affected by the ordering of the array ele-

ments? Which is most affected?
6. What is a good all-purpose sorting algorithm for medium-sized arrays?

Answers to Quick-Check Exercises
1. Selection sort, insertion sort, bubble sort
2. Merge sort, heapsort
3. Bubble sort is good––it requires n – 1 comparisons with no exchanges. Quicksort can be

bad if the first element is picked as the pivot value, because the partitioning process
always creates one subarray with a single element.

4. Array size
5. Selection sort is least affected; bubble sort is most affected.
6. Shell sort or any O(n log n) sort

Review Questions
1. When does quicksort work best, and when does it work worst?
2. Write a recursive procedure to implement the insertion sort algorithm.
3. What is the purpose of the pivot value in quicksort? How did we first select it in the

text, and what is wrong with that approach for choosing a pivot value?
4. For the following array

30 40 20 15 60 80 75 4 20
show the new array after each pass of insertion sort, bubble sort, and selection sort.
How many comparisons and exchanges are performed by each?

5. For the array in Question 4, trace the execution of Shell sort.
6. For the array in Question 4, trace the execution of merge sort.
7. For the array in Question 4, trace the execution of quicksort.
8. For the array in Question 4, trace the execution of heapsort.
9. The shaker sort is an adaptation of the bubble sort that alternates the direction in which

the array elements are scanned during each pass. The first pass starts its scan with the
first element, moving the larger element in each pair down the array. The second pass
starts its scan with the next-to-last element, moving the smaller element in each pair up
the array, and so on. Indicate what the advantage of the shaker sort might be.

Programming Projects
1. Use the random number generator in class Random to store a list of 1000 pseudorandom

integer values in an array. Apply each of the sort functions described in this chapter to
the array and determine the number of comparisons and exchanges. Make sure the same
array is passed to each sort function.

Chapter 10 Review 621

2. Investigate the effect of array size and initial element order on the number of compar-
isons and exchanges required by each of the sorting algorithms described in this chapter.
Use arrays with 100 and 10,000 integers. Use three initial orderings of each array (ran-
domly ordered, inversely ordered, and ordered). Be certain to sort the same six arrays
with each sort function.

3. Implement the shaker sort algorithm described in Review Question 9.
4. A variation of the merge sort algorithm can be used to sort large sequential data files.

The basic strategy is to take the initial data file, read in several (say 10) data records,
sort these records using an efficient array-sorting algorithm, and then write these sorted
groups of records (runs) alternately to one of two output files. After all records from the
initial data file have been distributed to the two output files, the runs on these output
files are merged one pair of runs at time and written to the original data file. After all
runs from the output file have been merged, the records on the original data file are
redistributed to the output files, and the merging process is repeated. Runs no longer
need to be sorted after the first distribution to the temporary output files.

Each time runs are distributed to the output files, they contain twice as many records
as the time before. The process stops when the length of the runs exceeds the number of
records in the data file. Write a program that implements merge sort for sequential data
files. Test your program on a file with several thousand data values.

5. Write a function that sorts a linked list.
6. Write an industrial-strength quicksort function with the following enhancements:

a. If an array segment contains 20 elements or fewer, sort it using insertion sort.
b. After sorting the first, middle, and last elements, use the median as the pivot, instead

of swapping the median with the first element. (Save this value in pivot_val).
Because the first and last elements are in the correct partitions, it is not necessary to
test them before advancing up and down. This is also the case after each exchange, so
increment up and decrement down at the beginning of the do . . . while loop. Also,
it is not necessary to test whether up is less than last before incrementing up,
because the condition pivot_val < *up is false when up equals last - 1 (the
median must be ≥ the last element in the array).

7. In the early days of data processing (before computers), data was stored on punched
cards. A machine to sort these cards contained 12 bins (one for each digit value and +
and –). A stack of cards was fed into the machine, and the cards were placed into the
appropriate bin, depending on the value of the selected column. By restacking the cards
so that all zeros were first, followed by the ones, followed by the twos, and so forth,
and then sorting on the next column, the whole deck of cards could be sorted. This
process, known as radix sort, requires c � n passes, where c is the number of columns
and n is the number of cards.

We can simulate the action of this machine using an array of queues. During the first
pass, the least significant digit (the ones digit) of each number is examined and the num-
ber is added to the queue whose subscript matches that digit. After all numbers have
been processed, the elements of each queue are added to an eleventh queue, starting with
queue[0], followed by queue[1], and so forth. The process is then repeated for the
next significant digit, taking the numbers out of the eleventh queue. After all the digits
have been processed, the eleventh queue will contain the numbers in sorted order.

Write a program that implements radix sort on an array of int values. You will need
to make 10 passes, because an int can store numbers up to 2,147,483,648.

622 Chapter 10 Sorting

C h a p t e r O b j e c t i v e s

◆ To understand the impact that balance has on the performance of binary search trees
◆ To learn about the AVL tree for storing and maintaining a binary search tree in balance
◆ To learn about the Red-Black tree for storing and maintaining a binary search tree in

balance
◆ To learn about 2-3 trees, 2-3-4 trees, and B-trees and how they achieve balance
◆ To understand the process of search and insertion in each of these trees and to be

introduced to removal

623

Self-Balancing
Search Trees

C h a p t e r 11

In Chapter 8 we introduced the binary search tree. The performance (time
required to find, insert, or remove an item) of a binary search tree is proportional
to the total height of the tree, where we defined the height of a tree as the maxi-

mum number of nodes along a path from the root to a leaf. A full binary tree of
height k can hold 2k – 1 items. Thus, if the binary search tree were full and con-
tained n items, the expected performance would be O(log n).

Unfortunately, if we build the binary search tree as described in Chapter 8, the
resulting tree is not necessarily complete or close to being complete. Thus the actual
performance is worse than expected. In this chapter we explore two algorithms for
building binary search trees so that they are as full as possible. We call these trees
self-balancing because they attempt to achieve a balance so that the height of each
left subtree and right subtree are equal or nearly equal.

Finally we look at the B-tree and its specializations, the 2-3 and 2-3-4 trees.
These are not binary search trees, but they achieve and maintain balance.

11.1 Tree Balance and Rotation

Why Balance Is Important
Figure 11.1 shows an example of a valid, but extremely unbalanced, binary search
tree. Searches or insertions into this tree would be O(n), not O(log n). Figure 11.2
shows the binary search tree resulting from inserting the words of the sentence “The
quick brown fox jumps over the lazy dog.” It too is not well balanced, having a
height of 7 but containing only nine words. (Note that the string "The" is the small-
est, because it begins with an uppercase letter.)

F I G U R E 1 1 . 1
Very Unbalanced Binary
Search Tree

624 Chapter 11 Self-Balancing Search Trees

S e l f - B a l a n c i n g S e a r c h T r e e s

11.1 Tree Balance and Rotation
11.2 AVL Trees
11.3 Red-Black Trees
11.4 2-3 Trees
11.5 2-3-4 and B-Trees

1

2

3

4

5

6

7

8

9

In this chapter we focus on algorithms and functions for search and insertion.
We also discuss removing an item, but we have left the details of removal to the pro-
gramming projects.

Rotation
To achieve self-adjusting capability, we need an operation on a binary search tree
that will change the relative heights of left and right subtrees but preserve the binary
search tree property—that is, the items in each left subtree are less than the item at
the root, and the items in each right subtree are greater than the item in the root. In
Figure 11.3 we show an unbalanced binary search tree with a height of 4 right after
the insertion of node 7. The height of the left subtree of the root (20) is 3, and the
height of the right subtree is 1.

We can transform the tree in Figure 11.3 by doing a right rotation around node 20,
making 10 the root and 20 the root of the right subtree of the new root (10).
Because 20 is now the right subtree of 10, we need to move node 10’s old right sub-
tree (root is 15). We will make it the left subtree of 20, as shown in Figure 11.4.

After these changes the new binary search tree has a height of 3 (one less than
before), and the left and right subtrees of the new root (10) have a height of 2, as
shown in Figure 11.5. Note that the binary search tree property is maintained for
all the nodes of the tree.

This result can be generalized. If node 15 had children, its children would have to
be greater than 10 and less than 20 in the original tree. The left and right subtrees
of node 15 would not change when node 15 was moved, so the binary search tree
property would still be maintained for all children of node 15 in the new tree (> 10
and < 20). We can make a similar statement for any of the other leaf nodes in the
original tree.

Algorithm for Rotation
Figure 11.6 illustrates the internal representation of the nodes of our original binary
search tree whose branches (indicated by arrows in color) will be changed by rotation.
Initially, root references node 20. Rotation right is achieved by the following algorithm.

Algorithm for Rotation Right
1. Remember the value of root->left (temp = root->left).
2. Set root->left to the value of temp->right.
3. Set temp->right to root.
4. Set root to temp.

11.1 Tree Balance and Rotation 625

F I G U R E 1 1 . 2
Realistic Example of an
Unbalanced Binary
Search Tree

quick

fox

brown the

The

dog jumps

lazy

over

F I G U R E 1 1 . 3
Unbalanced Tree Before Rotation

F I G U R E 1 1 . 5
More Balanced Tree After Rotation

40

20

15

7

10

5

40

20

15

7

10

5
407 15

20

10

5

F I G U R E 1 1 . 4
Right Rotation

BTNode

 left =
right =
data =

temp =
(new value of root)

20
BTNode

 left =
right =
data = 10

BTNode

 left =
right =
data =

BTNode

 left =
right =
data =

BTNode

 left =
right =
data =

NULL
NULL
40

NULL
NULL
7

NULL
NULL
15

BTNode

 left =
right =
data =

NULL

5

Step 1

Step 2

Step 3

626 Chapter 11 Self-Balancing Search Trees

BTNode

 left =
right =
data =

 root =

20
BTNode

 left =
right =
data = 10

BTNode

 left =
right =
data =

BTNode

 left =
right =
data =

BTNode

 left =
right =
data =

NULL
NULL
40

NULL
NULL
7

NULL
NULL
15

root->left

root->left->right
 BTNode

 left =
right =
data =

NULL

5

Figure 11.7 shows the rotated tree. Step 1 sets temp to reference the left subtree
(node 10) of the original root. Step 2 resets the original root’s left subtree to refer-
ence node 15. Step 3 resets node temp’s right subtree to reference the original root.
Then Step 4 sets root to reference node temp. The internal representation corre-
sponds to the tree shown in Figure 11.5.

The algorithm for left rotation is symmetric to that for right rotation and is left as
an exercise.

F I G U R E 1 1 . 6
Internal Representation
of Binary Search Tree

F I G U R E 1 1 . 7
Effect of Rotation Right
on Internal Representation

Implementing Rotation
Listing 11.1 shows class BST_With_Rotate. This class is an extension of the
Binary_Search_Tree class described in Chapter 8, and it will be used as the base
class for the other search trees discussed in this chapter. For this reason, it has visi-
bility protected. It contains the functions rotate_left and rotate_right. These
functions take a reference to a pointer to a BTNode that is the root of a subtree and
modify it to the root of the rotated tree.

L I S T I N G 1 1 . 1
BST_With_Rotate.h

#ifndef BST_WITH_ROTATE_H_
#define BST_WITH_ROTATE_H_
#include "Binary_Search_Tree.h"

/** This class extends the Binary_Search_Tree by adding the rotate
operations. Rotate will change the balance of a search
tree while preserving the search tree property.
Used as a common base class for self-adjusting trees.

*/
template<typename Item_Type>
class BST_With_Rotate : public Binary_Search_Tree<Item_Type> {

protected:

/** rotate_right
pre: local_root is the root of a binary search tree
post: local_root->left is the root of a binary search tree

local_root->left->left is raised one level
local_root->left->right does not change levels
local_root->right is lowered one level
local_root is set to the new root

@param local_root The root of the binary tree to be rotated
*/
void rotate_right(BTNode<Item_Type>*& local_root) {
BTNode<Item_Type>* temp = local_root->left;
local_root->left = temp->right;
temp->right = local_root;
local_root = temp;

}

// Insert rotate_left here
// Exercise

};

#endif

Figure 11.8 is a UML class diagram that shows the relationships between
BST_With_Rotate and the other classes in the hierarchy. BST_With_Rotate is a sub-
class of Binary_Tree as well as Binary_Search_Tree. Class Binary_Tree has the data
field root, which points to the BTNode that is the root of the tree. The figure shows
that a BTNode contains a data field named data (of type Item_Type) and two point-
ers to a BTNode. The names of the pointers are left and right, as shown on the lines
from the BTNode to itself.

11.1 Tree Balance and Rotation 627

F I G U R E 1 1 . 8
UML Diagram of
BST_With_Rotate

628 Chapter 11 Self-Balancing Search Trees

+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)
+ const Item_Type& find(const Item_Type&)

 Binary_Tree

+ get_left_subtree()
+ get_right_subtree()
+ get_data()
+ to_string()

 BST_With_Rotate

rotate_left()
rotate_right()

 BTNode

+ data

root

+ left + right

 Binary_Search_Tree

E X E R C I S E S F O R S E C T I O N 1 1 . 1

S E L F - C H E C K

1. Draw the binary search tree that results from inserting the words of the sentence
“Now is the time for all good men to come to the aid of their party.” What is its
height? Compare this with 4, the smallest integer greater than log2 13, where 13
is the number of distinct words in this sentence.

2. Try to construct a binary search tree that contains the same words as in Question
1, but has a maximum height of 4.

3. Describe the algorithm for rotation left.

P R O G R A M M I N G

1. Add the rotate_left function to the BST_With_Rotate class.

11.2 AVL Trees

Two Russian mathematicians, G. M. Adel’son-Vel’skiî and E. M. Landis, published
a paper in 1962 that describes an algorithm for maintaining overall balance of a
binary search tree. Their algorithm keeps track of the difference in height of each
subtree. As items are added to (or removed from) the tree, the balance (that is, the

difference in the heights of the subtrees) of each subtree from the insertion point up
to the root is updated. If the balance ever gets out of the range –1 . . . +1, the sub-
tree is rotated to bring it back into balance. Trees using this approach are known as
AVL trees after the initials of the inventors. As before, we define the height of a tree
as the number of nodes in the longest path from the root to a leaf node, including
the root.

Balancing a Left-Left Tree
The following tree results from inserting 20 in a tree that already contains node 50
(the root) and node 40. Such a tree is called a Left-Left tree because its root and the
left subtree of the root are both left-heavy. The balance of the root is –2, so this tree
is unbalanced.

If we rotate the tree right around the root, we get the following balanced tree. This
tree is also a binary search tree, but all nodes have a balance of 0.

Figure 11.9 shows a general binary search tree with a balance of –2 caused by an
insertion into its left-left subtree. Each white triangle with label a, b, or c represents
a tree of height k; the shaded area at the bottom of the left-left triangle (tree a) indi-
cates an insertion into this tree (its height is now k + 1). We use the formula

hR – hL

to calculate the balance for each node, where hL and hR are the heights of the left
and right subtrees, respectively. The actual heights are not important; it is their rel-
ative difference that matters. The right subtree (b) of node 25 has a height of k; its
left subtree (a) has a height of k + 1, so its balance is –1. The right subtree (of node
50) has a height of k; its left subtree has a height of k + 2, so its factor is –2. Such
a tree is called a Left-Left tree because its root and the left subtree of the root are
both left-heavy.

Figure 11.10 shows this same tree after a rotation right. The new tree root is node
25. Its right subtree (root 50) now has tree b as its left subtree. Notice that balance
has now been achieved. Also, the overall height has not increased. Before the inser-
tion, the tree height was k + 2; after the rotation, the tree height is still k + 2.

20 0

040

50 0

40 –1

–250

20 0

11.2 AVL Trees 629

F I G U R E 1 1 . 9
Left-Heavy Tree

630 Chapter 11 Self-Balancing Search Trees

25 –1

–2

a

50

b

c

0

0

a

b c

25

50

F I G U R E 1 1 . 1 0
Left-Heavy Tree After Rotation Right

Balancing a Left-Right Tree
The following tree results from inserting 40 in the tree consisting of nodes 50 (the
root) and node 20. This tree is called a Left-Right tree because its root (node 50) is
left-heavy but the left subtree of the root (node 20) is right-heavy.

We cannot fix this with a simple rotation right as in the Left-Left case. (See Self-
Check Exercise 2 at the end of this section.) However, we can fix this tree by first
rotating left around node 20, giving the following tree.

This tree is still unbalanced, so we next rotate right around node 50, giving the fol-
lowing balanced tree. All nodes have a balance of 0.

20 0

040

50 0

40 –1

–250

20 0

20 +1

–250

40 0

F I G U R E 1 1 . 1 1
Left-Right Tree

11.2 AVL Trees 631

As you can see, in this case the resulting tree is balanced. This occurs when the left-
right subtree (40) is balanced. In the general case, however, the left-right subtree will
not be balanced.

Figure 11.11 shows a general Left-Right tree with subtrees a, b, and c all originally
the same height. (They were all height 0 in the simple case just discussed.) After
insertion into tree b, the tree is unbalanced and has the balances shown. We discuss
the insertion and balancing process in more detail next.

Figure 11.12 shows the Left-Right tree in Figure 11.11 with tree b expanded. Node
40, the root of subtree b, has subtrees bL and bR. Figure 11.12 shows the effect of an
insertion into bL, making node 40 left-heavy. If the left subtree is rotated left, as
shown in Figure 11.13, the overall tree is now a Left-Left tree, similar to the case of
Figure 11.9. Now, if the modified tree is rotated right, overall balance is achieved,
as shown in Figure 11.14. Figures 11.15 through 11.17 illustrate the effect of these
double rotations after insertion into bR.

In both cases, the new tree root is 40; its left subtree has node 25 as its root, and its
right subtree has node 50 as its root. The balance of the root is 0. If the critically
unbalanced situation was due to an insertion into subtree bL, the balance of the
root’s left child is 0 and the balance of the root’s right child is +1 (Figure 11.14). For
insertion into subtree bR, the balance of the root’s left child is –1 and the balance of
the root’s right child is 0 (Figure 11.17).

F I G U R E 1 1 . 1 2
Insertion into bL

–2

+1

a b

c

50

25

Balance 50 = (k – (k + 2))

Balance 25 = ((k + 1) – k)

F I G U R E 1 1 . 1 4
Tree After Rotate Right

F I G U R E 1 1 . 1 3
Left Subtree After Rotate Left

25 +1

–1

–2

a

50

40

bL bR

c

40

25 0

–2

–2

a

50

bL

bR
c

40

25

0

0 +1

a

50

bRbL

c

F I G U R E 1 1 . 1 5
Insertion into bR

632 Chapter 11 Self-Balancing Search Trees

F I G U R E 1 1 . 1 7
Tree After Rotate Right

F I G U R E 1 1 . 1 6
Left Subtree After Rotate Left

–2

+1

+1

50

bL bR

a

c

40

25

–250

bL

bR

a

c

40 –1

–125

50

bL bR

a c

40

–1

0

025

Four Kinds of Critically Unbalanced Trees
How do we recognize unbalanced trees and determine what to do to balance them?
For the Left-Left tree shown in Figure 11.9 (parent and child nodes are both left-
heavy, parent balance is –2, child balance is –1), the remedy is to rotate right around
the parent.

For the Left-Right example shown in Figure 11.12 (parent is left-heavy with balance
–2, child is right-heavy with balance +1), the remedy is to rotate left around the
child and then rotate right around parent. We list the four cases that need rebal-
ancing and their remedies next.

• Left-Left (parent balance is –2, left child balance is –1): Rotate right around
parent.

• Left-Right (parent balance is –2, left child balance is +1): Rotate left around
child, then rotate right around parent.

• Right-Right (parent balance is +2, right child balance is +1): Rotate left around
parent.

• Right-Left (parent balance is +2, right child balance is –1): Rotate right around
child, then rotate left around parent.

E X A M P L E 1 1 . 1 We will build an AVL tree from the words in the sentence “The quick brown fox
jumps over the lazy dog.”

After inserting the words The, quick, and brown, we get the following tree.

The subtree with the root quick is left-heavy by 1, but the overall tree with the root
of The is right-heavy by 2 (Right-Left case). We must first rotate the subtree around
quick to the right:

quick

The +2

brown 0

–1

Then rotate left about The:

We now proceed to insert fox and jumps:

The subtree rooted about quick is now left-heavy by 2 (Left-Right case). Because
this case is symmetric with the previous one, we rotate left about fox and then right
about quick, giving the following result.

We now insert over.

The subtrees at quick and jumps are unbalanced by 1. The subtree at brown, how-
ever, is right-heavy by 2 (Right-Right case), so a rotation left solves the problem.

quick

jumps

over

brown

The 0 fox

0

–1

0 0

0

jumps

brown

fox

The

quick –1

+2

over 0

+1

0

0

jumps

brown

fox

The

quick 0

+1

0

0

0

quick

brown

jumps

The

+2

fox 0

–2

–1

0quick

brown

fox

The

+2

jumps 0

–2

+1

0

quick

brown

The

0

00

brown

The +2

quick 0

+1

11.2 AVL Trees 633

We can now insert the, lazy, and dog without any additional rotations being
necessary.

Implementing an AVL Tree
We begin by deriving the class AVL_Tree from BST_With_Rotate (see Listing 11.1).
Figure 11.18 is a UML class diagram showing the relationship between AVL_Tree
and BST_With_Rotate. The AVL_Tree class contains the bool data field increase,
which indicates whether the current subtree height has increased as a result of the
insertion. We override the functions insert and erase but inherit function find,
because searching a balanced tree is no different from searching an unbalanced tree.
Listing 11.2 shows the class definition for AVL_Tree. We also extend the class BTNode
with AVLNode. Within this class we add the additional field balance.

F I G U R E 1 1 . 1 8
UML Class Diagram of
AVL_Tree

quick

jumps

over

brown

The 0 the 0fox

0

dog 0 lazy 0

–1

–1 –1

+1

634 Chapter 11 Self-Balancing Search Trees

 AVLNode

- balance- increase

+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)

 AVL_Tree

+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)
+ const Item_Type& find(const Item_Type&)

 Binary_Tree

+ get_left_subtree()
+ get_right_subtree()
+ get_data()
+ to_string()

 BST_With_Rotate

rotate_left()
rotate_right()

 BTNode

+ data

root

+ left + right

 Binary_Search_Tree

L I S T I N G 1 1 . 2
AVL_Tree Class Definition (AVL_Tree.h)

#ifndef AVL_TREE_H
#define AVL_TREE_H

#include "BST_With_Rotate.h"
#include "AVLNode.h"

/** Definition of the AVL Binary Search Tree class.
@param Item_Type The type of item to be stored in the tree
Note: Item_Type must define the less-than operator as a
total ordering.

*/
template<typename Item_Type>
class AVL_Tree : public BST_With_Rotate<Item_Type> {

public:
// Constructor
/** Construct an empty AVL_Tree */
AVL_Tree() : BST_With_Rotate<Item_Type>() {}

// Public Member Functions
/** Insert an item into the tree.

post: The item is in the tree.
@param item The item to be inserted
@return true only if the item was not

already in the tree
*/
virtual bool insert(const Item_Type& item) {
return insert(this->root, item); }

/** Remove an item from the tree.
post: The item is no longer in the tree.
@param item The item to be removed
@return true only if the item was in the tree

*/
virtual bool erase(const Item_Type& item) {
return erase(this->root, item); }

private:
// Private member functions declarations
...

// Data Fields
/** A flag to indicate that the height of the tree has increased */
bool increase;

}; // End of AVL_Tree class definition

// Implementation of member functions
...
#endif

11.2 AVL Trees 635

The AVLNode Class
The AVLNode class is shown in Listing 11.3. It is an extension of the BTNode class. It
adds the data field balance, which has the enum type balance_type, which defines
the values LEFT_HEAVY, BALANCED, and RIGHT_HEAVY.

L I S T I N G 1 1 . 3
The AVLNode Class (AVLNode.h)

#ifndef AVLNODE_H_
#define AVLNODE_H_
#include <sstream>

/** A node for an AVL Tree. */
template<typename Item_Type>
struct AVLNode : public BTNode<Item_Type> {

enum balance_type {LEFT_HEAVY = -1, BALANCED = 0, RIGHT_HEAVY = +1};
// Additional data field
balance_type balance;

// Constructor
AVLNode(const Item_Type& the_data, BTNode<Item_Type>* left_val = NULL,

BTNode<Item_Type>* right_val = NULL) :
BTNode<Item_Type>(the_data, left_val, right_val), balance(BALANCED) {}

// Destructor (to avoid warning message)
virtual ~AVLNode() {}

// to_string
virtual std::string to_string() const {
std::ostringstream os;
os << balance << ": " << this->data;
return os.str();

}
}; // End AVLNode

#endif

Inserting into an AVL Tree
The easiest way to keep a tree balanced is never to let it become unbalanced. If any
node becomes critical and needs rebalancing, rebalance immediately. You can iden-
tify critical nodes by checking the balance at the root node of a subtree as you return
to each parent node along the insertion path. If the insertion was in the left subtree
and the left subtree height has increased, you must check to see whether the balance
for the root node of the left subtree has become critical (–2 or +2). If so, we need to
fix it by calling rebalance_left (rebalance a left-heavy tree when balance is –2) or
rebalance_right (rebalance a right-heavy tree when balance is +2). A symmetric
strategy should be followed after returning from an insertion into the right subtree.
The bool variable increase is set before return from recursion to indicate to the next
higher level that the height of the subtree has increased. This information is then used
to adjust the balance of the next level in the tree. The following algorithm is based
on the algorithm for inserting into a binary search tree, described in Chapter 8.

636 Chapter 11 Self-Balancing Search Trees

Algorithm for Insertion into an AVL Tree
1. if the root is NULL
2. Create a new tree with the item at the root and return true.

else if the item is equal to root->data
3. The item is already in the tree; return false.

else if the item is less than root->data
4. Recursively insert the item in the left subtree.
5. if the height of the left subtree has increased (increase is true)
6. Decrement balance.
7. if balance is zero, reset increase to false.
8. if balance is less than –1
9. Reset increase to false.

10. Perform a rebalance_left.
else if the item is greater than root->data

11. The processing is symmetric to Steps 4 through 10. Note that balance
is incremented if increase is true.

After returning from the recursion (Step 4), examine the member data field increase
to see whether the left subtree has increased in height. If it did, then decrement the
balance. If the balance had been +1 (current subtree was right-heavy), it is now zero,
so the overall height of the current subtree is not changed. Therefore, reset increase
to false (Steps 5–7).

If the balance was –1 (current subtree was left-heavy), it is now –2, and a rebal-
ance_left must be performed. The rebalance operation reduces the overall height of
the tree by 1, so increase is reset to false. Therefore, no more rebalancing opera-
tions will occur, so we can fix the tree by either a single rotation (Left-Left case) or
a double rotation (Left-Right case) (Steps 8–10).

Recursive insert Function
The recursive insert function is called by the insert starter function (see Listing
11.2); it begins as follows:

/** Insert an item into the tree.
post: The item is in the tree.
@param local_root A reference to the current root
@param item The item to be inserted
@return true only if the item was not already in the tree

*/
virtual bool insert(BTNode<Item_Type>*& local_root,

const Item_Type& item) {

We begin by seeing whether the local_root is NULL. If it is, then we set local_root
to point to a new AVLNode that contains the item to be inserted. We then set increase
to true and return true.

if (local_root == NULL) {
local_root = new AVLNode<Item_Type>(item);
increase = true;
return true;

}

11.2 AVL Trees 637

Next we compare the inserted item with the data field of the current node. (As with
the Binary_Search_Tree, we need to change the order of the tests from that shown
in the algorithm.)

If it is less than this value, we recursively call the insert function (Step 4 of the
insertion algorithm), passing local_root->left as the parameter and saving the
return value in the bool variable return_value.

if (item < local_root->data) {
bool return_value = insert(local_root->left, item);

Upon return from the recursion, we examine the member data field increase. If
increase is true, then the height of the left subtree has increased. Now we need to
examine the current value of the local_root’s balance. However, local_root is of
type pointer to BTNode, and balance is a data field in the type AVLNode. The node that
local_root points to is in fact an AVLNode. Thus we can create a pointer value that
points to this node of the desired type using the dynamic cast.

if (increase) {
AVLNode<Item_Type>* AVL_local_root =
dynamic_cast<AVLNode<Item_Type>*>(local_root);

There are three cases to consider: AVL_local_root->balance is BALANCED,
AVL_local_root->balance is RIGHT_HEAVY, and AVL_local_root->balance is
LEFT_HEAVY. In the first case the local root is now LEFT_HEAVY. The overall height at
local_root increases, so we leave increase set to true. (See Figure 11.19.)

switch (AVL_local_root->balance) {
case AVLNode<Item_Type>::BALANCED :
// local root is now left heavy
AVL_local_root->balance = AVLNode<Item_Type>::LEFT_HEAVY;
break;

In the second case, the local root is now balanced. In this case the overall height of the
tree at local_root has not changed, so we set increase to false. (See Figure 11.20.)

case AVLNode<Item_Type>::RIGHT_HEAVY :
// local root is now right heavy
AVL_local_root->balance = AVLNode<Item_Type>::BALANCED;
// Overall height of local root remains the same
increase = false;
break;

In the third case, the node at local_root was already LFFT_HEAVY, and now it is crit-
ically unbalanced. Thus we need to correct the balance. This is done by the function

638 Chapter 11 Self-Balancing Search Trees

0 -1

balance before insert is 0 balance is decreased due to insert;
Overall height increased

F I G U R E 1 1 . 1 9
Decrement of
balance
by Insert on Left
(Height Increases)

11.2 AVL Trees 639

+1 0

balance before insert is +1 balance is decreased due to insert;
Overall height remains the same

rebalance_left. The result of rebalance_left is that the overall height of the tree
at local_root remains unchanged; thus we set increase to false.

case AVLNode<Item_Type>::LEFT_HEAVY :
// local root is now critically unbalanced
rebalance_left(local_root);
increase = false;
break;

After exiting the switch statement we return the saved return_value.
} // End switch

} // End (if increase)
return return_value;

} // End (if item < local_root->data)

Next we test to see whether local_root->data is less than the item. The processing
is symmetric with the case in which item is less than local_root->data and is left as
an exercise.

If item is not less than local_root->data and local_root->data is not less than item,
then they must be equal; we set increase to false, leave the local_root unchanged,
and return false (algorithm Step 3).

else {
increase = false;
return false;

}

Initial Algorithm for rebalance_left
Function rebalance_left rebalances a left-heavy tree. Such a tree can be a Left-Left
tree (fixed by a single right rotation) or a Left-Right tree (fixed by a left rotation fol-
lowed by a right rotation). If its left subtree is right-heavy, we have a Left-Right case,
so we first rotate left around the left subtree. Finally we rotate the tree right.

1. if the left subtree has positive balance (Left-Right case)
2. Rotate left around left subtree root.
3. Rotate right.

The algorithm for rebalance_right is left as an exercise.

F I G U R E 1 1 . 2 0
Decrement of
balance
by Insert on Left
(Height Does Not
Change)

The Effect of Rotations on Balance
The rebalancing algorithm just presented is incomplete. So far we have focused on
changes to the root reference and to the internal branches of the tree being balanced,
but we have not adjusted the balances of the nodes. In the beginning of this section
we showed that for a Left-Left tree, the balances of the new root node and of its
right child are 0 after a right rotation; the balances of all other nodes are unchanged
(see Figure 11.10).

The Left-Right case is more complicated. We made the following observation after
studying the different cases.

The balance of the root is 0. If the critically unbalanced situation was due to an
insertion into subtree bL, the balance of the root’s left child is 0 and the balance of
the root’s right child is +1 (Figure 11.14). For insertion into subtree bR, the balance
of the root’s left child is –1, and the balance of the root’s right child is 0 (Figure
11.17). So we need to change the balances of the new root node and both its left
and right children; all other balances are unchanged. We will call insertion into sub-
tree bL the Left-Right-Left case and insertion into subtree bR the Left-Right-Right
case. There is a third case where the left-right subtree is balanced; this occurs when
a left-right leaf is inserted into a subtree that has only a left child. In this case after
the rotates are performed, the root, left child, and right child are all balanced.

Revised Algorithm for rebalance_left
Based on the foregoing discussion we can now develop the complete algorithm for
rebalance_left, including the required balance changes. It is easier to store the new
balance for each node before the rotation than after.

1. if the left subtree has a positive balance (Left-Right case)
2. if the left-right subtree has a negative balance (Left-Right-Left case)
3. Set the left subtree (new left subtree) balance to 0.
4. Set the left-left subtree (new root) balance to 0.
5. Set the local root (new right subtree) balance to +1.

else if the left-right subtree has a positive balance (Left-Right-Right
case)

6. Set the left subtree (new left subtree) balance to –1.
7. Set the left-left subtree (new root) balance to 0.
8. Set the local root (new right subtree) balance to 0.

else (Left-Right Balanced case)
9. Set the left subtree (new left subtree) balance to 0.

10. Set the left-left subtree (new root) balance to 0.
11. Set the local root (new right subtree) balance to 0.
12. Rotate the left subtree left.

else (Left-Left case)
13. Set the left subtree balance to 0.
14. Set the local root balance to 0.
15. Rotate the local root right.

The algorithm for rebalance_right is left as an exercise.

640 Chapter 11 Self-Balancing Search Trees

Function rebalance_left
The code for rebalance_left is shown in Listing 11.4. First we test to see whether
the left subtree is right-heavy (Left-Right case). If so, the Left-Right subtree is exam-
ined. Depending on its balance, the balances of the left subtree and local root are set
as previously described in the algorithm. The rotations will reduce the overall height
of the tree by 1. The left subtree is then rotated left, and then the tree is rotated
right.

If the left child is LEFT_HEAVY, the rotation process will restore the balance to both
the tree and its left subtree and reduce the overall height by 1; the balance for the
left subtree and local root are both set to BALANCED. The tree is then rotated right to
correct the imbalance.

L I S T I N G 1 1 . 4
The rebalance_left Function

template<typename Item_Type>
void AVL_Tree<Item_Type>::rebalance_left(BTNode<Item_Type>*& local_root)

{

// Cast local_root to an AVLNode pointer
AVLNode<Item_Type>* AVL_local_root =
dynamic_cast<AVLNode<Item_Type>*>(local_root);

// Obtain reference to the left child
AVLNode<Item_Type>* left_child =
dynamic_cast<AVLNode<Item_Type>*>(local_root->left);

// See whether left-right-heavy
if (left_child->balance == AVLNode<Item_Type>::RIGHT_HEAVY) {
// Obtain a reference to the left-right child
AVLNode<Item_Type>* left_right_child =
dynamic_cast<AVLNode<Item_Type>*>(left_child->right);

// Adjust the balances to be the new values after rotations are
// performed
if (left_right_child->balance == AVLNode<Item_Type>::LEFT_HEAVY) {
left_child->balance = AVLNode<Item_Type>::BALANCED;
left_right_child->balance = AVLNode<Item_Type>::BALANCED;
AVL_local_root->balance = AVLNode<Item_Type>::RIGHT_HEAVY;

} else if (left_right_child->balance
== AVLNode<Item_Type>::BALANCED) {

left_child->balance = AVLNode<Item_Type>::BALANCED;
left_right_child->balance = AVLNode<Item_Type>::BALANCED;
AVL_local_root->balance = AVLNode<Item_Type>::BALANCED;

} else {
left_child->balance = AVLNode<Item_Type>::LEFT_HEAVY;
left_right_child->balance = AVLNode<Item_Type>::BALANCED;
AVL_local_root->balance = AVLNode<Item_Type>::BALANCED;

}
// Perform left rotation
rotate_left(local_root->left);

} else { // Left-Left case
/* In this case the left child (the new root) and the

local root (new right child) will both be balanced
after the rotation.

11.2 AVL Trees 641

*/
left_child->balance = AVLNode<Item_Type>::BALANCED;
AVL_local_root->balance = AVLNode<Item_Type>::BALANCED;

}
// Finally rotate right
rotate_right(local_root);

}

We also need a rebalance_right function that is symmetric with rebalance_left
(that is, all lefts are changed to rights and all rights are changed to lefts). Coding
of this function is left as an exercise.

Removal from an AVL Tree
When we remove an item from a left subtree, the balance of the local root is
increased, and when we remove an item from the right subtree, the balance of the
local root is decreased. We can adapt the algorithm for removal from a binary
search tree to become an algorithm for removal from an AVL tree. We need to main-
tain a data field decrease that tells the previous level in the recursion that there was
a decrease in the height of the subtree that was just returned from. (This data field
is analogous to the data field increase, which is used in the insertion to indicate that
the height of the subtree has increased.) We can then increment or decrement the
local root balance. If the balance is outside the threshold, then the rebalance func-
tions (rebalance_left or rebalance_right) are used to restore the balance.

We need to modify functions rebalance_left and rebalance_right so that they set
the balance value correctly if the left (or right) subtree is balanced. This is also a left-
left (right-right) case that is corrected by a single rotate. (See Figures 11.59 and
11.60 in the Programming Projects at the end of this chapter.) When a subtree
changes from either left-heavy or right-heavy to balanced, then the height has
decreased, and decrease should remain true; when the subtree changes from bal-
anced to either left-heavy or right-heavy, then decrease should be reset to false. We
also need to provide functions similar to the ones needed for removal in a binary
search tree. Implementing removal is left as a programming project.

Also, observe that the effect of rotations is not only to restore balance but to
decrease the height of the subtree being rotated. Thus, while only one call to rebal-
ance_left or rebalance_right was required for insertion, during removal each
recursive return could result in a further need to rebalance.

Performance of the AVL Tree
Because each subtree is kept as close to balanced as possible, one would expect that
the AVL tree provides the expected O(log n) performance. Each subtree is allowed
to be out of balance by ±1. Thus, the tree may contain some holes.

It can be shown that in the worst case the height of an AVL tree can be 1.44 times
the height of a complete binary tree that contains the same number of items.
However, this would still yield O(log n) performance, because we ignore constants.

The worst-case performance is very rare. Empirical tests (see, for example, Donald
Knuth, The Art of Computer Programming, Vol 3: Searching and Sorting [Addison-

642 Chapter 11 Self-Balancing Search Trees

Wesley, 1973], p. 460) show that, on the average, log2 n + 0.25 comparisons are
required to insert the nth item into an AVL tree. Thus the average performance is
very close to that of the corresponding complete binary search tree.

E X E R C I S E S F O R S E C T I O N 1 1 . 2

S E L F - C H E C K

1. Show how the final AVL tree for the “The quick brown fox . . . dog” changes as
you insert “apple”, “cat”, and “hat” in that order.

2. Show the effect of just rotating right on the tree in Figure 11.11. Why doesn’t this
fix the problem?

3. Build an AVL tree that inserts the integers 30, 40, 15, 25, 90, 80, 70, 85, 15, 72
in the given order.

4. Build the AVL tree from the sentence “Now is the time for all good men to come
to the aid of their party.”

P R O G R A M M I N G

1. Program the rebalance_right function.
2. Program the code in the insert function for the case where local_root->data <

item.

11.3 Red-Black Trees

We discuss another approach to keeping a tree balanced, called the Red-Black tree.
Rudolf Bayer developed the Red-Black tree as a special case of his B-tree (the topic
of Section 11.4); Leo Guibas and Robert Sedgewick refined the concept and intro-
duced the color convention. A Red-Black tree maintains the following invariants:

1. A node is either red or black.
2. The root is always black.
3. A red node always has black children. (A NULL pointer is considered to refer to a

black node.)
4. The number of black nodes in any path from the root to a leaf is the same.

Figure 11.21 shows an example of a Red-Black tree. Invariant 4 states that a Red-
Black tree is always balanced because the root node’s left and right subtrees must be
the same black-height, where the black-height is determined by counting just black
nodes. Notice that by the standards of the AVL tree this tree is out of balance and
would be considered a Left-Right tree. However, by the standards of the Red-Black
tree it is balanced, because there are two black nodes (counting the root) in any path
from the root to a leaf. (We have one color in this textbook other than black, so we
will use that color to indicate a red node.)

11.3 Red-Black Trees 643

F I G U R E 1 1 . 2 1
Red-Black Tree

644 Chapter 11 Self-Balancing Search Trees

Insertion into a Red-Black Tree
The algorithm for insertion follows the same recursive search process used for all
binary search trees to reach the insertion point. When a leaf is found, the new item
is inserted, and it is initially given the color red, so invariant 4 will be maintained.
If the parent is black, we are done.

However, if the parent is also red, then invariant 3 has been violated. Figure
11.22(a) shows the insertion of 35 as a red child of 30. If the parent’s sibling is also
red, then we can change the grandparent’s color to red and change both the parent
and parent’s sibling to black. This restores invariant 3 but does not violate invari-
ant 4. (See Figure 11.22(b).) If the root of the overall tree is now red, we can change
it to black to restore invariant 2, and still maintain invariant 4 (the heights of all
paths to a leaf are increased by 1). (See Figure 11.22(c).)

If we insert a value with a red parent, but that parent does not have a red sibling
(see Figure 11.23(a)), then we change the color of the grandparent to red and the
parent to black (see Figure 11.23(b)). Now we have violated invariant 4, as there
are more black nodes on the side of the parent. We correct this by rotating about
the grandparent so that the parent moves into the position where the grandparent
was, thus restoring invariant 4 (see Figure 11.23(c)).

F I G U R E 1 1 . 2 2
Insertion into a
Red-Black Tree, Case 1

F I G U R E 1 1 . 2 3
Insertion into a
Red-Black Tree, Case 2

2

85

14

11

71

35

3010

20 20

35

10 30

20

35

10 30

(a) (b) (c)

35

30

20 20

35

30 20 35

30

(a) (b) (c)

F I G U R E 1 1 . 2 4
Insertion into a
Red-Black Tree, Case 3
(Single Rotation
Doesn’t Work)

F I G U R E 1 1 . 2 5
Insertion into a
Red-Black Tree, Case 3
(Double Rotation)

The preceding maneuver works only if the inserted value is on the same side of its
parent as the parent is to the grandparent. Figure 11.24(a) shows 25 inserted as the
left child of 30, which is the right child of 20. If we change the color of the grand-
parent (20) to red and the parent (30) to black (see Figure 11.24(b)) and then rotate
(see Figure 11.24(c)), we are still left with a red parent–red child combination.
Before changing the color and rotating about the grandparent level, we must first
rotate about the parent so that the red child is on the same side of its parent as the
parent is to the grandparent (see Figure 11.25(b)). We can then change the colors
(see Figure 11.25(c)) and rotate (see Figure 11.25(d)).

More than one of these cases can occur. Figure 11.26 shows the insertion of the
value 4 into the Red-Black tree of Figure 11.21. Upon return from the insertion to
the parent (node 5), it may be discovered that a red node now has a red child, which
is a violation of invariant 3. If this node’s sibling (node 8) is also red (case 1), then
they must have a black parent. If we make the parent red (node 7) and both of the
parent’s children black, invariant 4 is preserved, and the problem is shifted up, as
shown in Figure 11.27.

Looking at Figure 11.27 we see that 7 is red and that its parent, 2, is also red.
However, we can’t simply change 2’s color as we did before, because 2’s sibling, 14,
is black. This problem will require one or two rotations to correct.

Because the red child (7) is not on the same side of its parent (2) as the parent is to
the grandparent (11), this is an example of Case 3. We rotate the tree left (around
node 2) so that the red node 2 is on the same side of red node 7 as node 7 is to the
grandparent (11) (see Figure 11.28). We now change node 7 to black and node 11
to red (Figure 11.29) and rotate right around node 11, restoring the balance of black
nodes as shown in Figure 11.30.

11.3 Red-Black Trees 645

25

30

20

25

20

30

25

20

30

(a) (b) (c)

25

30

20

30

25

20

30

20

25 20 30

25

(a) (b) (c) (d)

F I G U R E 1 1 . 2 6
Red-Black Tree After Insertion of 4

646 Chapter 11 Self-Balancing Search Trees

F I G U R E 1 1 . 2 7
Moving Black Down and Red Up

1 7

14

11

4

5 8

2

1

5 8

14

11

4

2

7

8

1 5

14

11

4

7

2 8

1 5

147

4

11

2

51

7

4

148

2 11

F I G U R E 1 1 . 2 8
Rotating Red Node to Outside

F I G U R E 1 1 . 3 0
Final Red-Black Tree After Insert

E X A M P L E 1 1 . 2 We will now build the Red-Black tree for the sentence “The quick brown fox jumps
over the lazy dog.”

We start by inserting The, quick, and brown.

quick

The

brown

F I G U R E 1 1 . 2 9
Changing Colors of Parent and Grandparent Nodes

The parent of brown (quick) is red, but the sibling of quick is black (NULL nodes are
considered black), so we have an example of Case 2 or Case 3. Because the child is
not on the same side of the parent as the parent is to the grandparent, this is Case
3. We first rotate right about quick to get the child on the same side of the parent
as the parent is to the grandparent.

We then change the colors of The and brown.

Then we rotate left about The.

Next we insert fox.

We see that fox has a red parent (quick) whose sibling is also red (The). This is a
Case 1 insertion, so we can change the color of the parent and its sibling to black
and the grandparent to red.

Since the root is red, we can change it to black without violating the rule of balanced
black nodes.

quick

brown

fox

The

quick

brown

fox

The

quick

brown

fox

The

quick

brown

The

brown

The

quick

brown

The

quick

11.3 Red-Black Trees 647

Now we add jumps, which gives us another Case 3 insertion.

This triggers a double rotation. First rotate left about fox and change the color of
its parent jumps to black and its grandparent quick to red. Next, rotate right about
quick.

Next we insert over.

Because quick and fox are red, we have a Case 1 insertion, so we can move the black
in jumps down, changing the color of jumps to red and fox and quick to black.

Next we add the. No changes are required, because its parent is black.

When compared to the corresponding AVL tree, this tree looks out of balance. But
the black nodes are in balance (2 in each path).

jumps

brown

fox

The

quick

over the

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

quick

brown

jumps

The

fox

quick

brown

fox

The

jumps

648 Chapter 11 Self-Balancing Search Trees

Now we insert lazy.

Because over and the are both red, we can move the black at quick down (Case 1).

But now quick is a red node with a red parent (jumps), but whose sibling is black
(The). Because quick and jumps are both right children, this is an example of Case
2. This triggers a rotate left around brown.

Finally we can insert dog.

Surprisingly, the result is identical to the AVL tree for the same input, but the inter-
mediate steps were very different.

quick

jumps

over

brown

The thefox

lazy dog

quick

jumps

over

brown

The thefox

lazy

jumps

brown

fox

The

quick

over the

lazy

jumps

brown

fox

The

quick

over the

lazy

jumps

brown

fox

The

quick

over the

lazy

11.3 Red-Black Trees 649

F I G U R E 1 1 . 3 1
UML Class Diagram of Red_Black_Tree

650 Chapter 11 Self-Balancing Search Trees

Implementation of Red-Black Tree Class
We begin by deriving the class Red_Black_Tree from BST_With_Rotate (see Listing
11.1). Figure 11.31 is a UML class diagram showing the relationship between
Red_Black_Tree and BST_With_Rotate. The Red_Black_Tree class overrides the
insert and erase functions. The class BTNode is extended with the RBNode class. This
class has the additional data field is_red to indicate red nodes. Listing 11.5 shows
the RBNode class.

L I S T I N G 1 1 . 5
The RBNode Class

#ifndef RBNODE_H_
#define RBNODE_H_
#include <sstream>

/** A node for a Red-Black Tree. */
template<typename Item_Type>
struct RBNode : public BTNode<Item_Type> {

// Additional Data Field
bool is_red;

 RBNode

+ is_red+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)

 Red_Black_Tree

+ bool insert(const Item_Type&)
+ bool erase(const Item_Type&)
+ const Item_Type& find(const Item_Type&)

 Binary_Tree

+ get_left_subtree()
+ get_right_subtree()
+ get_data()
+ to_string()

 BST_With_Rotate

rotate_left()
rotate_right()

 BTNode

+ data

root

+ left + right

 Binary_Search_Tree

// Constructor
RBNode(const Item_Type& the_data, BTNode<Item_Type>* left_val = NULL,

BTNode<Item_Type>* right_val = NULL) :
BTNode<Item_Type>(the_data, left_val, right_val), is_red(true) {}

// Destructor (to avoid warning message)
virtual ~RBNode() {}

// to_string
virtual std::string to_string() const {
std::ostringstream os;
if (is_red)
os << " red: " << this->data;

else
os << " black: " << this->data;

return os.str();
}

}; // End RBNode

#endif

Algorithm for Red-Black Tree Insertion
The foregoing outline of the Red-Black tree insertion algorithm is from the point of
view of the node being inserted. It can be, and has been, implemented using a data
structure that has a pointer to the parent of each node stored in it so that, given a
pointer to a node, one can access the parent, grandparent, and the parent’s sibling
(the node’s aunt or uncle).

We are going to present a recursive algorithm where the need for fixups is detected
from the grandparent level. This algorithm has one additional difference from the
algorithm as presented in the foregoing examples: Whenever a black node with two
red children is detected on the way down the tree, it is changed to red and the chil-
dren are changed to black (for example, jumps and its children in the figure at left).
If this change causes a problem, it is fixed on the way back up. This modification
simplifies the logic a bit and improves the performance of the algorithm. This algo-
rithm is also based on the algorithm for inserting into a binary search tree that was
described in Chapter 8.

Algorithm for Red-Black Tree Insertion
1. if the root is NULL
2. Insert a new Red-Black node and color it black.
3. Return true.
4. else if the item is equal to root->data
5. The item is already in the tree; return false.
6. else if the item is less than root->data
7. if the left subtree is NULL
8. Insert a new Red-Black node as the left subtree and color it red.
9. Return true.

10. else

11.3 Red-Black Trees 651

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

Insert over

11. if both the left child and the right child are red
12. Change the color of the children to black and change local

root to red.
13. Recursively insert the item into the left subtree.
14. if the left child is now red
15. if the left grandchild is now red (grandchild is an “out-

side” node)
16. Change the color of the left child to black and change

the local root to red.
17. Rotate the local root right.
18. else if the right grandchild is now red (grandchild is an

“inside” node)
19. Rotate the left child left.
20. Change the color of the left child to black and change

the local root to red.
21. Rotate the local root right.
22. else

23. Item is greater than root->data; process is symmetric and is left as an
exercise.

24. if the local root is the root of the tree
25. Force its color to be black.

In C++ we can pass arguments to functions by reference. This means that a change
made to the parameter’s value by the function results in a change to the argument
object that was passed to the function. We will pass the local root of a Red-Black
tree by reference as an argument to the insert function. Thus, in Step 8, we replace
the NULL pointer to the left subtree with the inserted node.

If the left subtree is not NULL (Steps 10 through 21), we recursively apply the algo-
rithm (Step 13). But before we do so, we see whether both children are red. If they
are, we change the local root to red and change the children to black (Steps 11 and
12). (If the local root’s parent was red, this condition will be detected at that level
during the return from the recursion.)

Upon return from the recursion (Step 14), we see whether the local root’s left child
is now red. If it is, we need to check its children (the local root’s grandchildren). If
one of them is red, then we have a red parent with a red child, and a rotation is nec-
essary. If the left grandchild is red, a single rotation will solve the problem (Steps 15
through 17). If the right grandchild is red, a double rotation is necessary (Steps 18
through 21). Note that there may be only one grandchild or no grandchildren.
However, if there are two grandchildren, they cannot both be red, because they
would have been changed to black by Steps 11 and 12, as described in the previous
paragraph.

652 Chapter 11 Self-Balancing Search Trees

The insert Starter Function
The insert starter function checks for a NULL root and inserts a single new node.
Since the root of a Red-Black tree is always black, we set the newly inserted node to
black.

template<typename Item_Type>
bool Red_Black_Tree<Item_Type>::insert(const Item_Type& item) {
if (this->root == NULL) {
RBNode<Item_Type>* new_root = new RBNode<Item_Type>(item);
new_root->is_red = false;
this->root = new_root;
return true;

}

Otherwise the recursive insert function is called. This function takes two parame-
ters: the node that is the local root of the subtree into which the item is to be
inserted, and the item to be inserted. Upon return the value of the first parameter is
modified to be the node that is the root of the subtree that now contains the inserted
item.

The root is replaced by the recursive insert function, the color of the root is set to
black, and the return value from the recursive insert function is returned to the
caller.

else {
// Call the recursive insert function.
bool return_value = insert(this->root, item);
// Force the root to be black
set_red(this->root, false);
return return_value;

}
}

The Recursive insert Function
The recursive insert function begins by comparing the item to be inserted with the
data field of the local root. If it is less, then local_root->left is checked to see
whether it is NULL. If so, then we insert a new node and return (Steps 7 through 9).

if (item < local_root->data) {
if (local_root->left == NULL) {
local_root->left = new RBNode<Item_Type>(item);
return true;

}

Otherwise, check to see whether both children are red. If so, we make them black
and change the local root to red. This is done by the function move_black_down.
Then we recursively call the insert function, using root->left as the new local root
(Steps 11–13).

else {
// Check for two red children, swap colors if found
move_black_down(local_root);
// Recusively insert into the left subtree
bool return_value = insert(local_root->left, item);

11.3 Red-Black Trees 653

It is upon return from the recursive insert that things get interesting. Upon return
from the recursive call, local_root->left refers to the parent of a Red-Black sub-
tree that may be violating the rule against adjacent red nodes. Therefore we check
the left child to see whether it is red (Step 14).

// See if the left-child is red
if (is_red(local_root->left)) {

If the left child is red, then we need to check its two children. First we check the left
grandchild (Step 15).

if (is_red(local_root->left->left)) {
// Child and left-left grandchild are both red

If the left-left grandchild is red, we have detected a violation of invariant 3 (no con-
secutive red children), and we have a left-left case. Thus we change colors and per-
form a single rotation, returning the resulting local root to the caller (Steps 16–17).

// Need to change colors and rotate
set_red(local_root->left, false);
set_red(local_root, true);
rotate_right(local_root);
return return_value;

If the left grandchild is not red, we then check the right grandchild. If it is red, the
process is symmetric to the preceding case, except that a double rotation will be
required (Steps 18–21).

// Else check right grandchild
else if (is_red(local_root->left->right)) {
// This will require a double rotation.
set_red(local_root->left->right, false);
set_red(local_root, true);
rotate_left(local_root->left);
rotate_right(local_root);
return return_value;

}

If upon return from the recursive call the left child is black, the return is immediate,
and all of this complicated logic is skipped. Similarly, if neither the left nor right
grandchild is also red, nothing is done.

If the item is not less than local_root->data, we check to see whether local_root->
data is less than the item. The process is symmetric and is left as an exercise (Step
23 and Programming Exercise 1).

If they are equal (both comparisons fail), then the item is already in the tree; false
is returned (algorithm Step 5).

The Functions is_red and set_red
Because the pointers in the nodes are of type BTNode<Item_Type>*, but are in fact
RBNode<Item_Type>*, we need to use the dynamic_cast operator to cast the pointers
to the proper type to be able to access the is_red data field. To facilitate this we
define two functions: one to determine whether a node is red and the other to set
the value of the is_red field. These are shown below.

654 Chapter 11 Self-Balancing Search Trees

/** Determine whether a node is red.
@param node A pointer to a BTNode<Item_Type>
@return true if node points to a RBNode<Item_Type> that is red

*/
static bool is_red(BTNode<Item_Type>* node) {
RBNode<Item_Type>* RB_node =
dynamic_cast<RBNode<Item_Type>*>(node);

if (RB_node != NULL) {
return RB_node->is_red;

} else {
return false;

}
}

/** Set the color of a node.
@param node A pointer to a BTNode<Item_Type>
@param red A bool value that is true if the

node is to be set red, false if to be set black
*/
static void set_red(BTNode<Item_Type>* node, bool red) {
RBNode<Item_Type>* RB_node =
dynamic_cast<RBNode<Item_Type>*>(node);

if (RB_node != NULL) {
RB_node->is_red = red;

}
}

Removal from a Red-Black Tree
Removal follows the algorithm for a binary search tree that was described in
Chapter 8. Recall that we remove a node only if it is a leaf or if it has only one child.
Otherwise, the node that contains the inorder predecessor of the value being
removed is the one that is removed. If the node that is removed is red, there is noth-
ing further that must be done, because red nodes do not affect a Red-Black tree’s
balance. If the node to be removed is black and has a red child, then the red child
takes its place, and we color it black. However, if we remove a black leaf, then the
black height is now out of balance. There are several cases that must be considered.
We will describe them in Programming Project 6 at the end of this chapter.

Performance of a Red-Black Tree
It can be shown that the upper limit of the height for a Red-Black tree is 2 log2 n +
2, which is still O(log n). As with the AVL tree, the average performance is signifi-
cantly better than the worst-case performance. Empirical studies (see Robert
Sedgewick, Algorithms in C++, 3rd edition [Addison-Wesley, 1998], p. 570) show
that the average cost of a search in a Red-Black tree built from random values is
1.002 log2 n. Thus, both the AVL and Red-Black trees give performance that is close
to that of a complete binary search tree.

11.3 Red-Black Trees 655

E X E R C I S E S F O R S E C T I O N 1 1 . 3

S E L F - C H E C K

1. Show how the Red-Black tree for the “The quick brown fox . . . dog” changes as
you insert “apple”, “cat”, and “hat” in that order.

2. Insert the numbers 6, 3, and 0 in the Red-Black tree in Figure 11.21.
3. Build the Red-Black tree from the sentence “Now is the time for all good men to

come to the aid of their party.” Is it the same as the AVL tree?

P R O G R A M M I N G

1. Program the insert function for the case where local_root->data is less than the
item.

11.4 2-3 Trees

In this section we begin our discussion of three nonbinary trees. We begin with the
2-3 tree, named for the number of possible children from each node (either two or
three). A 2-3 tree is made up of nodes designated as 2-nodes and 3-nodes. A 2-node
is the same as a binary search tree node: It consists of a data field and references to
two children, one child containing values less than the data field and the other child
containing values greater than the data field. A 3-node contains two data fields,
ordered so that the first is less than the second, and references to three children: one
child containing values less than the first data field, one child containing values
between the two data fields, and one child containing values greater than the sec-
ond data field.

Figure 11.32 shows the general forms of a 2-node (data item is x) and a 3-node (data
items are x and y). The children are represented as subtrees. Figure 11.33 shows an
example of a 2-3 tree. There are only two 3-nodes in this tree (the right and right-
right nodes); the rest are 2-nodes.

A 2-3 tree has the additional property that all of the leaves are at the lowest level.
This is how the 2-3 tree maintains balance. This will be further explained when we
study the insertion and removal algorithms.

F I G U R E 1 1 . 3 2
2-Node and 3-Node

656 Chapter 11 Self-Balancing Search Trees

x

<x >x

x, y

<x >x
<y >y

2-node 3-node

F I G U R E 1 1 . 3 3
Example of a 2-3 Tree

11.4 2-3 Trees 657

Searching a 2-3 Tree
Searching a 2-3 tree is very similar to searching a binary search tree.

1. if the local root is NULL
2. Return NULL; the item is not in the tree.
3. else if this is a 2-node
4. if the item is equal to the data1 field
5. Return the data1 field.
6. else if the item is less than the data1 field
7. Recursively search the left subtree.
8. else

9. Recursively search the right subtree.
10. else // This is a 3-node
11. if the item is equal to the data1 field
12. Return the data1 field.
13. else if the item is equal to the data2 field
14. Return the data2 field.
15. else if the item is less than the data1 field
16. Recursively search the left subtree.
17. else if the item is less than the data2 field
18. Recursively search the middle subtree.
19. else

20. Recursively search the right subtree.

E X A M P L E 1 1 . 3 To search for 13 in Figure 11.33, we would compare 13 with 7 and see that it is
greater than 7, so we would search the node that contains 11 and 15. Because 13 is
greater than 11 but less than 15, we would next search the middle child, which con-
tains 13: success! The search path is shown in color in Figure 11.34.

F I G U R E 1 1 . 3 4
Searching a 2-3 Tree

7

3

1 5 9 13 17, 19

11, 15

7

3

1 5 9 13 17, 19

11, 15

Inserting an Item into a 2-3 Tree
A 2-3 tree maintains balance by being built from the bottom up, not the top down.
Instead of hanging a new node onto a leaf, we insert the new node into a leaf, as
discussed in the following paragraphs. We search for the insertion node using the
normal process for a 2-3 tree.

Inserting into a 2-Node Leaf
Figure 11.35, left, shows a 2-3 tree with three 2-nodes. We want to insert 15.
Because the leaf we are inserting into is a 2-node, then we can insert 15 directly, cre-
ating a new 3-node (Figure 11.35 right).

Inserting into a 3-Node Leaf with a 2-Node Parent
If we want to insert a number larger than 7 (say 17), that number will be virtually
inserted into the 3-node at the bottom right of the tree, giving the virtual node in
gray in Figure 11.36. Because a node can’t store three values, the middle value will
propagate up to the 2-node parent, and the virtual node will be split into two new
2-nodes containing the smallest and largest values. Because the parent is a 2-node,
it will be changed to a 3-node, and it will reference the three 2-nodes, as shown in
Figure 11.37.

Let’s now insert the numbers 5, 10, and 20. Each of these would go into one of the
leaf nodes (all 2-nodes), changing them to 3-nodes, as shown in Figure 11.38.

Inserting into a 3-Node Leaf with a 3-Node Parent
In the tree in Figure 11.38 all the leaf nodes are full, so if we insert any other num-
ber, one of the leaf nodes will need to be virtually split, and its middle value will
propagate to the parent. Because the parent is already a 3-node, it will also need to
be split.

F I G U R E 1 1 . 3 5
Inserting into a Tree
with All 2-Nodes

F I G U R E 1 1 . 3 6
A Virtual Insertion

F I G U R E 1 1 . 3 7
Result of Propagating
15 to 2-Node Parent

F I G U R E 1 1 . 3 8
Inserting 5, 10, and 20

658 Chapter 11 Self-Balancing Search Trees

7

3 11, 15

7

3 11

7

3 11, 15, 17

7, 15

3 11 17

7, 15

10, 113, 5 17, 20

F I G U R E 1 1 . 3 9
Virtually Inserting 13

F I G U R E 1 1 . 4 0
Virtually Inserting 11

F I G U R E 1 1 . 4 1
Result of Making 11 the
New Root

11.4 2-3 Trees 659

7, 15

10, 11, 133, 5 17, 20

10 133, 5 17, 20

7, 11, 15

11

7

1310

15

3, 5 17, 20

For example, if we were to insert 13, it would be virtually inserted into the leaf node
with values 10 and 11 (see Figure 11.39). This would result in two new 2-nodes
with values 10 and 13, and 11 would propagate up to be virtually inserted in the 3-
node at the root (see Figure 11.40). Because the root is full, it would split into two
new 2-nodes with values 7 and 15, and 11 would propagate up to be inserted in a
new root node. The net effect is an increase in the overall height of the tree, as
shown in Figure 11.41.

We summarize these observations in the following insertion algorithm.

Algorithm for Insertion into a 2-3 Tree
1. if the root is NULL
2. Create a new 2-node that contains the new item.
3. else if the item is in the local root
4. Return false.
5. else if the local root is a leaf
6. if the local root is a 2-node
7. Expand the 2-node to a 3-node and insert the item.
8. else

9. Split the 3-node (creating two 2-nodes) and pass the new parent
and right child back up the recursion chain.

10. else

11. if the item is less than the smaller item in the local root
12. Recursively insert into the left child.
13. else if the local root is a 2-node
14. Recursively insert into the right child.
15. else if the item is less than the larger item in the local root
16. Recursively insert into the middle child.

17. else

18. Recursively insert into the right child.
19. if a new parent was passed up from the previous level of recursion
20. if the new parent will be the tree root
21. Create a 2-node whose data item is the passed-up parent,

left child is the old root, and right child is the passed-up
child. This 2-node becomes the new root.

22. else

23. Recursively insert the new parent at the local root.

24. Return true.

E X A M P L E 1 1 . 4 We will create a 2-3 tree using “The quick brown fox jumps over the lazy dog.” The
initial root contains The, quick. If we insert brown, we will split the root. Because
brown is between The and quick, it gets passed up and will become the new root.

We now insert fox as the left neighbor of quick, creating a new 3-node.

Next, jumps is inserted between fox and quick, thus splitting this 3-node, and jumps
gets passed up and inserted next to brown.

Then over is inserted next to quick.

Now we insert the. It will be inserted to the right of over, quick, splitting that node,
and quick will be passed up. It will be inserted to the right of brown, jumps, split-
ting that node as well, causing jumps to be passed up to the new root.

quick

jumps

brown

The fox over the

fox over, quick

brown, jumps

The

fox quick

brown, jumps

The

fox, quick

brown

The

quick

brown

The

660 Chapter 11 Self-Balancing Search Trees

Finally, lazy and dog are inserted next to over and fox, respectively.

Analysis of 2-3 Trees and Comparison with Balanced
Binary Trees
The 2-3 tree resulting from the preceding example is a balanced tree of height 3 that
requires fewer complicated manipulations. There were no rotations, as were needed
to build the AVL and Red-Black trees, which were both height 4. The number of items
that a 2-3 tree of height h can hold is between 2h – 1 (all 2-nodes) and 3h – 1 (all
3-nodes). Therefore, the height of a 2-3 tree is between log3 n and log2 n. Thus the
search time is O(log n), since logarithms are all related by a constant factor, and con-
stant factors are ignored in big-O notation.

Removal from a 2-3 Tree
Removing an item from a 2-3 tree is somewhat the reverse of the insertion process.
To remove an item, we must first search for it. If the item to be removed is in a leaf
with two items, we simply delete it. If the item to be removed is not in a leaf, we
remove it by swapping it with its inorder predecessor in a leaf node and deleting it
from the leaf node. If removing a node from a leaf causes the leaf to become empty,
items from the sibling and parent can be redistributed into that leaf, or the leaf may
be merged with its parent and sibling nodes. In the latter case, the height of the tree
may decrease. We illustrate these cases next.

If we remove the item 13 from the tree shown in Figure 11.42, its node becomes
empty, and item 15 in the parent node has no left child. We can merge 15 and its
right child to form the virtual leaf node {15, 17, 19}. Item 17 moves up to the par-
ent node; item 15 is the new left child of 17 (see Figure 11.43).

F I G U R E 1 1 . 4 2
Removing 13 from a
2-3 Tree

F I G U R E 1 1 . 4 3
2-3 Tree After Redistri-
bution of Nodes
Resulting from Removal

quick

jumps

brown

The dog, fox lazy, over the

11.4 2-3 Trees 661

7

3

1 5 9 13

11, 15

17, 19

7

3

1 5 9 15

11, 17

19

F I G U R E 1 1 . 4 4
Removing 11 from a 2-3
Tree (Step 1)

F I G U R E 1 1 . 4 5
2-3 Tree After
Removing 11

F I G U R E 1 1 . 4 6
After Removing 1
(Intermediate Step)

F I G U R E 1 1 . 4 7
After Removing 1
(Final Form)

We next remove 11 from the 2-3 tree. Because this is not a leaf, we replace it with
its predecessor, 9, as shown in Figure 11.44. We now have the case where the left
leaf node of 9 has become empty. So we merge 9 into its right leaf node as shown
in Figure 11.45.

Finally, let’s consider the case in which we remove the value 1 from Figure 11.45.
First, 1’s parent (3) and its right sibling (5) are merged to form a 3-node, as shown
in Figure 11.46. This has the effect of deleting 3 from the next higher level.
Therefore, the process repeats, and 3’s parent (7) and 7’s right child (17) are merged
as shown in Figure 11.47. The merged node becomes the root.

The 2-3 tree served as an inspiration for the more general 2-3-4 tree and B-tree.
Rather than show an implementation of the 2-3 tree, which has some rather messy
complications, we will describe and implement the more general 2-3-4 tree in the
next section.

662 Chapter 11 Self-Balancing Search Trees

7

3

1 5 9 15

9, 17

19

7

3

1 5 19

17

9, 15

3, 5

7

3

19

17

9, 15

199, 15

7, 17

3, 5

E X E R C I S E S F O R S E C T I O N 1 1 . 4

S E L F - C H E C K

1. Show the following tree after inserting each of the following values one at a time:
1, 4, 9.

2. Show the following tree after inserting each of the following one at a time: 9, 13.

3. Show the 2-3 tree that would be built for the sentence “Now is the time for all
good men to come to the aid of their party.”

11.5 2-3-4 and B-Trees

The 2-3 tree was the inspiration for the more-general B-tree, which allows up to n
children per node, where n may be a very large number. The B-tree was designed for
building indexes to very large databases stored on a hard disk.

The 2-3-4 tree is a specialization of the B-tree. It is called a specialization because it
is basically a B-tree with n equal to 4. The 2-3-4 tree is also interesting because the
Red-Black tree can be considered a 2-3-4 tree in a binary-tree format.

2-3-4 Trees
2-3-4 trees expand on the idea of 2-3 trees by adding the 4-node (see Figure 11.48).
This is a node with three data items and four children. Figure 11.49 shows an exam-
ple of a 2-3-4 tree.

F I G U R E 1 1 . 4 8
2-, 3-, and 4-Nodes

7

3 11, 15

7

3 11

11.5 2-3-4 and B-Trees 663

x

<x >x

x, y

<x >x
<y >y

x, y, z

<x >x
<y

>y
<z >z

2-node 4-node3-node

The addition of this third data item simplifies the insertion logic. We can search for
the leaf in the same way as for a 2-3 tree. If a 4-node is encountered at any point,
we will split it, as discussed subsequently. Therefore, when we reach a leaf, we are
guaranteed that there will be room to insert the item.

For the 2-3-4 tree shown in Figure 11.49, a number larger than 62 would be inserted
in a leaf node in the right subtree. A number between 63 and 78, inclusive, would
be inserted in the 3-node (68, 71), making it a 4-node. A number larger than 79
would be inserted in the 2-node (90), making it a 3-node.

When inserting a number smaller than 62 (say, 25), we would encounter the 4-node
(14, 21, 38). We would immediately split it into two 2-nodes and insert the middle
value (21) into the parent (62) as shown in Figure 11.50. Doing this guarantees that
there will be room to insert the new item. We perform the split from the parent level
and immediately insert the middle item from the split child in the parent node.
Because we are guaranteed that the parent is not a 4-node, we will always have
room to do this. We do not need to propagate a child or its parent back up the recur-
sion chain. Consequently the recursion becomes tail recursion.

In this example, splitting the 4-node was not necessary. We could have merely
inserted 25 as the left neighbor of 28. However, if the leaf being inserted into was a
4-node, we would have had to split it and propagate the middle item back up the
recursion chain, just as we did for the 2-3 tree. The choice always to split a 4-node
when it is encountered while searching for an insertion spot results in prematurely
splitting some nodes, but it simplifies the algorithm and has minimal impact on the
overall performance.

Now we can insert 25 as the left neighbor of 28 as shown in Figure 11.51.

F I G U R E 1 1 . 5 0
Result of Splitting a
4-Node

F I G U R E 1 1 . 4 9
Example of a 2-3-4 Tree

664 Chapter 11 Self-Balancing Search Trees

2815 90

14, 21, 38

62

4 55, 56 68, 71

79

28 55, 56

38

154 90

14 79

21, 62

68, 71

F I G U R E 1 1 . 5 1
2-3-4 Tree After
Inserting 25

E X A M P L E 1 1 . 5 We will again use the sentence “The quick brown fox jumps over the lazy dog.”
After the first three words are inserted, the root contains The, brown, and quick.

This is a 4-node. Prior to inserting fox, this node is split.

Because fox is larger than brown, we recursively apply the insert to quick. Because
fox is smaller than quick, we obtain the following tree.

Because jumps is larger than brown and between fox and quick, we insert it as fol-
lows.

Next, we consider over. This is larger than brown. The right child of brown, how-
ever, is a 4-node, so we split it and insert its middle value, jumps, next to brown.

Because over is larger than jumps, we insert it next to quick.

fox over, quick

brown, jumps

The

fox quick

brown, jumps

The

fox, jumps, quick

brown

The

fox, quick

brown

The

quick

brown

The

The, brown, quick

11.5 2-3-4 and B-Trees 665

55, 5625, 28

38

154 90

14 79

21, 62

68, 71

The next word, the, gets inserted to the right of quick.

The next word, lazy, is larger than jumps, and we find that the right child of the
node containing jumps is a 4-node, so it gets split.

Now we need to insert lazy. However, before we insert lazy, we observe that the
root is a 4-node. So we immediately split it.

Now we can insert lazy next to over.

Last, we insert dog.

Implementation of the Two_Three_Four_Tree Class
Instead of defining specialized nodes for a 2-3-4 tree, we can define a general node
that holds up to CAP - 1 data items and CAP children, where CAP is a template param-
eter. The information will be stored in the array data of size CAP - 1, and the point-
ers to the children will be stored in the array child of size CAP. The information
values will be sorted so that data[0] < data[1] < data[2] < The data field
size will indicate how many data values are in the node. The children will be asso-
ciated with the data values such that child[0] points to the subtree with items
smaller than data[0], child[size] points to the subtree with items larger than
data[size - 1], and for 0 < i < size, child[i] points to items greater than data[i
- 1] and smaller than data[i].

quick

jumps

brown

The dog, fox lazy, over the

quick

jumps

brown

The fox lazy, over the

quick

jumps

brown

The fox over the

fox the

brown, jumps, quick

The over

fox over, quick, the

brown, jumps

The

666 Chapter 11 Self-Balancing Search Trees

We show the class Node for a 2-3-4 tree next. Notice that the data field root is
declared to be of type Node<4>*.

/** The reference to the root. */
Node<4>* root;

This is because for the 2-3-4 tree the node has a CAP of 4. In the next section we dis-
cuss how this can be generalized to any value. Note also that while the Node is gen-
eralized, the algorithm and code for the Two_Three_Four_Tree is not.

Listing 11.6 shows the data field root and inner class Node. The algorithm follows.

L I S T I N G 1 1 . 6
The Data Fields and Constructor of Class Two_Three_Four_Tree and Class Node

template<typename Item_Type>
class Two_Three_Four_Tree {

// Inner Class
/** A Node represents a node in a 2-3-4 tree. CAP represents

the maxumum number of children. For a 2-3-4 tree CAP is 4.
This class has no functions; it is merely a container of
private data.

*/
template<size_t CAP>
struct Node {

/** The number of data items in this node */
size_t size;

/** The information */
Item_Type data[CAP - 1];

/** The links to the children. child[i] refers to
the subtree of children < data[i] for i < size
and to the subtree of children > data[size - 1]
for i == size. */

Node* child[CAP];

Node() {
for (size_t i = 0; i < CAP; i++) {
if (i < CAP - 1)
data[i] = Item_Type();

child[i] = NULL;
}

}
};

// Data Fields
/** The reference to the root. */
Node<4>* root;

public:
/** Create an empty Two_Three_Four_Tree */
Two_Three_Four_Tree() : root(NULL) {}

...

11.5 2-3-4 and B-Trees 667

Algorithm for Insertion into a 2-3-4 Tree
1. if the root is NULL
2. Create a new 2-node with the item.
3. Return true.
4. if the root is a 4-node
5. Split it into two 2-nodes, making the middle value the new root.
6. Set index to 0.
7. while the item is less than data[index]
8. Increment index.
9. if the item is equal to data[index]

10. Return false.
else

11. if child[index] is NULL
12. Insert the item into the local root at index, moving the existing

data and child values to the right.
else if child[index] does not reference a 4-node

13. Recursively continue the search with child[index] as the local
root.

else

14. Split the node referenced by child[index].
15. Insert the parent into the local root at index.
16. if the new parent is equal to the item, return false.
17. if the item is less than the new parent
18. Recursively continue the search with child[index] as the

local root.
else

19. Recursively continue the search with child[index + 1] as
the local root.

The insert Starter Function
If the root is NULL, then a new 2-node is created and becomes the root.

/** Insert an object into the tree.
@param obj The object to be inserted
@return true if the item was inserted

*/
bool insert(const Item_Type& item) {
if (root == NULL) {
root = new Node<4>;
root->data[0] = item;
root->size = 1;
return true;

}

Otherwise, we see whether the root is a 4-node. If it is, then it is split, and the new
parent becomes the new root (Step 5).

668 Chapter 11 Self-Balancing Search Trees

if (root->size == 3) {
Item_Type new_parent;
Node<4>* new_child;
split_node(root, new_parent, new_child);
Node<4>* new_root = new Node<4>;
new_root->data[0] = new_parent;
new_root->child[0] = root;
new_root->child[1] = new_child;
new_root->size = 1;

}

Then we recursively insert starting at the root.
return insert(root, item);

}

Recursive insert Function
We begin by finding index such that the value to be inserted is less than or equal to
data[index] or index is equal to the number of data items in the node (Steps 6–8) .

/** Recursive function to insert an object into the tree.
@param local_root The local root
@param item The item to be inserted
@return true if the item was inserted,

false if the item is already in the tree
*/
bool insert(Node<4>* local_root, const Item_Type& item) {
size_t index = 0;
while (index < local_root->size

&& local_root->data[index] < item) {
index++;

}
// index == local_root->size or item <= local_root.data[index]

Next we see whether the item is equal to data[index]. If so, we return false (Steps
9, 10).

if (index != local_root->size
&& !(item < local_root->data[index])) {

// Item is already in the tree.
return false;

}

If child[index] is NULL, insert the item into the local root (Step 12).
if (local_root->child[index] == NULL) {
insert_into_node(local_root, index, item, NULL);
return true;

}

If child[index] does not reference a 4-node, then we recursively continue the insert
at this child (Step 13).

else if (local_root->child[index]->size < 3) {
return insert(local_root->child[index], item);

}

Otherwise we need to split the child and insert the middle value from this child into
the current root at index (Steps 14–15).

11.5 2-3-4 and B-Trees 669

else {
Item_Type new_parent;
Node<4>* new_child;
split_node(local_root->child[index], new_parent, new_child);
insert_into_node(local_root, index,

new_parent, new_child);

The newly inserted parent could be equal to the item to be inserted. If it is, then we
return false. Otherwise we continue to insert recursively either at child[index] or
at child[index + 1], depending on whether the inserted item is less than or greater
than the newly inserted parent (Steps 16–19).

if (item < local_root->data[index]) {
return insert(local_root->child[index], item);

} else if (local_root->data[index] < item) {
return insert(local_root->child[index + 1], item);

} else {
return false;

}
}

}

The split_node Function
The split_node function takes a 4-node as its parameter. The function changes this
node into a 2-node that contains the left data item and the left two children, creates a
new 2-node with the right data item and the right two children, and sets new_parent
to the middle item. The caller of split_node will either insert the middle item into the
existing parent node, or it will insert the middle item into a new node if the root is
being split (the case shown in the figure at left).

void split_node(Node<4>* node, Item_Type& new_parent,
Node<4>*& new_child) {

new_child = new Node<4>;
new_parent = node->data[1];
new_child->size = 1;
new_child->data[0] = node->data[2];
new_child->child[0] = node->child[2];
new_child->child[1] = node->child[3];
node->size = 1;

}

The insert_into_node Function
The insert_into_node function shifts the data and child values to the right and
inserts the new value and child at the indicated index.

void insert_into_node(Node<4>* node, size_t index,
const Item_Type& item, Node<4>* child) {

for (size_t i = node->size; i > index; i--) {
node->data[i] = node->data[i - 1];
node->child[i + 1] = node->child[i];

}
node->data[index] = item;
node->child[index + 1] = child;
node->size++;

}

We will not discuss deletion, but it is similar to deletion from a 2-3 tree.

670 Chapter 11 Self-Balancing Search Trees

28

38

21

4 15

14

2815

14, 21, 38

4 55, 56

55, 56

(a) (b)

(c)

Relating 2-3-4 Trees to Red-Black Trees
A Red-Black tree is a binary-tree equivalent of a 2-3-4 tree. A 2-node is a black node
(see Figure 11.52). A 4-node is a black node with two red children (see Figure
11.53). A 3-node can be represented as either a black node with a left red child or
a black node with a right red child (see Figure 11.54).

Suppose we want to insert a value z that is greater than y into the 3-node shown at
the top of Figure 11.54 (tree with black root y). Node z would become the red right
child of black node y, and the subtree with label >y would be split into two parts,
giving the 4-node shown in Figure 11.53.

Suppose, on the other hand, we want to insert a value z that is between x and y into
the 3-node shown at the bottom of Figure 11.54 (tree with black root x). Node z
would become the red left child of red node y (see the left diagram in Figure 11.55),
and a double rotation would be required. First rotate right around y (the middle dia-
gram) and then rotate left around x (the right diagram). This corresponds to the sit-
uation shown in Figure 11.56 (a 4-node with x, z, y).

F I G U R E 1 1 . 5 2
A 2-Node as a
Black Node in a
Red-Black Tree

F I G U R E 1 1 . 5 3
A 4-Node as a
Black Node with
Two Red Children
in a Red-Black Tree

F I G U R E 1 1 . 5 4
A 3-Node as a
Black Node with
One Red Child in a
Red-Black Tree

11.5 2-3-4 and B-Trees 671

x

<x >x

x

<x >x

y

x z

x, y, z

<x >x
<y

>y
<z >z

<x >x
<y

>y
<z >z

y

x

x, y

<x >x
<y >y>y

x, y

<x >x
<y >y

<x >x
<y

y

>y

<x
>x
<y

x

y

F I G U R E 1 1 . 5 5
Inserting into the Middle of a 3-Node (Red-Black Tree Equivalent)

672 Chapter 11 Self-Balancing Search Trees

>y

<x

>x
<z

>z
<y

x

y

z

>y

<x
>x
<z

>z
<y

x

z

y

>y<x >x
<z

z

y

>z
<y

x

F I G U R E 1 1 . 5 6
Inserting into the Middle
of a 3-Node (2-3-4 Tree)

B-Trees
A B-tree extends the idea behind the 2-3 and 2-3-4 trees by allowing a maximum of
CAP - 1 data items in each node. Other than the root, each node contains between
(CAP - 1)/2 and CAP - 1 data items. Figure 11.57 shows an example of a B-tree
with CAP equal to 5. The order of a B-tree is defined as the maximum number of
children for a node, so this is a B-tree of order 5. Except for the root, each node is
a leaf node.

B-trees were developed to store indexes to databases stored on disk. Disk storage is
broken into blocks, and the time to access a block is significant compared to the time
required to manipulate data once it is in internal memory. The nodes of a B-tree are
sized to fit in a block, so each disk access to the index retrieves exactly one B-tree
node. The time to retrieve a block is large compared to the time required to process
it in memory, so by making the tree nodes as large as possible, we reduce the num-
ber of disk accesses required to find an item in the index. Assuming that a block can
store a node for a B-tree of order 200, each node would store at least 100 items. This
would enable 1004, or 100 million, items to be accessed in a B-tree of height 4.

The insertion process for a B-tree is similar to that for a 2-3 or 2-3-4 tree, and each
insertion is into a leaf. For example, a number less than 10 would be inserted into
the leftmost leaf; a number greater than 40 would be inserted into the rightmost
leaf; and numbers between 11 and 39 would be inserted into one of the interior
leaves. If the leaf being inserted into is full, it is split into two nodes, each contain-
ing approximately half the items, and the middle item is passed up to the split node’s
parent. If the parent is full, it is split and its middle item is passed up to its parent,
and so on. If a node being split is the root of the B-tree, a new root node is created,
thereby increasing the height of the B-tree. The children of the new root will be the
two nodes that resulted from splitting the old root. Figure 11.58 shows the B-tree
after inserting 17. The node {13, 15, 18, 20} was split, and 17 was passed up. Then
the old root node was split, and 22 was passed up to the new root.

x, z, y

<x >x
<z

>z
<y >y

F I G U R E 1 1 . 5 7
Example of a B-Tree

F I G U R E 1 1 . 5 8
Inserting into a B-Tree

Implementing the B-Tree
In the 2-3-4 tree implementation, we made the Node class a template, giving it the
parameter CAP that represented the maximum number of children. We can use this
same Node class in the B_Tree, but now the template parameter applies to the whole
class. Thus we begin the declaration of the B_Tree class as follows:

template<typename Item_Type, size_t CAP>
class B_Tree {

// Inner Class
/** A Node represents a node in a B-tree. CAP represents

the maxumum number of children. This class has no functions;
it is merely a container of private data.

*/
struct Node {
...

};

// Data Fields
/** The reference to the root. */
Node* root;

The definition of the Node class is the same as shown in Listing 11.6.

The insert function is very similar to that for the 2-3 and 2-3-4 trees. It searches
the current Node for the item until it reaches a leaf, and then inserts the item into
that leaf. If the leaf is full, it is split. In the 2-3 tree we described this process as a
virtual insertion into the full leaf and then using the middle data value as the parent
of the split-off node. This parent value was then inserted into the parent node dur-
ing the return process of the recursion. In the 2-3-4 tree we avoided this complica-
tion by splitting a full node during the search process, thus the search process never

11.5 2-3-4 and B-Trees 673

2210 30 40

1513 18 20 3532 38

75 8 2726 4642

22

10 17 30 40

1513 35 3832

7 85 2018 4642

2726

terminated with a full node. If the maximum number of children is odd (and thus
there are an even number of data values), splitting on the way up the recursion chain
results in the split node and the split-off node having equal numbers of data values.
If the split on the way down is applied to this case, the split node and split-off node
can be misbalanced, with one node having one less than half the values and the
other having one more. If the number of children is even (and thus there are an odd
number of data values), splitting on the way down is simpler, since the center value
is well defined, while after the virtual insertion there is a choice for the center value.
However, the result has to be that either split node or the split-off node has one
more data value than the other.

Therefore, we will use a generalization of the insertion algorithm described for the
2-3 tree.

Algorithm for Insertion into a B-Tree
1. if the root is NULL
2. Create a new Node that contains the inserted item.
3. else search the local root for the item
4. if the item is in the local root
5. Return false.
6. else

7. if the local root is a leaf
8. if the local root is not full
9. Insert the new item.

10. Return NULL as the new_child and true to indicate
successful insertion.

11. else

12. Split the local root.
13. Return the new_parent and a pointer to the new_child

and true to indicate successful insertion.
14. else

15. Recursively call the insert function.
16. if the returned new_child is not NULL
17. if the local root is not full
18. Insert the new_parent and new_child into the

local root.
19. Return NULL as the new_child and true to indi-

cate successful insertion
20. else

21. Split the local root.
22. Return the new_parent and a pointer to the

new_child and true to indicate successful
insertion.

23. else

24. Return the success/fail indicator for the insertion.

674 Chapter 11 Self-Balancing Search Trees

In this algorithm we described multiple return values. There is the bool return value
that indicates success or failure of the insertion. There is the new_parent of the split-
off node, and there is a pointer to the split-off node, which we call the new_child.
We implement this by using the return value from the insert function as the suc-
cess/fail indicator, and passing new_parent and new_child as reference parameters. If
there is no new_child, NULL is returned, and the value in new_parent is not changed.

Code for the insert Function
The code for the insert function is shown in Listing 11.7. It is very similar to the
code for the 2-3-4 tree. Instead of a linear search, we use a binary search to locate
the item in the local root. The binary_search function returns a pointer to the item
if it is present or a pointer to the position where the item should be inserted. We con-
vert the returned pointer into an index using the statement

size_t index = pointer - local_root->data;

In the 2-3-4 tree, if the local root was a leaf and the item was not found, we could
insert it. With the B-tree we need to test to see whether the local root is full. If it is
full, we need to split the local root; otherwise we can insert. In either case we return
true.

if (local_root->size < CAP - 1) {
insert_into_node(local_root, index, item, NULL);
new_child = NULL;

} else {
split_node(local_root, index, item, NULL, new_parent, new_child);

}
return true;

If the local root is not a leaf, then we recursively call the insert function using
local_root->child[index] as the local_root argument. However, in contrast to the
2-3-4 tree, we do not test this Node’s size prior to the recursive call; rather, we test
to see whether a new_child is returned. If one is, and the local_root is full, it is split;
otherwise we insert the new_parent and new_child into the local_root.

bool result = insert(local_root->child[index],
item, new_parent, new_child);

if (new_child != NULL) {
if (local_root->size < CAP - 1) {
insert_into_node(local_root, index, new_parent, new_child);
new_child = NULL;

} else {
split_node(local_root, index, new_parent, new_child,

new_parent, new_child);
}

}
return result;

The insert_into_node functions for the B-tree and 2-3-4 tree are the same. The
split_node functions, however are different. We describe the split_node function
next.

11.5 2-3-4 and B-Trees 675

L I S T I N G 1 1 . 7
The insert Function from B_Tree.h

/** Recursive function to insert an object into the tree.
@param local_root The local root
@param item The item to be inserted
@param new_parent The parent of the split node
@param new_child Pointer to the subtree containing items

greater than the new_parent
@return true if the item was inserted,

false if the item is already in the tree
*/
bool insert(Node* local_root, const Item_Type& item,

Item_Type& new_parent, Node*& new_child) {
Item_Type* pointer = binary_search(local_root->data,

local_root->data + local_root->size,
item);

size_t index = pointer - local_root->data;
// index == local_root->size or item <= local_root.data[index]

if (index != local_root->size
&& !(item < local_root->data[index])) {

// Item is already in the tree.
return false;

}
// See if local_root is a leaf
if (local_root->child[index] == NULL) {
if (local_root->size < CAP - 1) {
insert_into_node(local_root, index, item, NULL);
new_child = NULL;

} else {
split_node(local_root, index, item, NULL, new_parent, new_child);

}
return true;

} else {
bool result = insert(local_root->child[index],

item, new_parent, new_child);
if (new_child != NULL) {
if (local_root->size < CAP - 1) {
insert_into_node(local_root, index, new_parent, new_child);
new_child = NULL;

} else {
split_node(local_root, index, new_parent, new_child,

new_parent, new_child);
}

}
return result;

}
}

The split_node Function
The split_node function will perform the virtual insertion of the new item (and its
child) into the node and split it so that half of the items remain, and that half are
moved to the split-off node. The middle value becomes the parent of the split-off
node. This is illustrated in Figure 11.59.

676 Chapter 11 Self-Balancing Search Trees

F I G U R E 1 1 . 5 9
Splitting the Node

11.5 2-3-4 and B-Trees 677

[0] [(CAP - 1)/2] [CAP - 1]

Node before split
with new item
virtually inserted

New parent

Node after split

Split-off node

... ...

... ...

... ...

The code for the split_node function is shown in Listing 11.8. Because we cannot
insert the new item into the node before it is split, we need to do the split first in
such a way that space is available in either the original node or the split-off node for
the new item. After the split we want half of the items to remain in the original node
and the other half moved to the split-off node. The number of items is CAP - 1; thus
half of them is (CAP - 1)/2, and the other half is (CAP - 1) - (CAP - 1)/2. The
reason that the other half is not simply (CAP - 1)/2 is that CAP - 1 may be an odd
number. Thus we move (CAP - 1) - (CAP - 1)/2 items, unless the new item is to
be inserted into the split-off node, in which case we move one fewer item. The num-
ber of items to be moved is computed using the following statements:

// Determine number of items to move
size_t num_to_move = (CAP - 1) - (CAP - 1)/2;
// If insert is to the right half, move one less item
if (index > (CAP - 1)/2)
num_to_move--;

The standard copy algorithm is then used to move the data and the corresponding
children.

std::copy(node->data + (CAP - 1) - num_to_move,
node->data + (CAP - 1), new_child->data);

std::copy(node->child + CAP - num_to_move, node->child + CAP,
new_child->child + 1);

node->size = (CAP - 1) - num_to_move;
new_child->size = num_to_move;

Now we are ready to insert the new item and set the new_child->child[0] pointer.
There are three cases: the item is to be inserted as the middle item, the item is to be
inserted into the original node, and the item is to be inserted into the new_child. If
the item is to be inserted into the middle, then it becomes the new_parent, and its
child becomes new_child->child[0].

if (index == (CAP - 1)/2) { // Insert into the middle
new_parent = item;
new_child->child[0] = child;

}

Otherwise we can use the insert_into_node function to insert the item into either
the original node or the new_child.

if (index < (CAP - 1)/2) { // Insert into the left
insert_into_node(node, index, item, child);

} else { // Insert into right
insert_into_node(new_child, index - (CAP - 1)/2 - 1, item, child);

}

In either case, after the insert the last item in the original node becomes the new_par-
ent, and its child becomes new_child->child[0]

// The rightmost item of the node becomes the new parent
new_parent = node->data[node->size-1];
// Its child is now the left child of the split-off node
new_child->child[0] = node->child[node->size];
node->size--;

L I S T I N G 1 1 . 8
Function split_node from B_Tree.h

/** Function to virtually insert a new item into a full
node and split the result into two nodes.
pre: node->data[index - 1] < item < node->data[index]

and node->size = CAP-1.
post: Node is split and the item is inserted in the left, right,

or center. The center item becomes the parent of the right half.
@param node The node to insert the value into
@param index The index where the inserted item is to be placed
@param item The value to be inserted
@param child The right child of the value to be inserted
@param new_parent The item that is the parent of the split-

off child
@param new_child The split-off child

*/
void split_node(Node* node, size_t index,

const Item_Type& item, Node* child,
Item_Type& new_parent, Node*& new_child) {

// Create new child
new_child = new Node;
// Determine number of items to move
size_t num_to_move = (CAP - 1) - (CAP - 1)/2;
// If insert is to the right half, move one less item
if (index > (CAP - 1)/2)
num_to_move--;

// Move items
std::copy(node->data + (CAP - 1) - num_to_move,

node->data + (CAP - 1), new_child->data);
std::copy(node->child + CAP - num_to_move, node->child + CAP,

new_child->child + 1);
node->size = (CAP - 1) - num_to_move;
new_child->size = num_to_move;

678 Chapter 11 Self-Balancing Search Trees

// Insert new item
if (index == (CAP - 1)/2) { // Insert into the middle
new_parent = item;
new_child->child[0] = child;

} else {
if (index < (CAP - 1)/2) { // Insert into the left
insert_into_node(node, index, item, child);

} else { // Insert into right
insert_into_node(new_child, index - (CAP - 1)/2 - 1, item, child);

}
// The rightmost item of the node becomes the new parent
new_parent = node->data[node->size-1];
// Its child is now the left child of the split-off node
new_child->child[0] = node->child[node->size];
node->size--;

}
}

Removal from B-Tree
Removing an item from a B-tree is a generalization of removing an item from a 2-3
tree. If the item to be removed is in a leaf, it is removed; otherwise it is replaced by
its inorder predecessor that is in a leaf. If the leaf is now less than half full, items
from a sibling node and the parent are redistributed into that leaf. However, if the
sibling is itself exactly half full, the leaf, its parent, and sibling are merged into a sin-
gle node, deleting the leaf from the parent node. If the parent node is now half full,
the process of node re-redistribution or merging is repeated during the recursive
return process.

We illustrate this process by deleting the item 18 from Figure 11.58. The leaf node
that contained 18 would have only one item, so we merge it with its parent and left
sibling into a new node (13, 15, 17, 20), as shown in Figure 11.60.

The problem is that the parent of (13, 15, 17, 20) has only one item (10), so it is
merged with its parent and right sibling to form a new root node (10, 22, 30, 40)
as shown in Figure 11.61. Note that the height of the resulting B-tree has been
reduced by 1.

F I G U R E 1 1 . 6 0
Step 1 of Removing 18
from the B-Tree of
Figure 11.58

F I G U R E 1 1 . 6 1
Final B-Tree after
Removal of 18 from
Figure 11.58

11.5 2-3-4 and B-Trees 679

22

10 30 40

1513 17 20 35 38327 85 46422726

2210 30 40

1513 17 20 3532 3875 8 2726 4642

F I G U R E 1 1 . 6 2
Example of a B+ Tree

680 Chapter 11 Self-Balancing Search Trees

5 22

5 10 17 22 30 40

151310 32 35 3830

7 85 1817 20 42 4640

2622 27

B+ Trees
We stated earlier that B-trees were developed and are still used to create indexes for
databases. The Node is stored on a disk block, and the pointers are pointers to disk
blocks instead of being memory addresses. The Item_Type is a key-value pair, where
the value is also a pointer to a disk block. Because all of the child pointers in the leaf
nodes are NULL, there is a significant amount of wasted space. A modification to the
B-tree, known as the B+ tree, was developed to reduce this wasted space. In the B+
tree the leaves contain the keys and pointers to the corresponding values. The inter-
nal nodes contain only keys and pointers to children. In the B-tree there are CAP
pointers to children and CAP - 1 values. In the B+ tree the parent’s value is repeated
as the first value; thus there are CAP pointers and CAP keys. An example of a B+ tree
is shown in Figure 11.62.

E X E R C I S E S F O R S E C T I O N 1 1 . 5

S E L F - C H E C K

1. Show the following tree after inserting each of the following values one at a time:
1, 5, 9, and 13.

2. Build a 2-3-4 tree to store the words in the sentence “Now is the time for all good
men to come to the aid of their party.”

3. Draw the Red-Black tree equivalent of the 2-3-4 tree shown in Exercise 1.

2815 90

14, 21, 38

62

4 55, 56 68, 71

79

Chapter 11 Review 681

4. Draw the 2-3-4 tree equivalent to the following Red-Black tree.

5. Draw a B-tree with CAP = 4 that stores the sequence of integers: 20, 30, 8, 10, 15,
18, 44, 26, 28, 23, 25, 43, 55, 36, 44, 39.

6. Remove items 30, 26, 15, and 17 from the B-tree in Figure 11.58.

7. Draw the B+ tree that would be formed by inserting the integers shown in
Exercise 5.

P R O G R A M M I N G

1. Code the find function for the 2-3-4 tree.
2. Code the binary_search function for the B-tree.

C h a p t e r R e v i e w

◆ Tree balancing is necessary to ensure that a search tree has O(log n) behavior. Tree
balancing is done as part of an insertion or removal.

◆ An AVL tree is a balanced binary tree in which each node has a balance value that
is equal to the difference between the heights of its right and left subtrees (hR –
hL). A node is balanced if it has a balance value of 0; a node is left-(right-)heavy
if it has a balance of –1 (+1). Tree balancing is done when a node along the inser-
tion (or removal) path becomes critically out of balance; that is, when the absolute
value of the difference of the height of its two subtrees is 2. The rebalancing is
done after returning from a recursive call in the insert or remove function.

◆ For an AVL tree, there are four kinds of imbalance and a different remedy for
each.

—Left-Left (parent balance is –2, left child balance is –1): Rotate right around
parent.

—Left-Right (parent balance is –2, left child balance is +1): Rotate left around
child, then rotate right around parent.

51

7

4

148

2 11

—Right-Right (parent balance is +2, right child balance is +1): Rotate left around
parent.

—Right-Left (parent balance is +2, right child balance is –1): Rotate right around
child, then rotate left around parent.

◆ A Red-Black tree is a balanced tree with red and black nodes. After an insertion
or removal, the following invariants must be maintained for a Red-Black tree.

—A node is either red or black.
—The root is always black.
—A red node always has black children. (A NULL reference is considered to refer

to a black node.)
—The number of black nodes in any path from the root to a leaf is the same.

◆ To maintain tree balance in a Red-Black tree, it may be necessary to recolor a
node and also to rotate around a node. The rebalancing is done inside the insert
or remove function, right after returning from a recursive call.

◆ Trees whose nodes have more than two children are an alternative to balanced
binary search trees. These include 2-3 and 2-3-4 trees. A 2-node has two children,
a 3-node has three children, and a 4-node has four children. The advantage to
these trees is that keeping the trees balanced is a simpler process. Also, the tree
may be less deep because a 3-node can have three children and a 4-node can have
four children, but they still have O(log n) behavior.

◆ A 2-3-4 tree can be balanced on the way down the insertion path by splitting a 4-
node into two 2-nodes before inserting a new item. This is easier than splitting
nodes and rebalancing after returning from an insertion.

◆ A B-tree is a tree whose nodes can store up to CAP items and is a generalization of
a 2-3-4 tree. B-trees are used as indexes to large databases stored on disk. The
value of CAP is chosen so that each node is as large as it can be and still fit in a
disk block. The time to retrieve a block is large compared to the time required to
process it in memory, so by making the tree nodes as large as possible, we reduce
the number of disk accesses required to find an item in the index.

◆ A B+ tree is a variation on the B-tree that stores keys and pointers to data in the
leaf nodes and keys and pointers to child nodes in the internal nodes. The parent
of a child node is repeated as the first key of the child. Thus each node holds CAP
keys and CAP pointers.

682 Chapter 11 Self-Balancing Search Trees

Quick-Check Exercises
1. Show the following AVL tree after inserting mouse. What kind of imbalance occurs, and

what is the remedy?

Chapter 11 Review 683

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

2. Show the following Red-Black tree after inserting 12 and then 13. What kind of rota-
tion, if any, is performed?

3. Show the following 2-3 tree after inserting 45 and then 20.

4. Show the following 2-3-4 tree after inserting 40 and then 50.

5. Draw the Red-Black tree equivalent to the following 2-3-4 tree.

4033

30, 35, 50

20 55, 56

2815 90

14, 21, 38

62

4 55, 56 68, 71

79

25

15, 18 33, 44

51

7

4

148

2 11

6. Draw the 2-3-4 tree equivalent to the following Red-Black tree.

7. Show the following B-tree after inserting 45 and 21.

Answers to Quick-Check Exercises
1. When mouse is inserted (to the right of morn), node morn has a balance of +1, and

node priest has a balance of –2. This is a case of Left-Right imbalance. Rotate left
around morn and right around priest. Node mouse will have morn (priest) as its left
(right) subtree.

2. When we insert 12 as a red node, it has a black parent, so we are done. When we insert
13, we have the situation shown in the first of the following figures. This is the mirror
image of case 3 in Figure 11.25. We correct it by first rotating left around 12, giving the
second of the following figures. Then we change 14 to red and 13 to black and rotate
right around 13, giving the tree in the third figure.

3. The 2-3 tree after inserting 45 is as follows.

The 2-3 tree after inserting 20 is as follows.

33 45

44

25

15 20

18

33 4515, 18

25, 44

4

51

7

2

138

11

12 144

51

7

2

148

11

13

12

4

51

7

2

148

11

12

13

2210 30 40

1513 18 20 3532 38

75 8 2726 4642

10

25

5 4531

40

30 32

684 Chapter 11 Self-Balancing Search Trees

4. When 40 is inserted, the 4-node 14, 21, 38 is split and 21 is inserted into the root, 62.
The node 14 has the children 4 and 15, and the node 38 has the children 28 and the 3-
node 55, 56. We then insert 40 into the 3-node, making it a 4-node. The result follows.

When we insert 50, the 4-node 40, 55, 56 is split and the 55 is inserted into the 2-node
38. Then 50 is inserted into the resulting 2-node, 40, making it a 3-node, as follows.

5. The equivalent Red-Black tree follows.

6. The equivalent 2-3-4 tree follows.

7. Insert 45 in a leaf.

To insert 21, we need to split node {13, 15, 18, 20} and pass 18 up. Then we split the
root and pass 22 up to the new root.

22

10 18 30 40

1513 35 3832

7 85 2120 45 4642

2726

2210 30 40

1513 18 20 3532 38

75 8 2726 45 4642

30, 31, 32

25, 40

5, 10 45

35

56403320

5030

55

90

79

21, 62

68, 7140, 504 15

14

28 56

38, 55

90

79

21, 62

68, 714 15

14

28

38

40, 55, 56

Chapter 11 Review 685

Review Questions
1. Draw the mirror images of the three cases for insertion into a Red-Black tree and

explain how each situation is resolved.
2. Show the AVL tree that would be formed by inserting the month names (12 strings) in

their normal calendar sequence.
3. Show the Red-Black tree that would be formed by inserting the month names in their

normal calendar sequence.
4. Show the 2-3 tree that would be formed by inserting the month names in their normal

calendar sequence.
5. Show the 2-3-4 tree that would be formed by inserting the month names in their normal

calendar sequence.
6. Show a B-tree of capacity 5 that would be formed by inserting the month names in their

normal calendar sequence.

Programming Projects
1. Code the missing functions for insertion in the AVL_Tree class. Use it to insert a collec-

tion of randomly generated numbers. Insert the same numbers in a binary search tree
that is not balanced. Verify that each tree is correct by performing an inorder traversal.
Also, display the format of each tree that was built and compare their heights.

2. Code the Red_Black_Tree class by coding the missing functions for insertion. Redo
Project 1 using this class instead of the AVL_Tree class.

3. Code the Two_Three_Four_Tree class by coding the missing functions. Redo Project 1
using this class instead of the AVL_Tree class.

4. Code the Two_Three_Tree class. Redo Project 1 using this class instead of the AVL_Tree
class.

5. Complete the AVL_Tree class by providing the missing functions for removal.
Demonstrate that these functions work.

Review the changes required for functions rebalance_left, and rebalance_right
discussed at the end of Section 11.2. Also, modify rebalance_left (and
rebalance_right) to consider the cases where the left (right) subtree is balanced. This
case can result when there is a removal from the right (left) subtree that causes the criti-
cal imbalance to occur. This is still a Left-Left (Right-Right) case, but after the rotation
the overall balances are not zero. This is illustrated in Figures 11.63 and 11.64, where
an item is removed from subtree c.

F I G U R E 1 1 . 6 3
Left-Left Imbalance with Left Subtree Balanced

686 Chapter 11 Self-Balancing Search Trees

F I G U R E 1 1 . 6 4
All Trees Unbalanced After Rotation

0

–2

a

50

b

c

25
–1

+1

a
c

25

b

50

A remove can also result in a left-right (or right-left) case where the left-right (right-
left) subtree is balanced. This is illustrated in Figures 11.65 through 11.67. The rebal-
ance_left and rebalance_right functions already handle this case, because it also
occurs when the inserted node causes unbalance in the left-right (or right-left) subtree.

F I G U R E 1 1 . 6 5
Left-Right Case with Left-Right Subtree Balanced

Chapter 11 Review 687

F I G U R E 1 1 . 6 6
Imbalance After Single Rotation

+1

0

–2

a

50

c

25

40

bL bR

–1

0

–2

a

50

40

bL

bR

25

c

F I G U R E 1 1 . 6 7
Complete Balance
After Double Rotation

6. Complete the Red_Black_Tree class by coding the missing functions for removal. The
functions erase and find_largest_child are adapted from the corresponding func-
tions of the Binary_Search_Tree class. These adaptations are similar to those done for
the AVL tree. A data field fixup_required performs a role analogous to the decrease
data field in the AVL tree. It is set when a black node is removed. Upon return from a
function that can remove a node, this variable is tested. If the removal is from the right,
then a new function fixup_right is called. If the removal is from the left, then a new
function fixup_left is called.

The fixup_right function must consider five cases, as follows:
• Case 1: Parent is red and sibling has a red right child. Figure 11.68(a) shows a red

node P that is the root of a subtree that has lost a black node X from its right subtree.
The root of the left subtree is S, and it must be a black node. If this subtree has a red
right child, as shown in the figure, we can restore the black balance. First we rotate
the left subtree left and change the color of the parent to black (see Figure 11.68(b)).
Then we rotate right about the parent as shown in Figure 11.68(c). This restores the
black balance. As shown in the figure, the node S may also have a left child. This does
not affect the results.

0

0 0

a

25

bL bR c

50

40

F I G U R E 1 1 . 6 8
Red-Black Removal Case 1

• Case 2: Parent is red, and sibling has only a left red child. Figure 11.69(a) shows the
case where the red parent P has a left child S that has a red left child L. In this case
we change the color of S to red and the color of P to black. Then we rotate right as
shown in Figure 11.69(b).

F I G U R E 1 1 . 6 9
Red-Black Removal Case 2

• Case 3: Parent is red, and the left child has no red children. Figure 11.70(a) shows the
case where the red parent P has a left child S that has no children. As in the next two
cases, this fixup process is started at the bottom of the tree but can move up the tree.
In this case S may have black children, and X may represent the root of a subtree
whose black height is one less than the black height of S. The correction is quite easy.
We change P to black and S to red (see Figure 11.70(b)). Now the balance is restored,
and the black height at P remains the same as it was before the black height at X was
reduced.

F I G U R E 1 1 . 7 0
Red-Black Removal Case 3

XSXS

P P

(a) (b)

L

XS

P

L

S

P

(a) (b)

L R

XS

P

L

S

R

X

S

P

PR

L

(a) (b) (c)

688 Chapter 11 Self-Balancing Search Trees

• Case 4: Parent is black and left child is red. Figure 11.71(a) shows the case where the
parent P is black and the left child S is red. Since the black heights of S and X were
equal before removing X, S must have two black children. We first change the color
of the left child to black as shown in Figure 11.71(b). We rotate the child S left and
change the color of P to red as shown in Figure 11.71(c). Then we rotate right twice,
so that S is now where P was, thus restoring the black balance.

F I G U R E 1 1 . 7 1
Red-Black Removal Case 4

• Case 5: Parent is black and left child is black. Figure 11.72(a) shows the case where P
is back and S is black. We then change the color of the parent to red and rotate. The
black height of P has been reduced. Thus we repeat the process at the next level (P’s
parent).

F I G U R E 1 1 . 7 2
Red-Black Removal Case 5

XS

P

X

P

S

(a) (b)

P

S

(c)

X

P

XS

L R

P

L R

S

S P

R

L
(b) (c) (d)

XS

L R

P

(a)

1

2

Chapter 11 Review 689

C h a p t e r O b j e c t i v e s

◆ To become familiar with graph terminology and the different types of graphs
◆ To study a Graph ADT and different implementations of the Graph ADT
◆ To learn the breadth-first and depth-first search traversal algorithms
◆ To learn some algorithms involving weighted graphs
◆ To study some applications of graphs and graph algorithms

691

Graphs

C h a p t e r 12

One of the limitations of trees is that they cannot represent information struc-
tures in which a data item has more than one parent. In this chapter we
introduce a data structure known as a graph that will allow us to overcome

this limitation.
Graphs and graph algorithms were being studied long before computers were

invented. The advent of the computer made the application of graph algorithms to
real-world problems possible. Graphs are especially useful in analyzing networks.
Thus it is not surprising that much of modern graph theory and application was
developed at Bell Laboratories, which needed to analyze the very large communica-
tions network that is the telephone system. Graph algorithms are also incorporated
into the software that makes the Internet function. You can also use graphs to
describe a road map, airline routes, or course prerequisites. Computer chip design-
ers use graph algorithms to determine the optimal placement of components on a
silicon chip.

You will learn how to represent a graph, find the shortest path through a graph,
and find the minimum subset of a graph.

12.1 Graph Terminology

A graph is a data structure that consists of a set of vertices (or nodes) and a set of
edges (relations) between the pairs of vertices. The edges represent paths or connec-
tions between the vertices. Both the set of vertices and the set of edges must be finite,
and either set may be empty. If the set of vertices is empty, naturally the set of edges
must also be empty. We restrict our discussion to simple graphs in which there is at
most one edge from a given vertex to another vertex.

E X A M P L E 1 2 . 1 The following set of vertices, V, and set of edges, E, define a graph that has five ver-
tices, with labels A through E, and four edges.

V = {A, B, C, D, E}

E = {{A, B}, {A, D}, {C, E}, {D, E}}

Each edge is set of two vertices. There is an edge between A and B (the edge {A, B}),
between A and D, between C and E, and between D and E. If there is an edge
between any pair of vertices x, y, this means there is a path from vertex x to vertex
y and vice versa. We discuss the significance of this shortly.

Visual Representation of Graphs
Visually we represent vertices as points or labeled circles and the edges as lines join-
ing the vertices. Figure 12.1 shows the graph from Example 12.1.

There are many ways to draw any given graph. The physical layout of the vertices,
and even their labeling, are not relevant. Figure 12.2 shows two ways to draw the
same graph.

692 Chapter 12 Graphs

G r a p h s

12.1 Graph Terminology
12.2 The Graph ADT and Edge Class
12.3 Implementing the Graph ADT
12.4 Traversals of Graphs
12.5 Applications of Graph Traversals

Case Study: Shortest Path Through a Maze
Case Study: Topological Sort of a Graph

12.6 Algorithms Using Weighted Graphs

F I G U R E 1 2 . 1
Graph Given in
Example 12.1

F I G U R E 1 2 . 2
Two Representations
of the Same Graph

F I G U R E 1 2 . 3
Example of a
Directed Graph

Directed and Undirected Graphs
The edges of a graph are directed if the existence of an edge from A to B does not
necessarily guarantee that there is a path in both directions. A graph that contains
directed edges is known as a directed graph or digraph, and a graph that contains
undirected edges is known as an undirected graph, or simply a graph. A directed
edge is like a one-way street; you can travel on it only in one direction. Directed
edges are represented as lines with an arrow on one end, whereas undirected edges
are represented as single lines. The graph in Figure 12.1 is undirected; Figure 12.3
shows a directed graph. The set of edges for the directed graph follows:

E = {(A, B), (B, A), (B, E), (D, A), (E, A), (E, C), (E, D)}

Notice the difference in the notation. Each edge in the edge list for the directed graph
is an ordered pair of vertices, instead of a set as in an undirected graph. The edge (A,
B) is an edge from A to B. Observe that there is both an edge from A to B and an
edge from B to A, but these are the only two vertices in which there is an edge in both
directions. Our convention will be that the ordered pair (u, v) means an edge to v
(the destination) from u (the source). We denote an edge in an undirected graph as
the set {u, v}, which means that the edge goes both from u to v and from v to u.
Therefore, you can create a directed graph that is equivalent to an undirected graph

12.1 Graph Terminology 693

A B

D E C

0 6

1 2

3

4

5

4 6

5

1

2 0

3

A B

D E C

by substituting for each edge {u, v} the ordered pairs (u, v) and (v, u). In general,
when we describe graph algorithms in this chapter, we will use the ordered-pair nota-
tion (u, v) for an edge.

The edges in a graph may have values associated with them, known as their weights.
A graph with weighted edges is known as a weighted graph. In an illustration of a
weighted graph the weights are shown next to the edges. Figure 12.4 shows an
example of a weighted graph. Each weight is the distance between the two cities
(vertices) connected by the edge. Generally the weights are nonnegative, but there
are graph problems and graph algorithms that deal with negative-weighted edges.

Paths and Cycles
One reason we study graphs is to find pathways between vertices. We use the fol-
lowing definitions to describe pathways between vertices.

• A vertex is adjacent to another vertex if there is an edge to it from that other
vertex. In Figure 12.4, Philadelphia is adjacent to Pittsburgh. In Figure 12.3 A
is adjacent to D, but since this is a directed graph, D is not adjacent to A.

• A path is a sequence of vertices in which each successive vertex is adjacent to
its predecessor. In Figure 12.5, the following sequence of vertices is a path:
Philadelphia → Pittsburgh → Columbus → Indianapolis → Chicago.

• In a simple path the vertices and edges are distinct, except that the first and last
vertex may be the same. In Figure 12.5 the path Philadelphia → Pittsburgh →
Columbus → Indianapolis → Chicago is a simple path. The path Philadelphia →
Pittsburgh → Columbus → Indianapolis → Chicago → Fort Wayne →
Indianapolis is a path, but not a simple path. (See Figure 12.6.)

• A cycle is a simple path in which only the first and final vertices are the same.
In Figure 12.7, the path Pittsburgh → Columbus → Toledo → Cleveland →
Pittsburgh is a cycle. For an undirected graph, a cycle must contain at least
three distinct vertices. Thus Pittsburgh → Columbus → Pittsburgh is not con-
sidered a cycle.

694 Chapter 12 Graphs

F I G U R E 1 2 . 4
Example of a
Weighted Graph

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148
Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 2 . 5
A Simple Path

F I G U R E 1 2 . 6
Not a Simple Path

F I G U R E 1 2 . 7
A Cycle

12.1 Graph Terminology 695

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 2 . 8
Example of an
Unconnected Graph

• An undirected graph is called a connected graph if there is a path from every
vertex to every other vertex. Figure 12.7 is a connected graph, whereas Figure
12.8 is not.

• If a graph is not connected, it is considered unconnected, but it will still con-
sist of connected components. A connected component is a subset of the ver-
tices and the edges connected to those vertices in which there is a path between
every pair of vertices in the component. A single vertex with no edges is also
considered a connected component. Figure 12.8 consists of the connected com-
ponents {0, 1, 2, 3, 4, 5, 6}, {7, 8}, and {9, 10, 11, 12}.

Relationship Between Graphs and Trees
The graph is the most general of the data structures we have studied. It allows for
any conceivable relationship among the data elements (the vertices). A tree is actu-
ally a special case of a graph. Any graph that is connected and contains no cycles
can be viewed as a tree by picking one of its vertices (nodes) as the root. For exam-
ple, the graph shown in Figure 12.1 can be viewed as a tree if we consider the node
labeled D to be the root. (See Figure 12.9.)

Graph Applications
We can use graphs to help in solving a number of different kinds of problems. For
example, we might want to know whether there is a connection from one node in a
network to all others. If we can show that the graph is connected, then a path must
exist from one node to every other node.

In college you must take some courses before you take others. These are called pre-
requisites. Some courses have multiple prerequisites, and some prerequisites have

696 Chapter 12 Graphs

0 6

1 2

3

4

5

7 8

9 10

11 12

A B

D E C

D

E A

C B

F I G U R E 1 2 . 9
A Graph Viewed as
a Tree

prerequisites of their own. It can be quite confusing. You may even feel that there is
a loop in the maze of prerequisites and that it is impossible to schedule your classes
to meet the prerequisites. We can represent the set of prerequisites by a directed
graph. If the graph has no cycles, then we can find a solution. We can also find the
cycles.

Another application would be finding the least-cost path or shortest path from each
vertex to all other vertices in a weighted graph. For example, in Figure 12.4 we
might want to find the shortest path from Philadelphia to Chicago. Or we might
want to create a table showing the distance (miles in the shortest route) between
each pair of cities.

E X E R C I S E S F O R S E C T I O N 1 2 . 1

S E L F - C H E C K

1. In the graph shown in Figure 12.1, what vertices are adjacent to D? In Figure
12.3?

2. In Figure 12.3, is it possible to get from A to all other vertices? How about from
C?

3. In Figure 12.4, what is the shortest path from Philadelphia to Chicago?

12.2 The Graph ADT and Edge Class

A very extensive graph library has been developed for C++ by the organization
known as Boost (see www.boost.org). Several of Boost’s libraries have been proposed
for incorporation into the next revision of the C++ standard. The Boost Graph
Library is the subject of its own book (Jeremy Siek, Lie-Quan Lee, and Andrew
Lumsdaine, The Boost Graph Library: User Guide and Reference Manual [Addi-
son-Wesley, 2002]). This library is quite elaborate and provides much more than is
needed for this text. Therefore, we will design our own library that is sufficient for
the applications mentioned at the end of the previous section.

To write these programs, we need to be able to navigate through a graph, or tra-
verse it (visit all its vertices). To accomplish this, we need to be able to advance from
one vertex in a graph to all its adjacent vertices. Therefore, we need to be able to do
the following:

1. Create a graph with the specified number of vertices.
2. Iterate through all of the vertices in the graph.
3. Iterate through the vertices that are adjacent to a specified vertex.
4. Determine whether an edge exists between two vertices.
5. Determine the weight of an edge between two vertices.
6. Insert an edge into the graph.

12.2 The Graph ADT and Edge Class 697

We will use an abstract class to specify these requirements. The declaration for this
class is shown in Listing 12.1.

L I S T I N G 1 2 . 1
Graph.h

#ifndef GRAPH_H_
#define GRAPH_H_

#include "Edge.h"
#include <iosfwd>

/** Abstract class to specify a Graph ADT. A graph is a set
of vertices and a set of edges. Vertices are
represented by integers from 0 to n - 1. Edges
are ordered pairs of vertices.

*/
class Graph {

public:

// Forward declaration of iterator class
class iterator;

// Constructor
/** Construct a graph.

@param n The number of vertices
@param d True if this is a directed graph

*/
Graph(int n, bool d) : num_v(n), directed(d) {}

// Virtual Destructor
virtual ~Graph() {}

// Accessors
/** Return the number of vertices.

@return The number of vertices
*/
int get_num_v() const {return num_v;}

/** Determine whether this is a directed graph.
@return true if this is a directed graph

*/
bool is_directed() const {return directed;}

/** Insert a new edge into the graph.
@param edge The new edge

*/
virtual void insert(const Edge& edge) = 0;

/** Determine whether an edge exists.
@param source The source vertex
@param dest The destination vertex
@return true if there is an edge from source to dest

*/
virtual bool is_edge(int source, int dest) const = 0;

698 Chapter 12 Graphs

/** Get the edge between two vertices.
@param source The source vertex
@param dest The destination vertex
@return The Edge between these two vertices or an Edge

with a weight of numeric_limits<double>::infinity()
if there is no edge

*/
virtual Edge get_edge(int source, int dest) const = 0;

/** Return an iterator to the first edge adjacent
to the specified vertex.
@param source The source vertex
@return An iterator to the edges

adjacent to source
*/
virtual iterator begin(int source) const = 0;

/** Return an iterator one past the last edge adjacent
to a specified vertex.
@param source The source vertex

*/
virtual iterator end(int source) const = 0;

/** Load the edges of a graph from the data in an input file.
The file should contain a series of lines, each line
with two or three data values. The first is the source,
the second is the destination, and the optional third
is the weight.
@param in The istream that is connected

to the file that contains the data
*/
void load_edges_from_file(std::istream& in);

/** Factory function to create a graph and load the data from an input
file. The first line of the input file should contain the number
of vertices. The remaining lines should contain the edge data as
described under load_edges_from_file.
@param in The istream that is connected to the file that contains

the data
@param is_directed true if this is a directed graph, false otherwise
@param type The string "Matrix" if an adjacency matrix is to be

created, and the string "List" if an adjacency list
is to be created.

@throws std::invalid_argument if type is neither "Matrix" nor "List"
*/
static Graph* create_graph(std::istream& in, bool is_directed,

const std::string& type);

// Definition of nested classes iter_impl and iterator
...

protected:

12.2 The Graph ADT and Edge Class 699

// Data fields
/** The number of vertices */
int num_v;
/** Flag to indicate whether this is a directed graph */
bool directed;

}; // End class Graph

#endif

Representing Vertices and Edges
Before we can implement this abstract class, we must decide how to represent the
vertices and edges of a graph. We can represent the vertices by integers from 0 up
to, but not including, |V | (|V | means the cardinality of V, or the number of vertices
in set V). For edges we will define the class Edge, which will contain the source ver-
tex, the destination vertex, and the weight. For unweighted edges we will use the
default weight of 1.0. Table 12.1 shows the Edge class. Observe that an Edge is
directed. For undirected graphs we will always have two Edge objects: one in each
direction for each pair of vertices that has an edge between them. A vertex is repre-
sented by a type int variable.

TA B L E 1 2 . 1
The Edge Class

700 Chapter 12 Graphs

Data Field Attribute

int dest The destination vertex for an edge.

int source The source vertex for an edge.

double weight The weight.

Constructor Purpose

Edge(int source, int dest, Constructs an Edge from source to dest. Sets the weight to w. If w
double w = 1.0) is not specified, then the weight is set to 1.0.

Edge() Constructs a dummy edge with source and dest set to –1 and
weight to infinity.

Edge(const Edge& other) Constructs an Edge that is a copy of other.

Member Function Behavior

bool operator==(const Edge& other) Compares two edges for equality. Edges are equal if their source and
destination vertices are the same. The weight is not considered.

int get_dest() Returns the destination vertex.

int get_source() Returns the source vertex.

double get_weight() Returns the weight.

string to_string() Returns a string representation of the edge.

ostream& operator<<(ostream&, Overloaded ostream insertion operator.
const Edge&)

E X E R C I S E S F O R S E C T I O N 1 2 . 2

S E L F - C H E C K

1. Use the constructors in Table 12.1 to create the Edge objects connecting vertices
9 through 12 for the graph in Figure 12.8.

P R O G R A M M I N G

1. Implement the Edge class.

12.3 Implementing the Graph ADT

Because graph algorithms have been studied and implemented throughout the his-
tory of computer science, many of the original publications of graph algorithms and
their implementations did not use an object-oriented approach and did not even use
abstract data types. The implementation of the graph was done in terms of funda-
mental data structures that were used directly in the algorithm. Different algorithms
would use different representations.

Two representations of graphs are most common:

• The edges in a graph are represented by an array of lists called the adjacency
lists, where each list stores the vertices adjacent to a particular vertex.

• The edges are represented by a two-dimensional array, called an adjacency
matrix, with |V | rows and |V | columns.

Adjacency List
An adjacency list representation of a graph uses an array of lists. There is one list
for each vertex. Figure 12.10 shows an adjacency list representation of a directed
graph. The list referenced by array element 0 shows the vertices (1 and 3) that are
adjacent to vertex 0. The vertices are in no particular order. For simplicity, we are
showing just the destination vertex as the value field in each node of the adjacency
list, but in the actual implementation the entire Edge will be stored. Instead of stor-
ing value = 1 (the destination vertex) in the first vertex adjacent to 0, we will store
a reference to the Edge (0, 1, 1.0) where 0 is the source, 1 is the destination, and
1.0 is the weight. The Edge must be stored (not just the destination) because
weighted graphs can have different values for weights.

For an undirected graph (or simply a “graph”), symmetric entries are required.
Thus, if {u, v} is an edge, then v will appear on the adjacency list for u and u will
appear on the adjacency list for v. Figure 12.11 shows the adjacency list represen-
tation for an undirected graph. The actual lists will store references to Edges.

12.3 Implementing the Graph ADT 701

0 1

3 4

2

5

[0]
[1]
[2]
[3]
[4]
[5]

Node

next =
value = 1

Node

next =
value =

NULL
4

Node

next =
value = 5

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

NULL
1

NULL
3

NULL
3

NULL
5

NULL
4

Node[]

F I G U R E 1 2 . 1 0
Adjacency List
Representation of a
Directed Graph

702 Chapter 12 Graphs

Node[]

0 1

4 3

2

Node

next =
value = 1

Node

next =
value =

NULL
4

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

NULL
3

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

NULL
2

Node

next =
value =

NULL
1

0

1

1 4

3 0

4 2
NULL
3 [0]

[1]
[2]
[3]
[4]

F I G U R E 1 2 . 1 1
Adjacency List
Representation of an
Undirected Graph

Adjacency Matrix
The adjacency matrix uses a two-dimensional array to represent the graph. For an
unweighted graph the entries in this matrix can be bool values, where true repre-
sents the presence of an edge and false its absence. Another popular method is to

use the value 1 for an edge and 0 for no edge. The integer coding has benefits over
the bool approach for some graph algorithms that use matrix multiplication.

For a weighted graph the matrix would contain the weights. Since 0 is a valid weight
(for example, if the edges represent electrical connections and the weights are the
resistances), we will use numeric_limits<double>::infinity() (a special double
value in C++ that approximates the mathematical behavior of infinity) to indicate
the absence of an edge, and in an unweighted graph we will use a weight of 1.0 to
indicate the presence of an edge.

Figure 12.12 shows a directed graph and the corresponding adjacency matrix.
Instead of using Edge objects, an edge is indicated by the value 1.0, and the lack of
an edge is indicated by a blank space.

If the graph is undirected, then the matrix is symmetric, and only the lower diago-
nal of the matrix need be saved (the colored squares in Figure 12.13).

Overview of the Hierarchy
We will describe C++ classes that use each representation. Each class will extend a
common abstract base class, Graph, that was introduced in Section 12.2. The class
Edge was also described in that section.

We will define the class Graph to represent a graph in general. The classes List_Graph
and Matrix_Graph will provide concrete representations of graphs using an adjacency
list and adjacency matrix, respectively (see Figure 12.14). The Graph class contains the
inner classes iterator and iter_impl (as indicated by the ⊕ symbol). The iter_impl
class is abstract. The Matrix_Graph class and List_Graph class will each contain an
inner class iter_impl that implements the abstract functions of Graph::iter_impl.

F I G U R E 1 2 . 1 2
A Directed Graph and
the Corresponding
Adjacency Matrix

F I G U R E 1 2 . 1 3
Undirected Graph and
Adjacency Matrix
Representation

12.3 Implementing the Graph ADT 703

0 1

3 4

2 1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

[2]

Column

R
ow [2]

[1]

[1]

[3]

[3]

[4]

[4]

[5]

[5][0]

[0]

5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0 1

4 3

2

Column

R
ow

[2][1] [3] [4][0]

[2]

[1]

[3]

[4]

[0]

F I G U R E 1 2 . 1 4
UML Class Diagram of
Graph Class Hierarchy

704 Chapter 12 Graphs

Class Graph
We will use an abstract class, Graph, as the common base class for graph implemen-
tations. This will enable us to implement some of the functions in the abstract base
class and leave other functions that are implementation-specific to its derived
classes. Graph algorithms will be designed to work on objects that meet the require-
ments defined by this abstract class. This class is summarized in Table 12.2. Note
that the abstract member functions insert, is_edge, get_edge, begin, and end are
not shown; they are discussed when the actual classes are implemented.

Implementation
The implementation is shown in Listing 12.2. Function load_edges_from_file reads
edges from individual lines of a data file (see Programming Exercise 1).

TA B L E 1 2 . 2
The Abstract Class Graph

Graph

List_Graph Matrix_Graph

iter_impl Edge iter_impl

iter_impl iterator

Data Field Attribute

bool directed true if this is a directed graph.

int num_v The number of vertices.

Constructor Purpose

Graph(int n, bool d) Constructs an empty graph with the specified number of ver-
tices (n) and with the specified directed flag (d). If directed
is true, this is a directed graph.

virtual ~Graph() The destructor.

Function Behavior

int get_num_v() Gets the number of vertices.

bool is_directed() Returns true if the graph is a directed graph.

void load_edges_from_file(istream& in) Loads edges from a data file.

static Graph* create_graph Factory function to create a graph and load the data from an
(istream& in, bool is_directed, input of the specified type.
const string& type)

L I S T I N G 1 2 . 2
Graph.cpp

#include "Graph.h"
#include "Matrix_Graph.h"
#include "List_Graph.h"
#include <string>
#include <istream>
#include <sstream>
#include <stdexcept>
#include <limits>
using std::string;
using std::istream;
using std::istringstream;
using std::numeric_limits;

/** Load the edges of a graph from the data in an input file.
The file should contain a series of lines, each line
with two or three data values. The first is the source,
the second is the destination, and the optional third
is the weight.
@param in The istream that is connected

to the file that contains the data
*/
void Graph::load_edges_from_file(istream& in) {
// Programming exercise

}

/** Factory function to create a graph and load the data from an input
file. The first line of the input file should contain the number
of vertices. The remaining lines should contain the edge data as
described under load_edges_from_file.
@param in The istream that is connected to the file that contains

the data
@param is_directed true if this is a directed graph, false otherwise
@param type The string "Matrix" if an adjacency matrix is to be

created, and the string "List" if an adjacency list
is to be created

@throws std::invalid_argument if type is neither "Matrix" nor "List"
*/
Graph* Graph::create_graph(istream& in, bool is_directed,

const std::string& type) {
int n;
in >> n;
in.ignore(numeric_limits<int>::max(), '\n'); // Skip rest of this line
Graph* return_value = NULL;
if (type == "Matrix")
return_value = new Matrix_Graph(n, is_directed);

else if (type == "List")
return_value = new List_Graph(n, is_directed);

else
throw std::invalid_argument("Unrecognized Graph Type");

return_value->load_edges_from_file(in);
return return_value;

}

12.3 Implementing the Graph ADT 705

The iterator and iter_impl Classes
Listing 12.3 shows the definition of the iterator and iter_impl classes. The
iter_impl class is an abstract class that declares the functions required to implement
a forward iterator. The iterator class contains a data field that is a pointer to an
iter_impl object. The member functions of the iterator class delegate to the
iter_impl. The functions begin and end in the concrete graph implementation
classes will construct an iterator object with a pointer to an iter_impl object that
is of the appropriate class for that implementation. We will discuss this again when
we discuss the implementations.

L I S T I N G 1 2 . 3
Definition of the iterator and iter_impl Classes from Graph.h

/** An iterator provides sequential access to the edges
adjacent to a given vertex.

*/
class iterator {

public:
Edge operator*() {
return ptr_to_impl->operator*();

}

iterator& operator++() {
++(*ptr_to_impl);
return *this;

}

iterator operator++(int) {
iterator temp(*this);
++(*ptr_to_impl);
return temp;

}

bool operator==(const iterator& other) const {
return *ptr_to_impl == *other.ptr_to_impl;

}

bool operator!=(const iterator& other) const {
return !((*this) == other);

}

~iterator() {delete ptr_to_impl;}

iterator(const iterator& other) :
ptr_to_impl(other.ptr_to_impl->clone()) {}

/** Constructor.
@param p_graph Pointer to the graph being iterated over
@param p_impl Pointer to iterator implementation

*/
iterator(iter_impl* p_impl) : ptr_to_impl(p_impl) {}

706 Chapter 12 Graphs

private:
/** Pointer to the implementation */
iter_impl* ptr_to_impl;

}; // End iterator

/** The iter_impl class defines abstract functions
to implement the iterator operations.

*/
class iter_impl {
public:
virtual Edge operator*() = 0;
virtual iter_impl& operator++() = 0;
virtual bool operator==(const iter_impl&) const = 0;
virtual iter_impl* clone() = 0;
virtual ~iter_impl() {}

};

The List_Graph Class
The List_Graph class extends the Graph class by providing an internal representation
using a vector of lists. Table 12.3 describes the List_Graph class. The class decla-
ration is shown in Listing 12.4.

TA B L E 1 2 . 3
The List_Graph Class

12.3 Implementing the Graph ADT 707

Data Field Attribute

vector<list<Edge> > edges A vector of lists to contain the edges that originate
with each vertex.

Constructor Purpose

List_Graph(int n, bool d) Constructs a graph with the specified number of vertices
and directionality.

Public Member Functions Behavior

iterator begin(int source) const Returns an iterator to the edges that originate from a
given vertex.

iterator end(int source) const Returns an iterator that is one past the edges that origi-
nate from a given vertex.

Edge get_edge(int source, int dest) const Gets the edge between two vertices.

void insert(const Edge& e) Inserts a new edge into the graph.

bool is_edge(int source, int dest) const Determines whether an edge exists from vertex source to
vertex dest.

L I S T I N G 1 2 . 4
List_Graph.h

#ifndef LIST_GRAPH_H_
#define LIST_GRAPH_H_

#include "Graph.h"
#include <list>
#include <vector>
using std::list;
using std::vector;

/** A List_Graph is an implementation of the Graph
abstract class that uses a vector of lists
to contain the edges adjacent to a given vertex.

*/
class List_Graph : public Graph {

public:

// Constructors
/** Constructs a graph with the specified number of

vertices and directionality.
@param n The number of vertices
@param d The directionality flag

*/
List_Graph(int n, bool d);

// Declaration of abstract functions.
/** Insert a new edge into the graph.

@param edge The new edge
*/
void insert(const Edge& edge);

/** Determines whether an edge exists.
@param source The source vertex
@param dest The destination vertex
@return true if there is an edge from source to dest

*/
bool is_edge(int source, int dest) const;

/** Get the edge between two vertices. If an
edge does not exist, an Edge with a weight
of numeric_limits<double>::infinity() is returned.
@param source The source vertex
@param dest The destination vertex
@return The edge between these two vertices

*/
Edge get_edge(int source, int dest) const;

/** Return an iterator to the edges adjacent
to a given vertex.
@param source The source vertex
@return An iterator positioned at the beginning

of the vertices adjacent to source
*/
iterator begin(int source) const;

708 Chapter 12 Graphs

/** Return an iterator that is one past the
edges adjacent to a given vertex.
@param source The source vertex
@return An iterator positioned one past the

edges adjacent to source
*/
iterator end(int source) const;

private:

// Data field
/** The vector of lists of edges */
std::vector<std::list<Edge> > edges;

public:

// iter_impl class
...

}; // end List_Graph

#endif

The Constructor
The constructor allocates a vector of lists, one for each vertex. This is done by call-
ing the resize function for the vector to ensure that it has one entry for each vertex.

/** Constructs a graph with the specified number of
vertices and directionality.
@param n The number of vertices
@param d The directionality flag

*/
List_Graph::List_Graph(int n, bool d) : Graph(n, d) {
edges.resize(n);

}

The is_edge Function
The function is_edge determines whether an edge exists by searching the list asso-
ciated with the source vertex for an entry. This is done by calling the find function
for the list.

/** Determines whether an edge exists.
@param source The source vertex
@param dest The destination vertex
@return true if there is an edge from source to dest

*/
bool List_Graph::is_edge(int source, int dest) const {
list<Edge>::const_iterator itr = find(edges[source].begin(),

edges[source].end(),
Edge(source, dest));

return itr != edges[source].end();
}

12.3 Implementing the Graph ADT 709

Observe that we had to create a dummy Edge object for the find function to search
for. The Edge equality operator does not check the edge weights, so the weight
parameter is not needed. The find function (defined in <algorithm>) will return an
iterator to the item if it is in the list, or it will return an iterator to the end of
the list. Thus, if the iterator returned from find is not end(), then the Edge is in
the list.

The get_edge Function
Similar to is_edge, the get_edge function also requires a search using the find func-
tion. If the returned iterator is not end(), we return the Edge referenced by the
returned iterator. If it is end(), we return an Edge with a weight of infinity.

/** Get the edge between two vertices. If an
edge does not exist, an Edge with a weight
of numeric_limits<double>::infinity() is returned.
@param source The source vertex
@param dest The destination vertex
@return The edge between these two vertices

*/
Edge List_Graph::get_edge(int source, int dest) const {
list<Edge>::const_iterator itr = find(edges[source].begin(),

edges[source].end(),
Edge(source, dest));

if (itr != edges[source].end())
return *itr;

else
return Edge(source, dest, numeric_limits<double>::infinity());

}

The insert Function
The insert function inserts a new edge (source, dest, weight) into the graph by
adding that edge’s data to the list of adjacent vertices for that edge’s source. If the
graph is not directed, it adds a new edge in the opposite direction (dest, source,
weight) to the list of adjacent vertices for that edge’s destination.

/** Insert a new edge into the graph.
@param edge The new edge

*/
void List_Graph::insert(const Edge& edge) {
edges[edge.get_source()].push_back(edge);
if (!is_directed()) {
edges[edge.get_dest()].push_back(Edge(edge.get_dest(),

edge.get_source(),
edge.get_weight()));

}
}

The begin and end Functions
The begin and end functions dynamically allocate new List_Graph::iter_impl
objects that in turn contain begin and end iterators to the list associated with the
specified vertex. The pointer to this iter_impl object is then passed to the
Graph::iterator constructor.

710 Chapter 12 Graphs

/** Return an iterator to the edges adjacent
to a given vertex.
@param source The source vertex
@return An iterator positioned at the beginning

of the vertices adjacent to source
*/
Graph::iterator List_Graph::begin(int source) const {
return Graph::iterator(new iter_impl(edges[source].begin()));

}

/** Return an iterator that is one past the edges
adjacent to a given vertex.
@param source The source vertex
@return An iterator positioned one past the

edges adjacent to source
*/
Graph::iterator List_Graph::end(int source) const {
return Graph::iterator(new iter_impl(edges[source].end()));

}

The List_Graph::iter_impl Class
The List_Graph::iter_impl class is a subclass of the Graph::iter_impl class. Recall
that the Graph::iter_impl class is abstract, and that all of its member functions are
abstract. The List_Graph::iter_impl class provides implementations of the mini-
mum iterator functions that are defined for the Graph::iterator. We designed the
Graph::iterator this way to provide a common interface for iterators defined for
different Graph implementations. If we had only the List_Graph, we could use the
list<Edge>::iterator directly as the Graph::iterator.

One major difference between the Graph::iterator and other iterator classes is the
behavior of the dereferencing operator (operator*()). In other iterator classes we
have shown, the dereferencing operator returns a reference to the object that the
iterator refers to. Thus the iterator can be used to change the value of the object
referred to. (It is for that reason that we define both an iterator and const_itera-
tor.) The Graph::iterator, and thus the iter_impl classes, however, return a copy
of the referenced Edge object. Thus changes made to an Edge via a Graph::iterator
will not change the Edge within the graph.

Listing 12.5 shows the List_Graph::iter_impl. It extends the Graph::iter_impl
class and defines implementations for the abstract functions operator*, operator++,
operator==, and clone. The only one of these that is a bit tricky is the equality oper-
ator. The equality operator declaration begins with:

bool operator==(const Graph::iter_impl& other) const {

This declaration states that other is of type Graph::iter_impl, which is an abstract
class. In principle it is possible that a Graph::iterator that was returned from a
List_Graph class and a Graph::iterator from a Matrix_Graph (or other implemen-
tation) could be compared.

Thus the List_Graph::iter_impl::operator== function must determine whether the
other parameter refers to an object of the same class or to an object of some other
subclass. This is done using the dynamic_cast operator (see Section 3.3).

12.3 Implementing the Graph ADT 711

const iter_impl* ptr_other =
dynamic_cast<const iter_impl*>(&other);

If other refers to an object of a different class, then ptr_other will be NULL.

L I S T I N G 1 2 . 5
The List_Graph::iter_impl Class from List_Graph.h

/** Implementation class for an iterator to the edges.
*/
class iter_impl : public Graph::iter_impl {

private:
// Constructor
/** Construct an iter_impl for a given vertex.

@param start An iterator to the list of edges adjacent
to the desired vertex

*/
iter_impl(std::list<Edge>::const_iterator start) : current(start) {}

public:
/** Return the current edge */
Edge operator*() {
return *current;

}

/** Advance to the next edge */
Graph::iter_impl& operator++() {
++current;
return *this;

}

/** Determine whether two iter_impl objects are equal */
bool operator==(const Graph::iter_impl& other) const {
const iter_impl* ptr_other =
dynamic_cast<const iter_impl*>(&other);

if (ptr_other == NULL) return false;
return current == ptr_other->current;

}

/** Make a deep copy of this iter_impl */
Graph::iter_impl* clone() {
return new iter_impl(current);

}

private:
// Data fields

/** Iterator to the list of edges */
std::list<Edge>::const_iterator current;
friend class List_Graph;

}; // End iter_impl

712 Chapter 12 Graphs

The Matrix_Graph Class
The Matrix_Graph class extends the Graph class by providing an internal representa-
tion using a two-dimensional array for storing the edge weights. The rows represent
the source of each edge, and the columns represent the destination. This array is
implemented by dynamically allocating an array of dynamically allocated arrays.
Since dynamically allocated arrays are implemented as pointers, the resulting type is
a pointer to a pointer.

double** edges;

When a new Matrix_Graph object is created, the constructor sets the number of rows
(vertices) in this array. For a directed graph, each row is then allocated to hold the
same number of columns, one for each vertex. For an undirected graph, only the
lower diagonal of the array is needed. Thus the first row has one column, the sec-
ond two, and so on. The is_edge and get_edge functions when operating on an
undirected graph must test to see whether the destination is greater than the source,
if it is, they then must access the row indicated by the destination and the column
indicated by the source.

The iter_impl class presents a challenge. An iter_impl object must keep track of
the current source (row) and current destination (column). The dereferencing oper-
ator (operator*) must then create and return an Edge object. (This is why we
designed the Graph::iterator to return an Edge value rather than an Edge reference.)

The other complication for the iter_impl class is the increment operator. When this
operator is called, the iterator must be advanced to the next defined edge, skipping
those columns whose weights are infinity.

The implementation of the Matrix_Graph is left as a project (Programming Project 1).

Comparing Implementations
Time Efficiency
The two implementations present a tradeoff. Which is best depends upon the algo-
rithm and the density of the graph. The density of a graph is the ratio of |E| to |V |2.
A dense graph is one in which |E | is close to but less than |V |2, and a sparse graph
is one in which |E | is much less than |V |2. Therefore, for a dense graph we can
assume that |E | is O(|V |2), and for a sparse graph we can assume that |E | is O(|V |).

Many graph algorithms are of the form:

1. for each vertex u in the graph
2. for each vertex v adjacent to u
3. Do something with edge (u, v).

For an adjacency list representation, Step 1 is O(|V |) and Step 2 is O(|Eu|), where
|Eu| is the number of edges that originate at vertex u. Thus the combination of Steps
1 and 2 will represent examining each edge in the graph, giving O(|E |). On the other
hand, for an adjacency matrix representation, Step 2 is also O(|V |), and thus the
overall algorithm is O(|V |2). Thus, for a sparse graph the adjacency list gives better
performance for this type of algorithm, whereas for a dense graph the performance
is the same for either representation.

12.3 Implementing the Graph ADT 713

Some graph algorithms are of the form

1. for each vertex u in some subset of the vertices
2. for each vertex v in some subset of the vertices
3. if (u, v) is an edge
4. Do something with edge (u, v).

For an adjacency matrix representation, Step 3 tests a matrix value and is O(1), so
the overall algorithm is O(|V |2). For an adjacency list representation, however, Step
3 searches a list and is O(|Eu|), so the combination of Steps 2 and 3 is O(|E|) and the
overall algorithm is O(|V ||E |). For a dense graph the adjacency matrix gives the best
performance for this type of algorithm, and for a sparse graph the performance is
the same for both representations.

Thus, if a graph is dense, the adjacency matrix representation is best, and if a graph
is sparse, the adjacency list representation is best. Intuitively, this makes sense,
because a sparse graph will lead to a sparse matrix, or one in which most entries are
infinity. These entries are not included in a list representation, so they will have no
effect on processing time. They are included in a matrix representation, however,
and will have an undesirable impact on processing time.

Storage Efficiency
Notice that storage is allocated for all vertex combinations (or at least half of them)
in an adjacency matrix. So the storage required is proportional to |V |2. If the graph
is sparse (not many edges), there will be a lot of wasted space in the adjacency
matrix. In an adjacency list, only the adjacent edges are stored.

On the other hand, in an adjacency list, each edge is represented by an Edge object
containing data about the source, destination, and weight. There are also pointers
to the next and previous edges in the list. In a matrix representation, only the weight
associated with an edge is stored. So each element in an adjacency list requires
approximately five times the storage of an element in an adjacency matrix. (If we
used a single-linked list rather than the standard list, this would be reduced to four
times the storage, since the pointer to the previous edge would be eliminated.)

Based on this we can conclude that the break-even point in terms of storage effi-
ciency occurs when approximately 20 percent of the adjacency matrix is filled with
meaningful data. That is, the adjacency list uses less (more) storage when less than
(more than) 20 percent of the adjacency matrix would be filled.

E X E R C I S E S F O R S E C T I O N 1 2 . 3
S E L F - C H E C K

1. Represent the following graphs using adjacency lists.

2

6

0 1

3

4 5

2

6

0 1

3

4 5

714 Chapter 12 Graphs

2. Represent the graphs in Exercise 1 using an adjacency matrix.
3. For each graph in Exercise 1, what are the |V |, the |E |, and the density? Which

representation is best for each graph? Explain your answers.

P R O G R A M M I N G

1. Implement the load_edges_from_file function for class Graph. If there are two
values on a line, an edge with the default weight of 1.0 is inserted; if there are
three values, the third value is the weight.

12.4 Traversals of Graphs

Most graph algorithms involve visiting each vertex in a systematic order. Just as
with trees, there are different ways to do this. The two most common traversal algo-
rithms are breadth first and depth first. Although these are graph traversals, they are
more commonly called breadth-first and depth-first search.

Breadth-First Search
In a breadth-first search, we visit the start node first, then all nodes that are adja-
cent to it next, then all nodes that can be reached by a path from the start node con-
taining two edges, three edges, and so on. The requirement for a breadth-first search
is that we must visit all nodes for which the shortest path from the start node is
length k before we visit any node for which the shortest path from the start node is
length k + 1. You can visualize a breadth-first traversal by “picking up” the graph
at the vertex that is the start node, so the start node will be the highest node and the
rest of the nodes will be suspended underneath it, connected by their edges. In a
breadth-first search, the nodes that are higher up in the picked-up graph are visited
before nodes that are lower in the graph.

Breadth-first search starts at some vertex. Unlike the case of a tree, there is no spe-
cial start vertex, so we will arbitrarily pick the vertex with label 0. We then visit it
by identifying all vertices that are adjacent to the start vertex. Then we visit each of
these vertices, identifying all of the vertices adjacent to them. This process contin-
ues until all vertices are visited. If the graph is not a connected graph, then the
process is repeated with one of the unidentified vertices. In the discussion that fol-
lows, we use color to distinguish among three states for a node: identified (light
color), visited (dark color), and not identified (white). Initially, all nodes are not
identified. If a node is in the identified state, that node was encountered while visit-
ing another, but it has not yet been visited.

Example of Breadth-First Search
Consider the graph shown in Figure 12.15. We start at vertex 0 and color it light
(see Figure 12.16(a)). We visit 0 and see that 1 and 3 are adjacent, so we color them
light (to show that they have been identified). We are finished visiting 0 and now
color it dark (see Figure 12.16(b)). So far we have visited node 0.

12.4 Traversals of Graphs 715

F I G U R E 1 2 . 1 5
Graph to Be Traversed
Breadth First

3

0

2

9 8

7

1

4

6

5

F I G U R E 1 2 . 1 6
Example of a Breadth-First Search

716 Chapter 12 Graphs

We always select the first node that was identified (light color) but not yet visited
and visit it next. Therefore, we visit 1 and look at its adjacent vertices: 0, 2, 4, 6,
and 7. We skip 0, because it is not colored white, and color the others light. Then
we color 1 dark (see Figure 12.16(c)). Now we have visited nodes 0 and 1.

Then we look at 3 (the first of the light-colored vertices in Figure 12.16(c) to have
been identified) and see that its adjacent vertex, 2, has already been identified and
0 has been visited, so we are finished with 3 (see Figure 12.16(d)). Now we have vis-
ited nodes 0, 1, and 3, which are the starting vertex and all vertices adjacent to it.

Now we visit 2 and see that 8 and 9 are adjacent. Then we visit 4 and see that 5 is
the only adjacent vertex not identified or visited (Figure 12.16(e)). Finally, we visit
6 and 7 (the last vertices that are two edges away from the starting vertex), then 8,
9, and 5, and see that there are no unidentified vertices (Figure 12.16(f)). The ver-
tices have been visited in the sequence 0, 1, 3, 2, 4, 6, 7, 8, 9, 5.

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

(a) (b) (c)

(d) (e) (f)

Algorithm for Breadth-First Search
To implement breadth-first search, we need to be able to determine the first identi-
fied vertex that has not been visited, so that we can visit it. To ensure that the iden-
tified vertices are visited in the correct sequence, we will store them in a queue
(first-in, first-out). When we need a new node to visit, we remove it from the queue.
We summarize the process in the following algorithm.

Algorithm for Breadth-First Search
1. Take an arbitrary start vertex, mark it identified (color it light), and place it

in a queue.
2. while the queue is not empty
3. Take a vertex, u, out of the queue and visit u.
4. for all vertices, v, adjacent to this vertex, u
5. if v has not been identified or visited
6. Mark it identified (color it light).
7. Insert vertex v into the queue.
8. We are now finished visiting u (color it dark).

Table 12.4 traces this algorithm on the graph shown earlier in Figure 12.15. The ini-
tial queue contents is the start node, 0. The first line shows that after we finish vis-
iting vertex 0, the queue contains nodes 1 and 3, which are adjacent to node 0 and
are colored light in Figure 12.16(b). The second line shows that after removing 1
from the queue and visiting 1, we insert its neighbors that have not yet been identi-
fied or visited: nodes 2, 4, 6, and 7.

Table 12.4 shows that the nodes were visited in the sequence 0, 1, 3, 2, 4, 6, 7, 8,
9, 5. There are other sequences that would also be valid breadth-first traversals.

TA B L E 1 2 . 4
Trace of Breadth-First Search of Graph in Figure 12.15

12.4 Traversals of Graphs 717

Vertex Being Visited Queue Contents After Visit Visit Sequence

0 1 3 0

1 3 2 4 6 7 0 1

3 2 4 6 7 0 1 3

2 4 6 7 8 9 0 1 3 2

4 6 7 8 9 5 0 1 3 2 4

6 7 8 9 5 0 1 3 2 4 6

7 8 9 5 0 1 3 2 4 6 7

8 9 5 0 1 3 2 4 6 7 8

9 5 0 1 3 2 4 6 7 8 9

5 empty 0 1 3 2 4 6 7 8 9 5

F I G U R E 1 2 . 1 7
Breadth-First Search
Tree of Graph in
Figure 12.15

We can also build a tree that represents the order in which vertices would be visited
in a breadth-first traversal, by attaching the vertices as they are identified to the ver-
tex from which they are identified. Such a tree is shown in Figure 12.17. Observe
that this tree contains all of the vertices and some of the edges of the original graph.
A path starting at the root to any vertex in the tree is the shortest path in the orig-
inal graph from the start vertex to that vertex, where we consider all edges to have
the same weight. Therefore, the shortest path is the one that goes through the small-
est number of vertices. We can save the information we need to represent this tree
by storing the parent of each vertex when we identify it (Step 7 of the breadth-first
algorithm).

Refinement of Step 7 of Breadth-First Search Algorithm
7.1 Insert vertex v into the queue.
7.2 Set the parent of v to u.

Performance Analysis of Breadth-First Search
The loop at Step 2 will be performed for each vertex. The inner loop at Step 4 is
performed for |Ev| (the number of edges that originate at that vertex). The total
number of steps is the sum of the edges that originate at each vertex, which is the
total number of edges. Thus the algorithm is O(|E |).

Implementing Breadth-First Search
Listing 12.6 shows function breadth_first_search. Notice that nothing is done
when we have finished visiting a vertex (algorithm Step 8).

This function declares three data structures: vector<int> parent, vector<bool>
identified, and queue<int> the_queue. The vector identified is used to keep track
of the nodes that have been previously encountered, and the_queue is used to store
nodes that are waiting to be visited.

The function returns vector parent, which could be used to construct the breadth-
first search tree. The element parent[v] contains the parent of vertex v in the tree.
The statement

parent[neighbor] = current;

is used to “insert an edge into the breadth-first search tree”. It does this by setting
the parent of a newly identified node (neighbor) as the node being visited (current).

718 Chapter 12 Graphs

6 7

3

4

0

1

8 9 5

2

If we run the breadth_first_search function on the graph shown in Figure 12.15,
then the vector parent will be defined as follows:

If you compare vector parent to Figure 12.17, you can see that parent[i] is the par-
ent of vertex i. For example, the parent of vertex 4 is vertex 1. The entry parent[0]
is –1 because node 0 is the start vertex.

Although vector parent could be used to construct the breadth-first search tree, we
are generally not interested in the complete tree but rather in the path from the root
to a given vertex. Using vector parent to trace the path from that vertex back to the
root would give you the reverse of the desired path. For example, the path derived
from parent for vertex 4 to the root would be 4 to 1 to 0. If you place these vertices
in a stack and then pop the stack until it is empty, you will get the path from the
root: 0 to 1 to 4.

L I S T I N G 1 2 . 6
Breadth_First_Search.cpp

#include <vector>
#include <queue>
#include "Graph.h"
using namespace std;

/** Perform a breadth-first search of a graph.
The vector p will contain the predecessor of each
vertex in the breadth-first search tree.
@param graph The graph to be searched
@param start The start vertex
@return The vector of parents

*/
vector<int> breadth_first_search(const Graph& graph, int start) {
int num_v = graph.get_num_v();
queue<int> the_queue;
vector<int> parent(num_v, -1);
vector<bool> identified(num_v, false);
identified[start] = true;
the_queue.push(start);

vector<int> parent

-1

0

1

0

1

4

1

1

2

2

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

12.4 Traversals of Graphs 719

/* While the queue is not empty */
while (!the_queue.empty()) {
/* Take a vertex, current, out of the queue

(Begin visiting current).*/
int current = the_queue.front();
the_queue.pop();
/* For all vertices, neighbor, adjacent to current */
Graph::iterator itr = graph.begin(current);
while (itr != graph.end(current)) {
Edge edge = *itr;
int neighbor = edge.get_dest();
/* If neighbor has not been identified */
if (!identified[neighbor]) {
/* Mark it identified */
identified[neighbor] = true;
/* Place it into the queue */
the_queue.push(neighbor);
/* Insert the edge (current, neighbor)

into the tree */
parent[neighbor] = current;

}
++itr;

}
// Finished visiting current.

}
return parent;

}

Depth-First Search
Another way to traverse a graph is depth-first search. In depth-first search you start
at a vertex, visit it, and choose one adjacent vertex to visit. Then choose a vertex
adjacent to that vertex to visit, and so on until you go no further. Then back up and
see whether a new vertex (one not previously visited) can be found. In the discus-
sion that follows, we use color to distinguish among three states for a node: being
visited (light color), finished visiting (dark color), and not yet visited (white).
Initially, of course, all nodes are not yet visited. Note that the light color is used in
depth-first search to indicate that a vertex is in the process of being visited, whereas
it was used in our discussion of breadth-first search to indicate that the vertex was
identified.

Example of Depth-First Search
Consider the graph shown in Figure 12.18. We can start at any vertex, but for sim-
plicity we will start at 0. The vertices adjacent to 0 are 1, 2, 3, and 4. We mark 0 as
being visited (color it light; see Figure 12.19(a)). Next we consider 1. We mark 1 as
being visited (see Figure 12.19(b)). The vertices adjacent to 1 are 0, 3, and 4. But 0
is being visited, so we recursively apply the algorithm with 3 as the start vertex. We
mark 3 as being visited (see Figure 12.19(c)). The vertices adjacent to 3 are 0, 1, and
4. Because 0 and 1 are already being visited, we recursively apply the algorithm with

720 Chapter 12 Graphs

4 as the start vertex. We mark 4 as being visited (see Figure 12.19(d)). The vertices
adjacent to 4 are 0, 1, and 3. All of these are being visited, so we mark 4 as finished
(see Figure 12.19(e)) and return from the recursion. Now all of the vertices adjacent
to 3 have been visited, so we mark 3 as finished and return from the recursion. Now
all of the vertices adjacent to 1 have been visited, so we mark 1 as finished and
return from the recursion to the original start vertex, 0. The order in which we
started to visit vertices is 0, 1, 3, 4; the order in which vertices have become finished
so far is 4, 3, 1.

12.4 Traversals of Graphs 721

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 1 2 . 1 8
Graph to Be Traversed
Depth First

F I G U R E 1 2 . 1 9
Example of Depth-First
Search

We now consider vertex 2, which is adjacent to 0 but has not been visited. We mark
2 as being visited (see Figure 12.19(f)) and consider the vertices adjacent to it: 5 and
6. We mark 5 as being visited (see Figure 12.19(g)) and consider the vertices adja-
cent to it: 2 and 6. Because 2 is already being visited, we next visit 6. We mark 6 as
being visited (see Figure 12.19(h)). The vertices adjacent to 6 (2 and 5) are already
being visited. Thus we mark 6 as finished and recursively return. The vertices adja-
cent to 5 have all been visited, so we mark 5 as finished and return from the recur-
sion. All of the vertices adjacent to 2 have been visited, so we mark 2 as finished and
return from the recursion.

Finally, we come back to 0. Because all of the vertices adjacent to it have also been
visited, we mark 0 as finished, and we are done (see Figure 12.19(i)). The order in
which we started to visit all vertices is 0, 1, 3, 4, 2, 5, 6; the order in which we fin-
ished visiting all vertices is 4, 3, 1, 6, 5, 2, 0. The discovery order is the order in
which the vertices are discovered. The finish order is the order in which the vertices
are finished. We consider a vertex to be finished when we return to it after finishing
all its successors.

Figure 12.20 shows the depth-first search tree for the graph in Figure 12.18. A pre-
order traversal of this tree yields the sequence in which the vertices were visited: 0,
1, 3, 4, 2, 5, 6. The dashed lines are the other edges in the graph that are not part
of the depth-first search tree. These edges are called back edges because they con-
nect a vertex with its ancestors in the depth-first search tree. Observe that vertex 4
has two ancestors in addition to its parent, 3: 1 and 0. Vertex 1 is a grandparent,
and vertex 0 is a great-grandparent.

Algorithm for Depth-First Search
Depth-first search is used as the basis of other graph algorithms. However, rather
than embedding the depth-first search algorithm into these other algorithms, we will
implement the depth-first search algorithm to collect information about the vertices,
which we can then use in these other algorithms. The information we will collect is
the discovery order (or the visit order) and the finish order.

The depth-first search algorithm follows. Step 5 recursively applies this algorithm to
each vertex as it is discovered.

F I G U R E 1 2 . 2 0
Depth-First Search Tree
of Figure 12.18

722 Chapter 12 Graphs

4 6

1

0

2

3 5

Algorithm for Depth-First Search
1. Mark the current vertex, u, visited (color it light), and enter it in the discov-

ery order list.
2. for each vertex, v, adjacent to the current vertex, u
3. if v has not been visited
4. Set parent of v to u.
5. Recursively apply this algorithm starting at v.
6. Mark u finished (color it dark) and enter u into the finish order list.

Observe that Step 6 is executed after the loop in Step 2 has examined all vertices
adjacent to vertex u. Also, the loop at Step 2 does not select the vertices in any par-
ticular order.

Table 12.5 shows a trace of the algorithm as applied to the graph shown in Figure
12.19. We list each visit or finish step in column 1. Column 2 lists the vertices adja-
cent to each vertex when it begins to be visited. The discovery order (the order in
which the vertices are visited) is 0, 1, 3, 4, 2, 5, 6. The finish order is 4, 3, 1, 6, 5,
2, and 0.

Performance Analysis of Depth-First Search
The loop at Step 2 is executed |Ev| (the number of edges that originate at that ver-
tex) times. The recursive call results in this loop being applied to each vertex. The
total number of steps is the sum of the edges that originate at each vertex, which is
the total number of edges |E |. Thus the algorithm is O(|E |).

TA B L E 1 2 . 5
Trace of Depth-First Search of Figure 12.19

12.4 Traversals of Graphs 723

Operation Adjacent Vertices Discovery (Visit) Order Finish Order

Visit 0 1, 2, 3, 4 0

Visit 1 0, 3, 4 0, 1

Visit 3 0, 1, 4 0, 1, 3

Visit 4 0, 1, 3 0, 1, 3, 4

Finish 4 4

Finish 3 4, 3

Finish 1 4, 3, 1

Visit 2 0, 5, 6 0, 1, 3, 4, 2

Visit 5 2, 6 0, 1, 3, 4, 2, 5

Visit 6 2, 5 0, 1, 3, 4, 2, 5, 6

Finish 6 4, 3, 1, 6

Finish 5 4, 3, 1, 6, 5

Finish 2 4, 3, 1, 6, 5, 2

Finish 0 4, 3, 1, 6, 5, 2, 0

There is an implicit Step 0 to the algorithm that colors all of the vertices white. This
is O(|V |), thus the total running time of the algorithm is O(|V |+|E|).

Implementing Depth-First Search
The function depth_first_search is designed to be used as a building block for
other algorithms. When called, this function performs a depth-first search on a
graph and records the start time, finish time, start order, and finish order. For an
unconnected graph, or for a directed graph (whether connected or not), a depth-first
search may not visit each vertex in the graph. Thus, once the recursive function
returns, the vertices need to be examined to see whether they all have been visited;
if not, the recursive process repeats, starting with the next unvisited vertex. Thus,
the depth-first search can generate more than one tree. We will call this collection
of trees a forest.

The starter function clears and resizes the vectors parent, visited, discovery_order,
and finish_order and initializes all elements of parent to -1 (no parent). In the
starter function in Listing 12.7, the for statement that begins with lines

for (int i = 0; i < num_v; i++) {
if (!visited[i]) {
depth_first_search(graph, i, parent,

calls the recursive depth-first search function. The recursive depth_first_search fol-
lows the algorithm shown earlier. If the graph is connected, all vertices will be vis-
ited after the return from the initial call to the recursive depth_first_search. If the
graph is not connected, additional calls will be made using a start vertex that has
not been visited.

L I S T I N G 1 2 . 7
Depth_First_Search.cpp

#include <vector>
#include "Graph.h"
using namespace std;

/** Perform a depth first search of a graph (recursive function).
@param graph The graph to be searched
@param current The current vertex being visited
@param parent The parents in the depth-first search tree
@param discovery_order The discovery order for each vertex
@param finish_order The finish order for each vertex
@param visited The vector that records whether a vertex has been

visited
@param discovery_index The index into the discovery_order vector
@param finish_index The index into the finish_order vector

*/
void depth_first_search(const Graph& graph, int current,

vector<int>& parent,
vector<int>& discovery_order,
vector<int>& finish_order,
vector<bool>& visited,

724 Chapter 12 Graphs

int& discovery_index,
int& finish_index) {

visited[current] = true;
discovery_order[discovery_index++] = current;
/* For each vertex adjacent to the current vertex. */
for (Graph::iterator itr = graph.begin(current);

itr != graph.end(current); ++itr) {
int neighbor = (*itr).get_dest();
// if neighbor has not been visited
if (!visited[neighbor]) {
/* Insert (current, neighbor) into the depth-

first search tree */
parent[neighbor] = current;
// Recursively apply the algorithm starting at neighbor.
depth_first_search(graph, neighbor,

parent, discovery_order,
finish_order, visited,
discovery_index, finish_index);

}
}
// Mark current finished
finish_order[finish_index++] = current;

}

/** Perform a depth-first search of a graph (starter function).
@param graph The graph to be searched
@param start The start vertex
@param parent The parents in the depth-first search tree
@param discovery_order The discovery order for each vertex
@param finish_order The finish order for each vertex

*/
void depth_first_search(const Graph& graph, int start,

vector<int>& parent,
vector<int>& discovery_order,
vector<int>& finish_order) {

int num_v = graph.get_num_v();
parent.clear();
parent.resize(num_v, -1);
discovery_order.clear();
discovery_order.resize(num_v, -1);
finish_order.clear();
finish_order.resize(num_v, -1);
vector<bool> visited(num_v, false);
int discovery_index = 0;
int finish_index = 0;
for (int i = 0; i < num_v; i++) {
if (!visited[i]) {
depth_first_search(graph, i, parent,

discovery_order,
finish_order,
visited,
discovery_index,
finish_index);

}
}

}

12.4 Traversals of Graphs 725

Testing Function depth_first_search
Next, we show a main function that tests the class. It is a simple driver program that
can be used to read a graph and then initiate a depth-first traversal. The function
create_graph creates a Graph of the desired implementation, reads the source and
destination vertices, and inserts the edge into the graph. After the traversal, the
driver program displays the vectors that represent the search results.

/** Main function to demonstrate the algorithm.
pre: argv[1] is the name of the input file.
pre: argv[2] is the type of graph.
@param argc The count of command line arguments
@param argv The command line arguments

*/
int main(int argc, char* argv[]) {
if (argc < 3) {
cerr << "Usage Depth_First_Search <input> <graph type>\n";
return 1;

}
ifstream in(argv[1]);
if (!in) {
cerr << "Unable to open " << argv[1] << " for input\n";
return 1;

}
Graph* g = Graph::create_graph(in, false, "List");
vector<int> parent;
vector<int> discovery_order;
vector<int> finish_order;
depth_first_search(*g, 0, parent, discovery_order, finish_order);
cout << setw(4) << "i";
cout << setw(8) << "discovery_order";
cout << setw(8) << "finish_order";
cout << setw(8) << "parent";
cout << endl;
for (int i = 0; i < g->get_num_v(); i++) {
cout << setw(4) << i;
cout << setw(8) << discovery_order[i];
cout << setw(8) << finish_order[i];
cout << setw(8) << parent[i];
cout << endl;

}
}

E X E R C I S E S F O R S E C T I O N 1 2 . 4

S E L F - C H E C K

1. Show the breadth-first search trees for the following graphs.

2. Show the depth-first search trees for the graphs in Exercise 1.

A

D E

B

C

0 1

4 3

2

726 Chapter 12 Graphs

12.5 Applications of Graph Traversals 727

P R O G R A M M I N G

1. Provide all accessor functions for class Depth_First_Search and the constructor
that specifies the order of start vertices.

2. Implement function depth_first_search without using recursion. Hint: Use a
stack to save the parent of the current vertex when you start to search one of its
adjacent vertices.

12.5 Applications of Graph Traversals

CASE STUDY Shortest Path Through a Maze

Problem We want to design a program that will find the shortest path through a maze. In
Chapter 7 we showed how to write a recursive program that found a solution to a
maze. That program used a backtracking algorithm that visited alternate paths.
When it found a dead end, it backed up and tried another path, and eventually it
found a solution.

Figure 12.21 shows a maze solution generated by this recursive program. The light
gray cells are barriers in the maze. The white squares show the solution path, the
black squares show the squares that were visited but rejected, and the dark gray
squares were not visited. As you can see, the program did not find an optimal solu-
tion. (This is a consequence of the program advancing the solution path to the South
before attempting to advance it to the East.) We want to find the shortest path,
defined as the one with the fewest decision points in it.

Analysis We can represent the maze shown in Figure 12.21 by a graph, where we place a
node at each decision point and at each dead end, as shown in Figure 12.22.

Now that we have the maze represented as a graph, we need to find the shortest
path from the start point (vertex 0) to the end point (vertex 12). The breadth-first
search function will return the shortest path from each vertex to its parent (the vec-
tor of parent vertices), and we can use this vector to find the shortest path to the
end point. Recall that our shortest path will contain the smallest number of vertices,
but not necessarily the smallest number of cells, in the path.

Design Your program will need the following data structures:

• An external representation of the maze, consisting of the number of vertices and
the edges

• An object of a class that implements the Graph interface
• A vector to hold the predecessors returned from the breadth_first_search

function
• A stack to reverse the path

728 Chapter 12 Graphs

F I G U R E 1 2 . 2 1
Recursive Solution to a Maze

0

1

4 5 6

3

2

7

9

11

10

8

12

F I G U R E 1 2 . 2 2
Graph Representation of the Maze in Figure 12.21

12.5 Applications of Graph Traversals 729

The algorithm is as follows:
1. Read in the number of vertices and create the graph object.
2. Read in the edges and insert the edges into the graph.
3. Call the breadth_first_search function with this graph and the starting ver-

tex as its argument. The function returns the vector parent.
4. Start at v, the end vertex.
5. while v is not –1
6. Push v onto the stack.
7. Set v to parent[v].
8. while the stack is not empty
9. Pop a vertex off the stack and output it.

Implementation Listing 12.8 shows the program. We assume that the graph that represents the maze
is stored in a text file. The first line of this file contains the number of vertices. The
edges are on subsequent lines. The rest of the code follows the algorithm.

L I S T I N G 1 2 . 8
Program to Solve a Maze Using a Breadth-First Search (Maze.cpp)

#include <iostream>
#include <fstream>
#include <vector>
#include <stack>
#include "Graph.h"

using namespace std;

vector<int> breadth_first_search(const Graph&, int);

/** Program to solve a maze represented as a graph.
This program performs a breadth-first search of the graph
to find the "shortest" path from the start vertex to the
end. It is assumed that the start vertex is 0, and the
end vertex is num_v - 1.
@param argc Count of command line arguments
@param argv The command line arguments
@pre argv[1] Contains the name of the input file
@pre argv[2] Contains the type of graph

*/
int main(int argc, char* argv[]) {
if (argc < 3) {
cerr << "Usage Maze <input> <graph type>\n";
return 1;

}
ifstream in(argv[1]);
if (!in) {
cerr << "Unable to open " << argv[1] << " for input\n";
return 1;

}
Graph* the_maze = Graph::create_graph(in, false, "List");

730 Chapter 12 Graphs

// Perform breadth-first search
vector<int> parent = breadth_first_search(*the_maze, 0);

// Construct the path
stack<int> the_path;
int v = the_maze->get_num_v() - 1;
while (parent[v] != -1) {
the_path.push(v);
v = parent[v];

}
// Output the path
cout << "The Shortest path is:\n";
while (!the_path.empty()) {
cout << the_path.top() << endl;
the_path.pop();

}
}

Testing Test this program with a variety of mazes. Use mazes for which the original program
finds the shortest path and mazes for which it does not. For the graph shown in
Figure 12.23, the shortest path from 0 to 12 is 0 → 1 → 2 → 8 → 12.

F I G U R E 1 2 . 2 3
Solution to Maze in Figure 12.21

0

1

4 5 6

3

2

7

9

11

10

8

12

12.5 Applications of Graph Traversals 731

CASE STUDY Topological Sort of a Graph

Problem There are many problems in which one activity cannot be started before another one
has been completed. One that you may have already encountered is determining the
order in which you can take courses. Some courses have prerequisites. Some have
more than one prerequisite. Furthermore, the prerequisites may have prerequisites.
Figure 12.24 shows the courses and prerequisites of a computer science program at
the authors’ university.

Graphs such as the one shown in Figure 12.24 are known as directed acyclic graphs
(DAGs). They are directed graphs that contain no cycles; that is, there are no loops,
so once you pass through a vertex, there is no path back to that vertex. Figure 12.25
shows another example of a DAG.

F I G U R E 1 2 . 2 4
Prerequisites for a
Computer Science
Program

F I G U R E 1 2 . 2 5
Example of a Directed
Acyclic Graph

Calculus 1

Calculus 2 CIS 066

CIS 072 CIS 068 CIS 166

200 Level
Elective

Theory
Course

CIS 207 CIS 223

CIS 338

CIS 339

CIS 307

CIS 067

Communications
Elective

300 Level
Elective

8

3 4

0

6

5

2 1

7

732 Chapter 12 Graphs

A topological sort of the vertices of a DAG is an ordering of the vertices such that
if (u, v) is an edge, then u appears before v. This must be true for all edges. For
example, 0, 1, 2, 3, 4, 5, 6, 7, 8 is a valid topological sort of the graph in Figure
12.25, but 0, 1, 5, 3, 4, 2, 6, 7, 8 is not, because 2 → 5 is an edge, but 5 appears
before 2. There are many valid paths through the prerequisite graph and many valid
topological sorts. Another valid topological sort is 0, 3, 1, 4, 6, 2, 5, 7, 8.

Analysis If there is an edge from u to v in a DAG, then if we perform a depth-first search of
this graph, the finish time of u must be after the finish time of v. When we return to
u, either v has not been visited or it has finished. It is not possible that v would be
visited but not finished, because if it were possible, we would discover u on a path
that had passed through v. That would mean that there is a loop or cycle in the
graph.

For example, in Figure 12.25 we could start the depth-first search at 0, then visit 4,
followed by 6, followed by 8. Then, returning to 4, we would have to visit 7 before
returning to 0. Then we would visit 1, and from 1 we would see that 4 has finished.
Alternatively, we could start at 0 and then go to 1, and we would see that 4 has not
been visited. What we cannot have happen is that we start at 0, then visit 4, and
eventually get to 1 before finishing 4.

Design If we perform a depth-first search of a graph and then order the vertices by the
inverse of their finish order, we will have one topological sort of a directed acyclic
graph. The topological sort produced by listing the vertices in the inverse of their
finish order after a depth-first search of the graph in Figure 12.25 is 0, 3, 1, 4, 6, 2,
5, 7, 8.

Algorithm for Topological Sort
1. Read the graph from a data file.
2. Perform a depth-first search of the graph.
3. List the vertices in reverse of their finish order.

Implementation We can use our depth_first_search function to implement this algorithm. Listing
12.9 shows a program that does this. It begins by reading the graph from an input
file. It then calls the depth_first_search function, passing vectors parent, discov-
ery_order, and finish_order by reference. Upon return, these vectors will be filled
with the desired information. If we output the finish_order vector starting at
get_num_v() – 1, we will obtain the topological sort of the graph.

L I S T I N G 1 2 . 9
Topological_Sort.cpp

#include <iostream>
#include <fstream>
#include <vector>
#include "Graph.h"
using namespace std;

12.5 Applications of Graph Traversals 733

void depth_first_search(const Graph&, int,
vector<int>&, vector<int>&,
vector<int>&);

/** This program outputs the topological sort of a directed graph
that contains no cycles.
pre: argv[1] will contain the file name that contains the graph.
pre: argv[2] will contain the type of graph representation.
@param argc The count of command line arguments
@param argv The command line arguments

*/
int main(int argc, char* argv[]) {
if (argc < 3) {
cerr << "Usage Topological_Sort <input> <graph type>\n";
return 1;

}
ifstream in(argv[1]);
if (!in) {
cerr << "Unable to open " << argv[1] << " for input\n";
return 1;

}
Graph* the_graph = Graph::create_graph(in, true, argv[2]);
// Perform the depth-first search
vector<int> parent;
vector<int> discovery_order;
vector<int> finish_order;
depth_first_search(*the_graph, 0, parent, discovery_order,

finish_order);
cout << "The Topological Sort is\n";
for (int i = the_graph->get_num_v() - 1; i >= 0; i--)
cout << finish_order[i] << endl;

return 0;
}

Testing Test this program using several different graphs. Use sparse graphs and dense
graphs. Make sure that each graph that you try has no loops or cycles. If it does, the
algorithm may display an invalid output.

E X E R C I S E S F O R S E C T I O N 1 2 . 5

S E L F - C H E C K

1. Draw the depth-first search tree of the graph in Figure 12.24 and then list the ver-
tices in reverse finish order.

2. List some alternative topological sorts for the graph in Figure 12.24.

12.6 Algorithms Using Weighted Graphs

Finding the Shortest Path from a Vertex to All Other Vertices
The breadth-first search discussed in Section 12.4 found the shortest path from the
start vertex to all other vertices, assuming that the length of each edge was the same.
We now consider the problem of finding the shortest path where the length of each
edge may be different—that is, in a weighted directed graph such as that shown in
Figure 12.26. The computer scientist Edsger W. Dijkstra developed an algorithm,
now called Dijkstra’s algorithm (E. W. Dijkstra, “A Note on Two Problems in
Connection with Graphs,” Numerische Mathematik, Vol. 1 [1959], pp. 269–271),
to solve this problem. This algorithm makes the assumption that all of the edge val-
ues are positive.

For Dijkstra’s algorithm we need two sets, S and V – S, and two vectors, d and p.
S will contain the vertices for which we have computed the shortest distance, and
V – S will contain the vertices that we still need to process. The entry d[v] will con-
tain the shortest distance from s to v, and p[v] will contain the predecessor of v in
the path from s to v.

We initialize S by placing the start vertex, s, into it. We initialize V – S by placing
the remaining vertices into it. For each v in V – S, we initialize d by setting d[v] equal
to the weight of the edge w(s, v) for each vertex, v, adjacent to s and to ∞ for each
vertex that is not adjacent to s. We initialize p[v] to s for each v in V – S.

For example, given the graph shown in Figure 12.26, the set S would initially be {0},
V – S would be {1, 2, 3, 4}. The vectors d and p would be defined as follows.

F I G U R E 1 2 . 2 6
Weighted Directed
Graph

v d [v] p[v]

1 10 0

2 ∞ 0

3 30 0

4 100 0

734 Chapter 12 Graphs

2

1

10

10

30

50

100

60

20

4

0

3

The first row shows that the distance from vertex 0 to vertex 1 is 10 and that ver-
tex 0 is the predecessor of vertex 1. The second row shows that vertex 2 is not adja-
cent to vertex 0.

We now find the vertex u in V – S that has the smallest value of d[u]. Using our
example, this is 1. We now consider the vertices v that are adjacent to u. If the dis-
tance from s to u (d[u]) plus the distance from u to v (that is, w(u, v)) is smaller than
the known distance from s to v, d[v], then we update d[v] to be d[u] + w(u, v), and
we set p[v] to u. In our example the value of d[1] is 10, and w(1, 2) is 50. Since 10
+ 50 = 60 is less than ∞, we set d[2] to 60 and p[2] to 1. We remove 1 from V – S
and place it into S. We repeat this until V – S is empty.

After the first pass through this loop, S is {0, 1}, V – S is {2, 3, 4} and d and p are
as follows:

We again select u from V – S with the smallest d[u]. This is now 3. The adjacent ver-
tices to 3 are 2 and 4. The distance from 0 to 3, d[3], is 30. The distance from 3 to
2 is 20. Because 30 + 20 = 50 is less than the current value of d[2], 60, we update
d[2] to 50 and change p[2] to 3. Also, because 30 + 60 = 90 is less than 100, we
update d[4] to 90 and set p[4] to 3.

Now S is {0, 1, 3}, and V – S is {2, 4}. The vectors d and p are as follows:

Next we select vertex 2 from V – S. The only vertex adjacent to 2 is 4. Since d[2] +
w(2, 4) = 50 + 10 = 60 is less than d[4], 90, we update d[4] to 60 and p[4] to 2.
Now S is {0, 1, 2, 3}, V – S is {4}, and d and p are as follows:

v d [v] p[v]

1 10 0

2 50 3

3 30 0

4 60 2

v d [v] p[v]

1 10 0

2 50 3

3 30 0

4 90 3

v d [v] p[v]

1 10 0

2 60 1

3 30 0

4 100 0

12.6 Algorithms Using Weighted Graphs 735

Finally we remove 4 from V – S and find that it has no adjacent vertices. We are
now done. The vector d shows the shortest distances from the start vertex to all
other vertices, and the vector p can be used to determine the corresponding paths.
For example, the path from vertex 0 to vertex 4 has a length of 60, and it is the
reverse of 4, 2, 3, 0; therefore, the shortest path is 0 → 3 → 2 → 4.

Dijkstra’s Algorithm
1. Initialize S with the start vertex, s, and V – S with the remaining vertices.
2. for all v in V – S
3. Set p[v] to s.
4. if there is an edge (s, v)
5. Set d[v] to w(s, v).

else

6. Set d[v] to ∞.
7. while V – S is not empty
8. for all u in V – S, find the smallest d[u].
9. Remove u from V – S and add u to S.

10. for all v adjacent to u in V – S
11. if d[u] + w(u, v) is less than d[v].
12. Set d[v] to d[u] + w(u, v).
13. Set p[v] to u.

Analysis of Dijkstra’s Algorithm
Step 1 requires |V | steps.

The loop at Step 2 will be executed |V – 1| times.

The loop at Step 7 will also be executed |V – 1| times.

Within the loop at Step 7 we have to consider Steps 8 and 9. For these steps we will
have to search each value in V – S. This decreases each time through the loop at Step
7, so we will have |V | – 1 + |V | – 2 + · · · 1. This is O(|V |2). Therefore, Dijkstra’s
algorithm as stated is O|V |2). We will look at possible improvements to this for
sparse graphs when we discuss a similar algorithm in the next subsection.

Implementation
Listing 12.10 provides a straightforward implementation of Dijkstra’s algorithm
using set<int> v_minus_s to represent set V – S. The function takes as inputs the
graph and starting point, and it outputs predecessor and distance vectors passed
through parameters. We use iterators to traverse v_minus_s.

If we used an adjacency list representation for the graph (i.e., class List_Graph,
described earlier), then we would code Step 10 (update the distances) to iterate
through the edges adjacent to vertex u, and then update the distance if the destina-
tion vertex was in v_minus_s. The modified code follows:

736 Chapter 12 Graphs

// Update the distances
for (Graph::iterator itr = graph.begin(u);

itr != graph.end(u); ++itr) {
Edge edge = *itr;
int v = edge.get_dest();
if (contains(v_minus_s, v)) {
double weight = edge.get_weight();
if (dist[u] + weight < dist[v]) {
dist[v] = dist[u] + weight;
pred[v] = u;

}
}

}

L I S T I N G 1 2 . 1 0
Dijkstra’s Shortest-Path Algorithm (Dijkstra.cpp)

#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include "Graph.h"

using namespace std;

/** Dijkstra's Shortest-Path algorithm.
@param graph The weighted graph to be searched
@param start The start vertex
@param pred Output vector to contain the predecessors

in the shortest path
@param dist Output vector to contain the distance

in the shortest path
*/
void dijkstras_algorithm(const Graph& graph,

int start,
vector<int>& pred,
vector<double>& dist) {

int num_v = graph.get_num_v();
// Use a set to represent V - S
set<int> v_minus_s;
// Initialize V - S.
for (int i = 0; i < num_v; i++) {
if (i != start) {
v_minus_s.insert(i);

}
}
// Initialize pred and dist
for (set<int>::iterator itr = v_minus_s.begin();

itr != v_minus_s.end(); ++itr) {
pred[*itr] = start;
dist[*itr] = graph.get_edge(start, *itr).get_weight();

}

12.6 Algorithms Using Weighted Graphs 737

// Main loop
while (!v_minus_s.empty()) {
// Find the value u in V - S with the smallest dist[u].
double min_dist = numeric_limits<double>::infinity();
int u = -1;
for (set<int>::iterator itr = v_minus_s.begin();

itr != v_minus_s.end(); ++itr) {
int v = *itr;
if (dist[v] < min_dist) {
min_dist = dist[v];
u = v;

}
}
// Remove u from v_minus_s
v_minus_s.erase(u);
// Update the distances
for (set<int>::iterator itr = v_minus_s.begin();

itr != v_minus_s.end(); ++itr) {
int v = *itr;
if (graph.is_edge(u, v)) {
double weight = graph.get_edge(u, v).get_weight();
if (dist[u] + weight < dist[v]) {
dist[v] = dist[u] + weight;
pred[v] = u;

}
}

}
}

}
...

Minimum Spanning Trees
A spanning tree is a subset of the edges of a graph such that there is only one edge
between any two vertices, and all of the vertices are connected. If we have a span-
ning tree for a graph, then we can access all the vertices of the graph from the start
node. The cost of a spanning tree is the sum of the weights of the edges. We want
to find the minimum spanning tree, or the spanning tree with the smallest cost. For
example, if we want to start up our own long-distance phone company and need to
connect the cities shown in Figure 12.4, finding the minimum spanning tree would
allow us to build the cheapest network.

We will discuss the algorithm published by R. C. Prim (R. C. Prim, “Shortest
Connection Networks and Some Generalizations,” Bell System Technical Journal,
Vol. 36 [1957], pp. 1389–1401) for finding the minimum spanning tree of a graph.
It is very similar to Dijkstra’s algorithm, but Prim published his algorithm in 1957,
two years before Dijkstra’s paper, which contains an algorithm for finding the min-
imum spanning tree that is essentially the same as Prim’s as well as the previously
discussed algorithm for finding the shortest paths.

Overview of Prim’s Algorithm
The vertices are divided into two sets: S, the set of vertices in the spanning tree, and
V – S, the remaining vertices. As in Dijkstra’s algorithm, we maintain two vectors:
d[v] will contain the length of the shortest edge from a vertex in S to the vertex v

738 Chapter 12 Graphs

that is in V – S, and p[v] will contain the source vertex for that edge. The only dif-
ference between the algorithm to find the shortest path and the algorithm to find the
minimum spanning tree is the contents of d[v]. In the algorithm to find the shortest
path, d[v] contains the total length of the path from the starting vertex. In the algo-
rithm to find the minimum spanning tree, d[v] contains only the length of the final
edge. We show the essentials of Prim’s algorithm next.

Prim’s Algorithm for Finding the Minimum Spanning Tree
1. Initialize S with the start vertex, s, and V – S with the remaining vertices.
2. for all v in V – S
3. Set p[v] to s.
4. if there is an edge (s, v)
5. Set d[v] to w(s, v).

else

6. Set d[v] to ∞.
7. while V – S is not empty
8. for all u in V – S, find the smallest d[u].
9. Remove u from V – S and add it to S.

10. Insert the edge (u, p[u]) into the spanning tree.
11. for all v in V – S
12. if w(u, v) < d[v]
13. Set d[v] to w(u, v).
14. Set p[v] to u.

In the vector d, d[v] contains the length of the shortest known (previously exam-
ined) edge from a vertex in S to the vertex v, while v is a member of V – S. In the
vector p, the value p[v] is the source vertex of this shortest edge. When v is removed
from V – S, we no longer update these entries in d and p.

E X A M P L E 1 2 . 2 Consider the graph shown in Figure 12.27. We initialize S to {0} and V – S to {1, 2,
3, 4, 5}. The smallest edge from u to v, where u is in S and v is in V – S, is the edge
(0, 2). We add this edge to the spanning tree, and add 2 to S (see Figure 12.28(a)).

12.6 Algorithms Using Weighted Graphs 739

F I G U R E 1 2 . 2 7
Graph for Example 12.2

1

0

2

6

3

5

2

5

5 5

6

1

4

4

3

5

The set S is now {0, 2} and V – S is {1, 3, 4, 5}. We now have to consider all of the
edges (u, v), where u is either 0 or 2, and v is 1, 3, 4, or 5 (there are eight possible
edges). The smallest one is (2, 5). We add this to the spanning tree, and S now is {0,
2, 5} and V – S is {1, 3, 4} (see Figure 12.28(b)). The next smallest edge is (5, 3). We
insert that into the tree and add 3 to S (see Figure 12.28(c)). Now V – S is {1, 4}.
The smallest edge is (2, 1). After adding this edge (see Figure 12.28(d)), we are left
with V – S being {4}. The smallest edge to 4 is (1, 4). This is added to the tree, and
the spanning tree is complete (see Figure 12.28(e)).

Analysis of Prim’s Algorithm
Step 8 is O(|V |). Because this is within the loop at Step 7, it will be executed O(|V |)
times for a total time of O(|V |2). Step 11 is O(|Eu|), the number of edges that origi-
nate at u. Because Step 11 is inside the loop of Step 7, it will be executed for all ver-
tices; thus, the total is O(|E |). Because |V |2 is greater than |E |, the overall cost of the
algorithm is O(|V |2).

By using a priority queue to hold the edges from S to V – S, we can improve on this
algorithm. Then Step 8 is O(log n), where n is the size of the priority queue. In the
worst case, all of the edges are inserted into the priority queue, the overall cost of
the algorithm is then O(|E | log |V |). We say that the algorithm is O(|E | log |V |)
instead of saying that it is O(|E | log |E |), even though the maximum size of the pri-
ority queue is |E |, because |E | is bounded by |V |2 and log |V |2 is 2 � log |V |.

For a dense graph, where |E | is approximately |V |2, this is not an improvement, but
it is an improvement for a sparse graph, where |E | is significantly less than |V |2.
Furthermore, computer science researchers have developed improved priority queue
implementations that give O(|E | + |V | log |V |) or better performance.

Implementation
Listing 12.11 shows an implementation of Prim’s algorithm using a priority queue
to hold the edges from S to V – S. The vectors p and d given in the previous algo-
rithm description are not needed, because the priority queue contains complete

740 Chapter 12 Graphs

1

4 5

3
1

0

2

1

4

3
1

4

0

2

1

4

1

4
2

0

2

4

1

4
2

0

2

1

5

3

4

1

43

5 5

2

0

2

1

5

3

5 5

3

(a) (b) (c) (d) (e)

F I G U R E 1 2 . 2 8
Building a Minimum Spanning Tree Using Prim’s Algorithm

edges. For a given vertex d, if a shorter edge is discovered, we do not remove the
entry containing the longer edge from the priority queue. We merely insert new
edges as they are discovered. Therefore, when the next shortest edge is removed
from the priority queue, it may have a destination that is no longer in V – S. In that
case, we continue to remove edges from the priority queue until we find one with a
destination that is still in V – S. This is done with the following loop:

do {
edge = pQ.top();
pQ.pop();
dest = edge.get_dest();

} while(!contains(v_minus_s, dest));

L I S T I N G 1 2 . 1 1
Prim’s Minimum Spanning Tree Algorithm (Prim.cpp)

#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include <queue>
#include "Graph.h"
#include "set_functions.h"

using namespace std;

/** Comparator function class to compare Edge weights. */
struct Compare_Edges {
typedef Edge value_type;
bool operator()(const Edge& left, const Edge& right) {
return left.get_weight() < right.get_weight();

}
};

/** Prim's Minimum Spanning Tree algorithm.
@param graph The weighted graph to be searched
@param start The start vertex
@return A vector of edges that forms the MST

*/
vector<Edge> prims_algorithm(const Graph& graph,

int start) {
vector<Edge> result;
int num_v = graph.get_num_v();
// Use a set to represent V - S
set<int> v_minus_s;
// Declare the priority queue
priority_queue<Edge, vector<Edge>, Compare_Edges> pQ;
// Initialize V - S.
for (int i = 0; i < num_v; i++) {
if (i != start) {
v_minus_s.insert(i);

}
}
int current = start;

12.6 Algorithms Using Weighted Graphs 741

// Main loop
while (!v_minus_s.empty()) {
// Update priority queue
Graph::iterator iter = graph.begin(current);
while (iter != graph.end(current)) {
Edge edge = *iter++;
int dest = edge.get_dest();
if (contains(v_minus_s, dest)) {
pQ.push(edge);

}
}
// Find the shortest edge whose source is in S and
// destination is in V - S.
int dest;
Edge edge;
do {
edge = pQ.top();
pQ.pop();
dest = edge.get_dest();

} while(!contains(v_minus_s, dest));
// Take dest out of v_minus_s
v_minus_s.erase(dest);
// Add edge to result
result.push_back(edge);
// Make this the current vertex
current = dest;

}
return result;

}
...

E X E R C I S E S F O R S E C T I O N 1 2 . 6

S E L F - C H E C K

1. Trace the execution of Dijkstra’s algorithm to find the shortest path from
Philadelphia to the other cities shown in the following graph.

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148
Chicago

Fort
 Wayne

Indianapolis Columbus

742 Chapter 12 Graphs

2. Trace the execution of Dijkstra’s algorithm to find the shortest paths from vertex
0 to the other vertices in the following graph.

3. Trace the execution of Prim’s algorithm to find the minimum spanning tree for
the graph shown in Question 2.

4. Trace the execution of Prim’s algorithm to find the minimum spanning tree for
the graph shown in Question 1.

C h a p t e r R e v i e w

◆ A graph consists of a set of vertices and a set of edges. An edge is a pair of ver-
tices. Graphs may be either undirected or directed. Edges may have a value asso-
ciated with them known as the weight.

◆ In an undirected graph, if {u, v} is an edge, then there is a path from vertex u to
vertex v, and vice versa.

◆ In a directed graph, if (u, v) is an edge, then (v, u) is not necessarily an edge.

◆ If there is an edge from one vertex to another, then the second vertex is adjacent
to the first. A path is a sequence of adjacent vertices. A path is simple if the ver-
tices in the path are distinct except, perhaps, for the first and last vertex, which
may be the same. A cycle is a path in which the first and last vertexes are the same.

◆ A graph is considered connected if there is a path from each vertex to every other
vertex.

◆ A tree is a special case of a graph. Specifically, a tree is a connected graph that
contains no cycles.

◆ Graphs may be represented by an array of adjacency lists. There is one list for
each vertex, and the list contains the edges that originate at this vertex.

◆ Graphs may be represented by a two-dimensional square array called an adja-
cency matrix. The entry [u][v] will contain a value to indicate that an edge from
u to v is present or absent.

10

1 20

7

12

4

7

8

3

5 6

11

3

1

3 1

5
3

7

9

5

7

1 2

6 3
7

3 3

4 7

1 1

4 4

9

Chapter 12 Review 743

◆ A breadth-first search of a graph finds all vertices reachable from a given vertex
via the shortest path, where the length of the path is based on the number of ver-
tices in the path.

◆ A depth-first search of a graph starts at a given vertex and then follows a path of
unvisited vertices until it reaches a point where there are no unvisited vertices that
are reachable. It then backtracks until it finds an unvisited vertex, and then con-
tinues along the path to that vertex.

◆ A topological sort determines an order for starting activities which are dependent
on the completion of other activities (prerequisites). The finish order derived from
a depth-first traversal represents a topological sort.

◆ Dijkstra’s algorithm finds the shortest path from a start vertex to all other vertices,
where the distance from one vertex to another is determined by the weight of the
edge between them.

◆ Prim’s algorithm finds the minimum spanning tree for a graph. This consists of the
subset of the edges of a connected graph whose sum of weights is the minimum
and the graph consisting of only the edges in the subset is still connected.

Quick-Check Exercises
1. For the following graph:

a. List the vertices and edges.
b. True or false: The path 0, 1, 4, 6, 3 is a simple path.
c. True or false: The path 0, 3, 1, 4, 6, 3, 2 is a simple path.
d. True or false: The path 3, 1, 2, 4, 7, 6, 3 is a cycle.

2. Identify the connected components in the following graph.

3. For the following graph
a. List the vertices and edges.
b. Does this graph contain any cycles?

1 20

4

7

3

5 6

1 20

4

7

3

5 6

1 20

4

7

3

5 6

744 Chapter 12 Graphs

4. Show the adjacency matrices for the graphs shown in Questions 1, 2, and 3.
5. Show the adjacency lists for the graphs shown in Questions 1, 2, and 3.
6. Show the breadth-first search tree for the graph shown in Question 1, starting at

vertex 0.
7. Show the depth-first search tree for the graph shown in Question 3, starting at

vertex 0.
8. Show a topological sort of the vertices in the graph shown in Question 3.
9. In the following graph, find the shortest path from 0 to all other vertices.

10. In the following graph, find the minimum spanning tree.

Answers to Quick-Check Exercises
1. a. Vertices: {0, 1, 2, 3, 4, 5, 6, 7}. Edges: {{0, 1}, {0, 3}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3,

5}, {3, 6}, {4, 6}, {4, 7}, {5, 6}, {6, 7}}.
b. True.
c. False.
d. True.

2. The connected components are {0, 3, 5, 6}, {1, 4, 7}, and {2}.
3. a. Vertices: {0, 1, 2, 3, 4, 5, 6, 7}. Edges: {(0, 1), (0, 3), (0, 5), (1, 2), (2, 4), (3, 4), (4,

7), (5, 3), (5, 6), (6, 7)}.
b. The graph contains no cycles.

4. For the graph shown in Question 1:

1 1 1 1

1

1 1

1 1

1 1

1 1

1 1

1 1 1

1

1

11 1

1

[2]

Column

[1] [3] [4] [5] [6] [7][0]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

1 20

4

7

3

5 6

10 15

5
10

20

25

5

15

10 5

15
20

1 20

4

7

3

5 6

10 15

5

20
10

30 5

10
10

15

Chapter 12 Review 745

For Question 2:

For Question 3:

5. For Question 1:
[0] → 1 → 3
[1] → 0 → 2 → 3 → 4

[2] → 1 → 4

[3] → 0 → 1 → 5 → 6

[4] → 1 → 2 → 6 → 7

[5] → 3 → 6

[6] → 3 → 4 → 5 → 7

[7] → 4 → 6

For Question 2:
[0] → 3 → 5

[1] → 4

[2] →

[3] → 0 → 5 → 6

[4] → 1 → 7

[5] → 0 → 3

[6] → 3

[7] → 4

1

1

1 1

1

11 1

1

1

[2]

Column

[1] [3] [4] [5] [6] [7]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

[0]

1

1

1

1 1

1

1

1 1

1 1

1

[2]

Column

[1] [3] [4] [5] [6] [7][0]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

746 Chapter 12 Graphs

For Question 3:
[0] → 1 → 3 → 5

[1] → 2

[2] → 4

[3] → 4

[4] → 7

[5] → 3 → 6

[6] → 7

[7] →

6.

7.

8. 0, 5, 6, 3, 1, 2, 4, 7.
9.

10. 1 20

4

7

3

5 6

5 5

5
10

10
10

15

Vertex Distance Path

1 10 0 → 1

2 25 0 → 1 → 2

3 30 0 → 3 (or 0 → 5 → 3)

4 30 0 → 1 → 2 → 4

5 20 0 → 5

6 25 0 → 5 → 6

7 40 0 → 5 → 6 → 7 (or 0 → 1 → 2 → 4 → 7)

6

7

4

3

2

1

0

5

5 6

7

1

0

3

2 4

Chapter 12 Review 747

Review Questions
1. What are the different types of graphs?
2. What are the different types of paths?
3. What are two common functions for representing graphs? Can you think of other func-

tions?
4. What is a breadth-first search? What can it be used for?
5. What is a depth-first search? What can it be used for?
6. Under what circumstances are the paths found by Dijkstra’s algorithm not unique?
7. Under what circumstances is the minimum spanning tree unique?
8. What is a topological sort?

Programming Projects
1. Design and implement the Matrix_Graph class.
2. Rewrite function dijkstras_algorithm to use a priority queue as we did for function

prims_algorithm. When inserting edges into the priority queue, the weight is replaced
by the total distance from the source vertex to the destination vertex. The source vertex,
however, remains unchanged, because it is the predecessor in the shortest path.

3. In both Prim’s algorithm and Dijkstra’s algorithm, edges are retained in the priority
queue even though a shorter edge to a given destination vertex has been found. This can
be avoided, and thus performance improved, by using a Modifiable_Priority_Queue.
Extend the priority_queue class described in Chapter 8 as follows:

#ifndef MODIFIABLE_PRIORITY_QUEUE_H
#define MODIFIABLE_PRIORITY_QUEUE_H

#include <iostream>
#include <vector>
#include <functional>
#include <utility>

namespace KW {

/** A modifiable priority queue based on a heap stored in a vector.
Like the priority_queue, items are inserted in any order and
removed in priority order, with the largest (as defined by the
Compare function) removed first. The insert function will return
a value known as a locator. The locator may be used to replace a
value in the priority queue.

*/
template<typename Item_Type, typename Compare = std::less<Item_Type> >
class Modifiable_Priority_Queue {

public:

/** Construct an empty priority queue */
Modifiable_Priority_Queue() {}

/** Insert an item into the priority queue.
@param item The item to be inserted
@return A locator to the item

748 Chapter 12 Graphs

*/
int insert(const Item_Type& item);

/** Return a reference to the largest item */
const Item_Type& top() const {return the_data.front();}

/** Remove the largest item */
void pop();

/** Replace the item at the specified location.
@param loc The locator value of the current item
@param new_value The new value

*/
void replace_item(int loc, const Item_Type& new_value);

/** Return true if the priority queue is empty */
bool empty() const {return the_data.empty();}

/** Return the number of items in the priority queue */
size_t size() const {return the_data.size();}

private:

// Typedef to make life easier
typedef std::pair<int, Item_Type> Entry_Type;

/** Function to swap entries and their corresponding locators */
void swap(int a, int b) {
// Swap the entries
std::swap(the_data[a], the_data[b]);
// Update the locator values
locators[the_data[a].first] = a;
locators[the_data[b].first] = b;

}

// Comparator for Entry_Types
struct Compare_Entries {
Compare value_comp;
bool operator()(const Entry_Type& left,

const Entry_Type& right) {
return value_comp(left.second, right.second);

}
};

/** The vector to hold the data */
std::vector<Entry_Type> the_data;

/** The vector to hold the locators */
std::vector<int> locators;

/** The comparator function object */
Compare_Entries comp;

Chapter 12 Review 749

// For debugging
public:
void print_tables(const std::vector<int>& loc) {
std::cout << "i\tloc\tlocators\tthe_data\n";
for (size_t i = 0; i < loc.size; i++) {
std::cout << i << "\t" << loc[i]

<< "\t" << locators[i]
<< "\t" << the_data[i].first
<< "\t" << the_data[i].second << std::endl;

}
}

};

// Implementation of member functions

template<typename Item_Type, typename Compare>
int Modifiable_Priority_Queue<Item_Type, Compare>::insert(

const Item_Type& item) {
Entry_Type the_pair(locators.size(), item);
the_data.push_back(the_pair);
locators.push_back(the_data.size() - 1);
int child = size() - 1;
int parent = (child - 1) / 2;
// Reheap
while (parent >= 0

&& comp(the_data[parent], the_data[child])) {
swap(child, parent);
child = parent;
parent = (child - 1) / 2;

}
return locators.size() - 1;

}

template<typename Item_Type, typename Compare>
void Modifiable_Priority_Queue<Item_Type, Compare>::pop() {
if (size() == 1) {
the_data.pop_back();
return;

}
swap(0, size() - 1);
the_data.pop_back();
int parent = 0;
while (true) {
int left_child = 2 * parent + 1;
if (left_child >= size())
break; // out of heap

int right_child = left_child + 1;
int max_child = left_child;
if (right_child < size()

&& comp(the_data[left_child], the_data[right_child]))
max_child = right_child;

// assert: max_child is the index of the larger child
if (comp(the_data[parent], the_data[max_child])) {
swap(max_child, parent);
parent = max_child;

}

750 Chapter 12 Graphs

else
break;

}
}

/** Replace the item at the specified location.
@param loc The locator value of the current item
@param new_value The new value

*/
template<typename Item_Type, typename Compare>
void Modifiable_Priority_Queue<Item_Type, Compare>::

replace_item(int loc, const Item_Type& new_value) {
the_data[locators[loc]].second = new_value;
// The new value should have a smaller value . . .
int child = locators[loc];
int parent = (child - 1) / 2; // Find child's parent.
// Reheap
while (parent >= 0

&& comp(the_data[parent], the_data[child])) {
swap(parent, child);
child = parent;
parent = (child - 1) / 2;

}
// ... however, it is not required, so let's check that direction too
parent = child;
while (true) {
int left_child = 2 * parent + 1;
if (left_child >= the_data.size()) {
break; // Out of heap.

}
int right_child = left_child + 1;
int max_child = left_child; // Assume left_child is larger.
// See whether right_child is smaller.
if (right_child < the_data.size()

&& comp(the_data[left_child],
the_data[right_child]) > 0) {

max_child = right_child;
}
// assert: min_child is the index of the smaller child.
// Move smaller child up heap if necessary.
if (comp(the_data[parent],

the_data[max_child]) > 0) {
swap(parent, max_child);
parent = max_child;

}
else { // Heap property is restored.
break;

}
}
// Heap property is now restored either way

}
} // End namespace KW

#endif

Chapter 12 Review 751

4. Implement Dijkstra’s algorithm using the modifiable_priority_queue.
5. Implement Prim’s algorithm using the modifiable_priorty_queue.
6. A maze can be constructed from a series of concentric cir-

cles. Between the circles there are walls placed, and around
the circles there are doors. The walls divide the areas
between the circles into chambers, and the doors permit
movement between chambers. The positions of the doors
and walls are given in degrees measured counterclockwise
from the horizontal. For example, the maze shown in the
figure can be described as follows:

Write a program that inputs a description of a maze in this format and finds the shortest
path from the outside to the innermost circle. The shortest path is the one that goes
through the fewest number of chambers.

7. A rectangular maze can be represented as a sequence of lines consisting of 0s and 1s,
where a 0 represents an open square and a 1 represents a closed one. For example, the
maze shown in Figure 12.21 and reproduced here, has the following input file:

011111111111111111111111
000000000000000000000001
011111111111111011111101
011111100000001011111101
011111101111111011000001
000000000000000011011011
110111101101111011011011
110111101101111011011011
110111101101000011011011
110111101101111111011011
110111101100000000011011
110000001101111111111011
111101111100000000001011
111101111111111111101000
111100000000000000001110
111111111111111111111110

Number of circles 4

Position of doors Outer circle 90–95

Next inner circle 26–40, 128–133, 198–215, 305–319

Next inner circle 67–90, 161–180, 243–256, 342–360

Innermost circle 251–288

Position of walls: Outer ring 45, 135, 300

Middle ring 0, 100, 255, 270

Inner ring 65, 180

752 Chapter 12 Graphs

Write a program that reads input in this format and finds the shortest path, where the
distance along a path is defined by the number of squares covered.

8. A third possible representation of a graph is to use the set class to contain the edges. By
defining a comparator that first compares on the source vertex and then the destination
vertex, we can use the lower_bound and upper_bound functions to obtain iterators that
span the edges originating at a given vertex. Design and implement a class that meets the
requirements of the Graph interface and uses a set to hold the edges.

Chapter 12 Review 753

755

Advanced C++ Topics

A p p e n d i x A

A.1 Source Character Set, Trigraphs, Digraphs, and Alternate Keywords

C++ uses the United States subset of the 7-bit international character set (defined by
ISO 646-1983), commonly called ASCII (American Standard Code for Information
Interchange). This character set consists of the special characters space, horizontal
tab, vertical tab, form feed, and newline, plus the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ = , \ " '

However, users in other countries do not have all of these characters available in the
7-bit subsets defined for their countries. For example, the Danish national charac-
ter set uses Æ, æ, Ø, ø, Å, and å in place of [,], {, }, |, and \. A set of three-character
sequences, known as trigraphs, have been defined to allow users to write C++ pro-
grams in a truly portable way using a minimum set of characters. These all begin
with two question-marks (??) followed by a single character.

A d v a n c e d C + + T o p i c s

A.1 Source Character Set, Trigraphs, Digraphs, and Alternate Keywords
A.2 The Allocator
A.3 Traits
A.4 Virtual Base Classes
A.5 Smart Pointers

TA B L E A . 1
Trigraphs, Alternate Keywords, and Digraphs

756 Appendix A Advanced C++ Topics

Trigraph Alternate Keyword Digraph Equivalent

??= %: #

%:%: ##

??/ \

??' xor ^

??(<: [

??) :>]

??! bitor |

or ||

??< <% {

??> %> }

??- compl ~

and &&

bitand &

and_eq &=

or_eq |=

xor_eq ^=

not !

not_eq !=

In addition to the trigraphs, C++ provides alternate operator keywords and what are
called digraphs for some of the special symbols. The trigraphs, alternate keywords,
and digraphs are shown in Table A.1.

The distinction between the trigraphs and the alternate keywords and digraphs is
that the trigraphs are replaced with their equivalents by the preprocessor, whereas
the alternate keywords and digraphs are retained but treated as if they were the
equivalent symbol. Therefore, the expression sqrt(x??(0??)) would be changed to
sqrt(x[0]) but the expression sqrt(x<:0:>) would not be changed.

A.2 The Allocator

The container classes are defined in the standard library to take a second template
parameter called an allocator. For example, the vector class is declared in the stan-
dard as:

template<typename Item_Type,
typename Allocator = allocator<Item_Type> >

class vector { . . . };

Normally you do not need to be concerned with the allocator. A default allocator is
provided by the standard. However, if your program contains a syntax error that
involves one of the standard containers, the error message generated by the compiler
can be quite confusing. For example, an error made that involves a vector of
strings will make reference to:

std::vector<std::basic_string<char, std::char_traits<char>,
std::allocator<char> >, std::allocator< std::basic_string<char,
std::char_traits<char>, std::allocator<char> > >

In this section we describe the allocator class and why you might want to replace
the default one with your own.

The allocator encapsulates information about the memory allocation model, point-
ers, and pointer differences (the result of subtracting two pointers). At the time that
the standard library was first proposed, there were a variety of memory models that
depended on the underlying computer architecture. For example, on one architec-
ture pointers were 16 bits in length, and far_pointers were 32 bits consisting of two
16-bit components. Also, the new and delete operations, as they were initially
defined, were not sufficiently general to implement the standard library efficiently.

Today the ability to define your own allocator is still useful because the default allo-
cation may be wasteful of memory. For example, an implementation may always
allocate a minimum-size block of memory whenever the new operator is used. This
minimum-size block could be much larger than required. With the g++ compiler,

double* pd = new double;

allocates space for three double values, and the statement
char* pc = new char;

allocates space for 24 char values.

If you defined your own allocator my_alloc, you could then declare a vector of char as
vector<char, my_alloc<char> > my_vector;

This vector would then use my_alloc to allocate memory in a more efficient manner.

The requirements for the allocator are summarized in Table A.2. We only need to
implement the functions allocate and destroy. The other functions can either be
copied from or delegated to the standard allocator. The Companion Web site for this
book contains a case study discussion of the design of an allocator that allocates
storage more efficiently for small objects or small arrays.

A.3 Traits

C++ uses what is known as a traits class to provide information to the compiler
about types. This information is used by template classes and functions. This allows
treating the built-in types and user-defined types (classes) in a uniform manner. If we

A.3 Traits 757

only had user-defined types, we could define functions and data fields that would
provide the necessary information. However, if we want the same information about
a built-in type, we must provide it in some other way since we cannot define mem-
ber functions or data fields for the built-in types.

In Chapter 10 we showed how the iterator_traits class can be used for both a
built-in type (pointer) and a user-defined type (iterator).

TA B L E A . 2
Requirements for an Allocator Class

758 Appendix A Advanced C++ Topics

Typedefs Purpose

pointer Pointer to Item_Type

const_pointer const pointer to Item_Type

reference Reference to Item_Type

const_reference const reference to Item_Type

value_type Identical to Item_Type

size_type An unsigned type that can hold the maximum number of items
allocatable

difference_type A signed type that can hold the difference between two pointers

typename template rebind<U>::other Used by client templates to obtain an allocator for a different
type using the same allocator implementation

Functions Behavior

pointer address(Item_Type& r); Returns a pointer to the argument.
const_pointer address(const

Item_Type& r)

pointer allocate(size_type n, Allocates space for n objects of type Item_Type. The optional
allocator<void>::pointer hint = 0) hint parameter may be used to keep objects together, but the

implementation may ignore it. Note this only allocates space; it
does not construct objects.

void construct(pointer p, Constructs a new object of type Item_Type at location p by
const Item_Type& val) making a copy of val.

void deallocate(pointer p, Returns the storage for n objects at location p to the free storage
size_type n) pool. The objects are assumed to have been destroyed.

void destroy(pointer p) Destroys the object located at p.

size_type max_size() Returns the maximum number of objects that can be allocated.

bool operator== Two allocator objects are equal if storage allocated by one can be
bool operator!= deallocated by the other. Allocators used with the standard

library containers are all required to be equal to each other.

Basic Structure of a Traits Class
A traits class is a template class that declares types, data fields, and member func-
tions. The template definition may or may not include actual definitions of its mem-
bers. If definitions are provided, they access members of the template parameter.
Thus, when instantiated with a class as the template argument, the traits member is
defined in terms of the template argument. For example, the iterator_traits class
contains the typedef member value_type, defined as follows:

template<typename Iterator>
struct iterator_traits {
typedef Iterator::value_type value_type;
...

};

To accommodate built-in types, specializations of the traits class are defined. In the
case of iterator_traits an alternative definition is

template<typename Value_Type*>
struct iterator_traits {
typedef Value_Type value_type;
...

};

Thus when the class iterator_traits is instantiated with an iterator class type, the
class member value_type will be defined to be the iterator member value_type,
and when the class iterator_traits is instantiated with a pointer type, the class
member value_type will be defined to be the type that the pointer points to.

The char_traits Class
The char_traits class is used to encapsulate operations on character values. Since the
character types are build-in types (char and wchar_t), the char_traits template does
not define any of its members. Specializations are provided for the standard character
types (char and wchar_t). This class is used by the basic_string, basic_istream, and
basic_ostream classes. The complete details of the char_traits class is beyond the
scope of this text. However, the textbook Web site has a case study that shows how
to use the char_traits to define a specialized version of the string class.

A.4 Virtual Base Classes

Refactoring the Employee and Student Classes
In Chapter 3 we briefly introduced multiple inheritance using the example of the
Student_Worker class derived from the Employee and Student classes. We observed
that the Employee and Student classes contain common information. Removing this
common information and placing it into a separate class is known as refactoring,
and is a common object-oriented design process.

A.4 Virtual Base Classes 759

F I G U R E A . 1
StudentWorker
Derived from Student
and Employee Using a
Common Base Class

760 Appendix A Advanced C++ Topics

Both Employees and Students are people, thus we define the class Person to repre-
sent the common data about both Employees and Students. Figure A.1 shows the
class diagram for our Student_Worker class. Listing A.1 shows the declaration and
definition of Person.

L I S T I N G A . 1
Person.h

#ifndef PERSON_H_
#define PERSON_H_

#include "address.h"
#include <string>

class Person
{
public:

/** Create an empty Person. */
Person() {}

/** Create a person from the given parameters.
@param the_name The person's name
@param the_address A pointer to the person's address

*/
explicit Person(const std::string& the_name,

Address* the_address) :
name(the_name), p_address(the_address) {}

/** The copy constructor */
Person(const Person& other) :
name(other.name), p_address(other.p_address->clone()) {}

Person

string name
Address* p_address

Student_Worker

Employee

double rate
int hours

Student

double gpa
string major

/** The assignment operator */
Person& operator=(const Person& other);

/** The destructor */
virtual ~Person() { delete p_address; }

/** Update Person's house number. */
void set_house_number (std::string new_house_number) {
p_address->set_house_number(new_house_number);

}

/** Swap the contents of this Person and the other Person. */
void swap(Person& other) {
std::swap(name, other.name);
std::swap(p_address, other.p_address);

}

/** Return string representation of Person. */
std::string to_string() const;

protected:

std::string name;
Address* p_address;

};

inline
void swap(Person& p1, Person& p2) {
p1.swap(p2);

}

#endif

L I S T I N G A . 2
Person.cpp

#include "Person.h"
#include <ostream>
#include <sstream>

/** Return string representation of Person. */
std::string Person::to_string() const {
std::ostringstream result;
result << name << '\n' << p_address->to_string();
return result.str();

}

/** Assignment operator */
Person& Person::operator=(const Person& other) {
Person temp(other);
swap(temp);
return *this;

}

A.4 Virtual Base Classes 761

The classes Employee and Student are now simplified to the following:
#ifndef EMPLOYEE_H_
#define EMPLOYEE_H_

#include "Person.h"
#include <string>
#include <algorithm>
#include <iostream>
#include <ostream>

class Employee : public Person {

public:

/** Create an empty Employee. */
Employee() {}

/** Create an employee from the given parameters.
@param the_name The employee's name
@param the_address Pointer to employee's address
@param the_rate The employee’s hourly rate

*/
Employee(const std::string& the_name,

Address* the_address,
double the_rate) :

Person(the_name, the_address), rate(the_rate), hours(0.0) {}

/** Update Employee's house number. */
void set_house_number (std::string new_house_number) {
p_address->set_house_number(new_house_number);

}

/** Return a string representation of Employee. */
std::string to_string() const;

protected:

double rate;
double hours;

};

#endif

#ifndef STUDENT_H_
#define STUDENT_H_

#include "Person.h"
#include <string>

class Student: public Person {

public:

/** Create an empty Student. */
Student() {}

762 Appendix A Advanced C++ Topics

/** Create a Student from the given parameters.
@param the_name The student's name
@param the_address A pointer to the student's address
@param the_major The student's major

*/
Student(const std::string& the_name,

Address* the_address,
const std::string& the_major) :

Person(the_name, the_address), gpa(0.0), major(the_major) {}

/** Update Student's house number. */
void set_house_number (std::string new_house_number) {
p_address->set_house_number(new_house_number);

}

/** Set Student's gpa. */
void set_gpa(double new_gpa) { gpa = new_gpa; }

/** Return string representation of Student. */
std::string to_string();

protected:

double gpa;
std::string major;

};

#endif

Class Student_Worker.h (Listing 3.9) would not change. However, we need to mod-
ify the to_string function as follows:

#include "Student_Worker.h"
#include <sstream>

/** Return String representation of student worker. */
std::string Student_Worker::to_string() const {
std::ostringstream result;
result << this->Person::to_string()

<< "Major: " << major << " GPA: "
<< gpa << " Rate: " << rate << " Hours: "
<< hours;

return result.str();
}

However, we really haven’t solved the problem yet. There are two Person compo-
nents in the Student_Worker class: one inherited from Employee and the other inher-
ited from Student. Some compilers will detect this and issue an error message, while
other compilers arbitrarily pick one of the Person components, but it still has two
p_address fields with duplicate values, and the destructor tries to delete them both,
causing a run-time error.

Virtual Base Classes
C++ provides a solution to this problem, but not without its own pitfalls. The solu-
tion is to declare Person to be a virtual base class of both Employee and Student.
This is done using the following syntax.

A.4 Virtual Base Classes 763

SYNTAX Declaring a Virtual Base Class

FORM:
class derived-class : public virtual base-class { ... };

EXAMPLE:
class Student : public virtual Person { ... };
class Employee : public virtual Person { ... };

MEANING:

If a class is derived from two other classes that share a common virtual base
class, then only one instance of the base class will be included in the derived
class. To ensure that there is no inconsistency in the initialization process, the
constructor(s) for the virtual base class(es) is(are) invoked before the construc-
tors of the other base classes. Therefore, if initialization of a virtual base class is
required, it must be specified by the constructor of the final derived class.

Using the syntax just described, we change the declaration of Employee and Student
to make Person a virtual base class. The following constructor would replace the
one shown in class Student_Worker.h (Listing 3.9).

Student_Worker(const std::string& the_name,
Address* the_address,
double the_rate,
const std::string& the_major) :

Person(the_name, the_address),
Employee(the_name, the_address, the_rate) ,
Student(the_name, the_address, the_major) {}

Notice that we need to initialize the Person base class explicitly as well as the
Employee and Student classes. This is because a virtual base class must be explicitly
initialized by a derived class.

The problem with multiple inheritance is that, to be used effectively or even cor-
rectly, the derived class must know the details of the base classes—specifically,
whether there are common data fields or member functions, or if there is a common
base class. Such commonality may be far removed in the inheritance chain when
classes are selected from one or more libraries. However, when used with full
knowledge of the base classes, multiple inheritance can be a very useful and power-
ful design tool.

A.5 Smart Pointers

A smart pointer is an object that acts like a pointer and also manages the memory
allocated to the object pointed to. Several kinds of smart pointers have been pro-
posed and implemented. The idea is that you construct a smart pointer object to
hold a pointer to a dynamically allocated object. You can use the smart pointer just

764 Appendix A Advanced C++ Topics

as if it were a regular pointer by applying the dereferencing operators (* and ->).
The advantage is that you do not need to delete the dynamically allocated object
explicitly. When the smart pointer(s) are no longer used, the dynamically allocated
object is automatically deleted.

The auto_ptr
The C++ standard library contains the template class auto_ptr, which is a fairly lim-
ited smart pointer. The design of the auto_ptr assumes that there is a one-to-one
correspondence between the auto_ptr objects and the objects pointed to. When the
auto_ptr object is destroyed, the pointed-to object is also destroyed.

Because the auto_ptr assumes a one-to-one correspondence between the auto_ptr
object and the pointed-to object, when one auto_ptr value is copied or assigned to
another auto_ptr object, the ownership of the pointed-to object is transferred. Thus,
if an auto_ptr is copied to another auto_ptr (either via the copy constructor or via
assignment), the ownership of the pointed-to object is transferred. When this second
auto_ptr is destroyed, the pointed-to object will also be destroyed.

The shared_ptr
A more useful construct is the shared_ptr. With the shared_ptr, more than one
shared_ptr object can point to a given dynamically allocated object. When all
shared_ptrs have been destroyed, then the dynamically allocated object is deleted.
There have been several proposed designs for a shared_ptr class, and a shared_ptr
is proposed for the next revision to the C++ standard. In this section we will describe
a simplified version of the proposed shared_ptr class.

A.5 Smart Pointers 765

P I T F A L L

Failure to Initialize a virtual Base Class
If a virtual base class needs to be initialized, and a derived class that multiply inherits
it does not explicitly initialize it, it will remain uninitialized. For example, if our
Student_Worker class had the following constructor:
Student_Worker(const std::string& the_name,

Address* the_address,
double the_rate,
const std::string& the_major) :

Employee(the_name, the_address, the_rate) ,
Student(the_name, the_address, the_major) {}

it would invoke the Employee and Student constructors. These constructors contain
calls to the three-argument Person constructor. However, since Person is a virtual
base class, the no-argument constructor for Person is invoked before the constructors
for Employee and Student. When the Employee and Student constructors are invoked,
their calls to the three-argument Person constructor are not performed.

F I G U R E A . 2
Example of a
shared_ptr

766 Appendix A Advanced C++ Topics

Data Field Attribute

Object_Rep<Object_Type> rep A pointer to the Object_Rep

Member Functions Behavior

shared_ptr<Object_Type>(Object_Type* Creates a new shared_ptr that references a new Object_Rep
ptr = NULL) that references the object pointed to by ptr. Note: The ptr

parameter should be the result of the application of the new
operator.

template<typename Subclass_Type> Creates a new shared_ptr that references a new Object_Rep
shared_ptr<Object_Type>(Subclass_Type* that references the object pointed to by ptr. Note: The ptr
ptr = NULL) parameter should be the result of the application of the new

operator and point to an object that is a subclass of
Object_Type.

shared_ptr(const shared_ptr& other) Makes a copy of a shared_ptr.

Object_Rep<type>

= 2
=

ref_count
object_ptr

typeshared_ptr<type> sptr1

=rep

shared_ptr<type> sptr2

=rep

A robust implementation of the shared_ptr is quite tricky. A reference implementa-
tion of the proposed standard is available from www.boost.org. We will briefly
describe the design. Table A.3 summarizes the design of a shared_ptr class that is
similar to the proposed standard.

Overview of the Design
Figure A.2 illustrates the design of the shared_ptr. The shared_ptr contains a sin-
gle data member, rep, that points to an Object_Rep. The Object_Rep contains two
data fields: object_ptr, which is a pointer to the dynamically allocated object, and
ref_count, which is the count of the number of shared_ptrs that point to this object.
As shown in the figure, there are two shared_ptrs pointing to the same object, so
the ref_count is 2. The first time a shared_ptr is created to point to a dynamically
allocated object, an Object_Rep is allocated. When other shared_ptrs are assigned
to point to the same object, the ref_count is incremented. When a shared_ptr is
destroyed, the ref_count is decremented. If the ref_count goes to zero, both the
Object_Rep and the pointed-to object are deleted.

TA B L E A . 3
Design of shared_ptr

A.5 Smart Pointers 767

Member Functions Behavior

~shared_ptr() Destroys a shared_ptr. The reference count is decremented,
and if it becomes zero, the referenced object and the object
reference are deleted.

void swap(shared_ptr& other) Swaps this shared_ptr with another.

shared_ptr& operator=(const Assigns one shared_ptr to another. After the assignment the
shared_ptr& other) target and the original point to the same object, and that

object’s reference count is incremented. The reference count
of the object the target originally pointed to is decremented.

Object_Type& operator*() Dereferences a shared_ptr.

Object_Type& operator->() Dereferences a shared_ptr for member access.

bool operator==(const Tests for equality. The second form is provided for test with
shared_ptr* other) const; NULL.

bool operator==(void*) const

bool operator!=(const Tests for inequality. The second form is provided for test with
shared_ptr* other) const; NULL.

bool operator!=(void*) const

long count() Returns the reference count. This is provided for testing.

Object_Type* get() Returns a pointer to the referenced object. This is provided
for testing.

TA B L E A . 3 (cont.)

The Unified Modeling Language (UML) represents the unification of earlier
object-oriented design modeling techniques. Specifically, notations developed
by Grady Booch, Ivar Jacobson, and James Rumbaugh were adapted to form

the initial version. This version was submitted to the Object Modeling Group for
formal standardization. Since that initial submission, the UML standard has under-
gone several revisions and continues to be revised.

We call UML a modeling language much in the same way we call C++ a pro-
gramming language. There is a formal definition of the syntax and semantics. There
are software tools that are used both to draw the diagrams and to capture the under-
lying design information. These tools can then be used to analyze the resulting
model, verify the model’s consistency, and generate code.

UML defines twelve types of diagrams. In this text we use only two of them: the
class diagram and the sequence diagram. Throughout the text, where we use these
diagrams, we provide brief explanations of the diagram and the meaning of the
notations used. The purpose of this appendix is to provide a more complete refer-
ence to the diagrams as they are used in this text.

In this text, we use a notation that has been adapted from the UML standard to
match the syntax of C++ more closely. Other books may use slightly different ver-
sions of these diagrams that follow the standard syntax, but the principles are the
same.

769

Overview of UML

A p p e n d i x B

O v e r v i e w o f U M L

B.1 The Class Diagram
B.2 Sequence Diagrams

B.1 The Class Diagram

The class diagram shows the classes and their relationships. It is a static diagram
that represents the structure of the program. The classes are represented by rectan-
gles, and lines between the classes represent the relationships. The style of a line,
symbols on the ends of the lines, and text placed near the line are used to indicate
the kind of relationship being modeled.

A large amount of information about the structure of a program can be represented
in a class diagram. If all of the possible information were presented, the diagram
would become quite cluttered. Therefore, the practice is to show only the essential
information. For example, in a class diagram the complete method declaration can
show the method’s visibility, return type, name, and parameter types. Sometimes
only the method’s name is necessary, in which case you would elect to suppress the
other information. Also, some methods may not be significant to the discussion, so
those methods need not be shown. Sometimes only the class’s name is the essential
item, and thus the methods and attributes are not shown.

Representing Classes and Interfaces
A class is represented by a rectangle divided into three segments as shown in Figure
B.1.

The Class Name
Every class has a name that distinguishes it from other classes. In C++ a class may
be a member of a namespace, in which case we may show the complete name includ-
ing the namespace name (for example, std::string). In other cases we just show the
class name (for example, Node). Italics indicate abstract classes. The class name is
centered in the box representing the class. For example, Figure B.2 shows the
abstract class Address and the concrete classes derived from it.

F I G U R E B . 2
The Abstract Class
Address and Concrete
Derived Classes

770 Appendix B Overview of UML

ClassName

Attributes

Operations

Address

string house_number
string street_name
string municipality
string state_or_province
string postal_code

+ string to_string()

German_Address

+ string to_string()

US_Address

+ string to_string()

F I G U R E B . 1
General Representation
of a Class

F I G U R E B . 3
The Interface
Phone_Directory

Interfaces
The word interface enclosed in double angle brackets (« and », called guillemets)
placed before a class name indicates that the class is an interface. Unlike some other
OO languages, C++ does not have a specific syntactic element called an interface. In
this text we use the interface notation to represent an Abstract Data Type such as
the Phone_Directory. Because interfaces, like abstract classes, cannot be instanti-
ated, the name is shown in italics. See Figure B.3.

We also use the interface notation with the word concept to show that classes have
common requirements. For example the vector, deque, and list all must meet the
requirements for a sequence. Thus we show the sequence as a concept (See Figure
B.8).

Alternative UML Syntax for Class Names
In other texts you may see the class name in a bold sans-serif font. Also, abstract
classes may be indicated by {abstract}, as shown in Figure B.4.

F I G U R E B . 4
Alternative Syntax for
Indicating an Abstract
Class

The Attributes
The attributes of a class are the data fields. As a minimum we show the name.
Optionally we can also show the visibility and type. The visibility is indicated by the
symbols shown in Table B.1.

B.1 The Class Diagram 771

load_data()
add_or_change_entry()
lookup_entry()
remove_entry()
save()

‹‹interface››
Phone_Directory

{abstract}
Address

string house_number
string street_name
string municipality
string state_or_province
string postal_code

+ string to_string()

German_Address

+ string to_string()

US_Address

+ string to_string()

TA B L E B . 1
Visibility Specifiers

772 Appendix B Overview of UML

Symbol Visiblity

+ Public

– Private

Protected

In this text we use the C++ language syntax to indicate the type of an attribute by
placing the type name before the attribute name. For example, the class Person
could have the attributes family_name, given_name, and address, as shown in the fol-
lowing figure.

Where they are not essential to the current discussion, we will omit the visibility
indicator, the type, or both, as shown in the following figure.

Static attributes are indicated by underlining their name. For example, the class
Lap_Top has the static attribute DEFAULT_LT_MAN.

Standard UML Syntax for Attribute Types
In other texts you may see a different syntax for showing the attribute type. The
UML standard specifies that the attribute type be specified following the name and
separated by a colon.

Person

- given_name:string
- family_name:string
- address:Address

Lap_Top

string DEFAULT_LT_MAN
double screen_size
double weight

Person

given_name
family_name
address

Person

- string given_name
- string family_name
- Address address

F I G U R E B . 5
The Class Passenger

F I G U R E B . 6
Class Passenger
Showing the Return and
Parameter Types of
Its Operations

The Operations
The operations are the member functions of the class. At a minimum, we show the
function name followed by a pair of parentheses. An empty set of parentheses does
not necessarily indicate that this function takes no parameters. Italics are used to
indicate an abstract function, and underlining is used to indicate a static function.
For example, Figure B.5 shows the class Passenger with the static method
set_max_processing_time and the nonstatic methods get_arrival_time and
get_processing_time. The attributes are not shown.

We may also show the visibility, the parameter types, and the return type. The visi-
bility is shown using the same symbols as used for the attributes (see Table B.1). In
this text we use the C++ function declaration syntax, as shown in Figure B.6, to
show the parameter types and return type. A return type of void, however, will not
be shown.

Standard UML Syntax for Operations
In other texts you may see a different syntax for showing the parameter types and
return type. The UML standard specifies that the parameter type be preceded by a
colon and shown following the parameter name, and that the return type be shown
following the operation name, also preceded by a colon. The class Passenger using
this syntax is shown in the following figure.

Generalization
UML uses the term generalization to describe the relationship between a base class
and its derived classes. Drawing a solid line with a large open arrowhead (∆) point-
ing to the base class shows generalization. Figure B.7 shows the class Lap_Top as a
subclass of Computer. A dashed line with a large open arrowhead is used to show
that a class implements an interface.

Passenger

+ get_arrival_time():int
+ get_processing_time():int
+ set_max_processing_time(max_time:int)

B.1 The Class Diagram 773

Passenger

+ get_arrival_time()
+ get_processing_time()
+ set_max_processing_time()

Passenger

+ int get_arrival_time()
+ int get_processing_time()
+ set_max_processing_time(int max_time)

Computer

string manufacturer
string processor
int ram_size
int disk_size

int get_ram_size()
int get_disk_size()
string to_string()

Lap_Top

string DEFAULT_LT_MAN
double screen_size
double weight

string to_string()

F I G U R E B . 7
Class Lap_Top as a
Derived Class of
Computer

dequevector list multimapset multiset

‹‹concept››
sequence

‹‹concept››
container

‹‹concept››
associative_container

map

F I G U R E B . 8
The container Concept, Its Subconcepts, and the Classes That Implement Them

774 Appendix B Overview of UML

Figure B.8 shows that the concepts sequence and associative_container share com-
mon requirements defined by the concept container. The dashed lines from vector,
list, and deque indicate that these classes implement these concepts.

Inner or Nested Classes
A class that is declared within the body of another class is called an inner class or
nested class. In UML this relationship is indicated by a solid line between the two
classes, with what the UML standard calls an anchor on the end connected to the
enclosing class. The anchor is a cross inside a circle (�). For example, in Figure B.9
the class Node is declared as an inner class of the class KW::list.

Association
An association between classes represents a relationship between objects of those
classes. In object-oriented terminology we say that “object A sends a message to
object B.” This statement implies two things:

1. There is a method in class B that will receive the message.
2. There must be a reference within class A that references object B.

An association indicates the presence of the reference required by condition 2. Thus,
in the analysis process in which we examine a use case and determine the flow of
information from one object to another, we identify the requirements for methods
and associations. Note that the association may represent a data field, or it may rep-
resent a parameter.

Figure B.10 shows the UML notation for an association. The association name, mul-
tiplicities, and roles are all optional. The association name is a name given to the
association. The multiplicity represents the number of objects of that class that par-
ticipate in the association. Where the association is implemented as a data field, the
role name is generally used as the name of the data field. Thus, in ClassA there
would be a reference of type ClassB with the name roleB. The role name may have

a visibility specifier (see Table B.1). The role and multiplicity may be either above
or below the line.

Multiplicity represents the number of objects of the class that are related to the
other class. Thus, multiplicityB represents the number of objects of ClassB that are
associated with an object of ClassA, and multiplicityA represents the number of
objects of ClassA that are associated with an object of ClassB. Multiplicity may be
either a single number or a range of numbers. The symbol * is used to indicate an
indefinite number. A range of numbers is specified by a low bound followed by a
high bound separated by two periods. Examples are shown in Table B.2.

TA B L E B . 2
Multiplicity Examples

B.1 The Class Diagram 775

 KW::list Node

 ClassA association name
roleA roleB

multiplicityA multiplicityB
 ClassB

Multiplicity Meaning

1 There is only 1

1..5 There is at least 1, and there may be as many as 5

3..* There are at least 3

* There could be any number, including 0

F I G U R E B . 9
Node as an Inner Class

F I G U R E B . 1 0
UML Notation for an
Association

In addition, an arrow can be placed at one or both ends of the line. The presence of
an arrow indicates the navigation direction. Thus, if there is an arrow on the ClassB
end, then objects of ClassA can send messages to objects of ClassB, but objects of
ClassB cannot send messages to objects of ClassA. The absence of arrows generally
represents that navigation in both directions is possible, but it may also mean that
the navigation is not being shown. Generally, if navigation is possible from ClassA
to ClassB, then ClassA will contain a pointer to ClassB.

Composition
In those cases where we wish to show that an association definitely is represented
by a data field, we place a filled diamond on the end of the line next to the class that
will contain the data field. This represents the has-a relationship. For example, an
Airplane is composed of two wings, a body, and a tail, none of which would exist
unless they were components of an Airplane. This would be modeled as shown in
Figure B.11.

F I G U R E B . 1 1
Airplane Composed of
Wing, Tail, and Body

Generic (or Template) Classes
We will indicate a generic class by placing the generic parameter(s) in a dotted rec-
tangle in the upper right corner of the rectangle that models the class. Thus the
generic class vector is modeled by the diagram shown in Figure B.12.

An invocation of a generic class is indicated by including the actual parameters
inside a pair of angle brackets (less-than and greater-than) symbols following the
name. Thus a vector of strings would be written vector<string>.

B.2 Sequence Diagrams

Sequence diagrams are used to show the flow of information through the program.
Sequence diagrams are generally developed on a use case basis and show the mes-
sage sequence associated with a particular use case. The purpose of developing a
sequence diagram is to identify the messages that are passed from one object to
another. This then identifies the requirements for the corresponding classes. Recall
that if object A sends a message to object B, then

1. Class B must have a method to process that message.
2. Class A must have a reference to an object of class B.

Thus, when you enter a message on a sequence diagram, you identify a requirement
for an operation and an association to be entered on the class diagram. Many UML
modeling software tools automate the process of keeping the sequence diagrams and
class diagrams consistent.

Figure B.13 shows an example of a sequence diagram. This is a two-dimensional
diagram with time running down the vertical axis and objects listed across the hor-
izontal axis. The ordering across the horizontal axis is insignificant.

Time Axis
Time flows down the vertical axis. Generally the scale is not significant, but for
some applications, where timing is critical, a precise timing scale can be used. The
sequence along the time axis is always significant.

Objects
Objects are listed across the horizontal axis. Their order is insignificant. An object
is represented by a rectangle with the name of the object underlined. For anonymous
objects, the name of the class is given.

776 Appendix B Overview of UML

F I G U R E B . 1 2
Generic Class
Representation

left_wing right_wing tail body

 Airplane

 Tail Wing Body

vector

Item_Type

Objects are listed across the top of the sequence diagram unless they are created dur-
ing the time period represented by the sequence diagram. If an object is created, then
it is shown lower in the diagram, at the point at which it is created. As shown in
Figure B.13, two Passenger objects are created during the sequence of events
depicted.

F I G U R E B . 1 3
Sequence Diagram Example

B.2 Sequence Diagrams 777

check_new_arrival

check_new_arrival

new

new

start_serve

empty

empty

update

time_done
get_arrival_time

get_processing_time

get_arrival_time

get_processing_time

push

push

pop

update

time_done

if my_random.next_double()
 < arrival_rate

!regular_passenger_queue.empty

if my_random.next_double()
 < arrival_rate

if clock > time_done

!frequent_flyer_queue.empty()
 && ((frequent_flyers_since_RP <= frequent_flyer_max)
 || regular_passenger_queue.empty)

Airline_Checkin_Sim frequent_flyer_queue regular_passenger_queue

Passenger

pop

Passenger

Life Lines
Flowing down from each object is its life line. This is a dashed line that begins when
the object is created and ends when the object is destroyed.

Activation Bars
The thin long rectangles along the life line are activation bars. These represent the
time during which the object is responding to a given message. Note that if a sec-
ond message is received while a message is being processed, a second activation bar
is drawn to the right of the first activation bar. This can be seen in Figure B.13,
where the Airline_Checkin_Sim object sends itself the start_serve message, or
where the frequent_flyer_queue and regular_passenger_queue objects send them-
selves the push message.

Messages
Messages are indicated by a horizontal arrow from the sending object to the receiv-
ing object. The name of the message is shown above the arrow. Optionally, the
parameters may be shown in parentheses following the message name. Also, a small
reverse direction arrow may be used to indicate a return value with the value shown
below it. An example of this is shown in Figure B.13 where time_done is returned
to the Airline_Checkin_Sim object in response to the update message sent to the
frequent_flyer_queue.

Use of Notes
Notes may be used on any UML diagram. They are free-form text enclosed in a rec-
tangle with the upper right corner folded down.

The purpose of the sequence diagram is to identify the sequence of messages that
occur during a use case. For a given instance of a use case, not all messages will be
sent. For example, as shown in Figure B.13, the check_new_arrival message to the
frequent_flyer_queue may or may not result in the creation of a new Passenger
object. Notes can be used to document the conditions for sending a message. For
example, the check_new_arrival message is sent when the result of the random
number generator is less than arrival_rate.

778 Appendix B Overview of UML

The test framework CppUnit can be configured to run with the Microsoft
Visual Studio .NET development environment under Windows, or it can be
configured to run under Linux and other UNIX platforms. Below we show a

test suite for the Directory_Entry class constructed using the CppUnit framework.
The class for the test suite must extend class TestFixture (defined in CppUnit). We
explain about extending classes in Chapter 3. The setUp function is used to declare
the test objects that are shared among test cases. We will not use it in this example,
but it must be defined in the test suite.

#include <cppunit/extensions/HelperMacros.h>

class TestDirectoryEntry : public CppUnit::TestFixture {
CPPUNIT_TEST_SUITE(TestDirectoryEntry);
CPPUNIT_TEST(testTomCreate);
CPPUNIT_TEST(testTomEqualsDick);
CPPUNIT_TEST(testTomEqualsTom2);
CPPUNIT_TEST(testSetNumber);
CPPUNIT_TEST_SUITE_END();

public:
void setUp();
void tearDown();
void testTomCreate();
void testTomEqualsDick();
void testTomEqualsTom2();
void testSetNumber();

};

We then write a series of test cases by writing functions named testXxxxx. For
example to test that the object tom was created correctly, we write the function
testTomCreate as follows:

779

The CppUnit Test
Framework

A p p e n d i x C

void TestDirectoryEntry::testTomCreate() {
string tomName = "Tom";
string tomNumber = "123-456-7890";
Directory_Entry tom(tomName, tomNumber);
CPPUNIT_ASSERT_EQUAL(tom.get_name(), tomName);
CPPUNIT_ASSERT_EQUAL(tom.get_number(), tomNumber);

}

The macro CPPUNIT_ASSERT_EQUAL will report an error if its arguments are not equal,
indicating that the results of get_name or get_number are not as expected (tomName
or tomNumber, respectively). The various CPPUNIT_ASSERT_xxxxx macros are specific
to CppUnit. This should not be confused with the C++ assert macro, which we dis-
cuss in Section 2.4.

We can test the Directory_Entry::operator!= and Directory_Entry::operator==
functions using the following methods:

void TestDirectoryEntry::testTomEqualsDick() {
Directory_Entry tom("Tom", "123-456-7890");
Directory_Entry dick("Dick", "908-765-4321");
CPPUNIT_ASSERT(tom != dick);
CPPUNIT_ASSERT(dick != tom);

}

void TestDirectoryEntry::testTomEqualsTom2() {
Directory_Entry tom("Tom", "123-456-7890");
Directory_Entry tom2("Tom", "111-222-3333");
CPPUNIT_ASSERT(tom == tom2);
CPPUNIT_ASSERT(tom2 == tom);

}

The CPPUNIT_ASSERT macro will report an error if its argument does not evaluate to
true. We expect that tom is not equal to dick, so we use tom != dick as the argu-
ment for the first macro call in the first function, and we expect that tom and tom2
are equal, so we use tom == tom2 as the argument for the first macro call in the sec-
ond function. (Recall that the == operator compares the name field only of directory
entries.)

Finally, we write a test case for the set_number function.
void TestDirectoryEntry::testSetNumber() {
string newNumber = "999-999-9999";
Directory_Entry tom("Tom", "123-456-7890");
tom.set_number(newNumber);
CPPUNIT_ASSERT_EQUAL(tom.get_number(), newNumber);

}

To run the tests we also need to define a main program that invokes the test runner.
The test runner is the function within CppUnit that runs the test and records the
results. An example of such a main program follows.

#include <cppunit/CompilerOutputter.h>
#include <cppunit/extensions/TestFactoryRegistry.h>
#include <cppunit/ui/text/TestRunner.h>

780 Appendix C The CppUnit Test Framework

int main() {
// Get the test suite from the registry.
CppUnit::Test* suite =

CppUnit::TestFactoryRegistry::getRegistry().makeTest();

// Add this test suite to the lists of test to run.
CppUnit::TextUi::TestRunner runner;
runner.addTest(suite);

// Set the outputter.
runner.setOutputter(new CppUnit::CompilerOutputter(

&runner.result(), std::cerr));

// Run the tests.
bool wasSuccessful = runner.run();

// Return error code.
if (wasSuccessful)
return 0;

else
return 1;

}

If all tests pass, the output is simply:
....

OK (4)

indicating that the four tests passed. On the other hand, if there is an error, the
test that failed is indicated. For example, let us assume that we did not implement
operator != correctly, and instead it reports the opposite of what it should. Then the
results of our test are as follows:

..F..

TestDirectoryEntry.cpp:29:Assertion
Test name: TestDirectoryEntry::testTomEqualsDick
assertion failed
- Expression: tom != dick

The CppUnit Test Framework 781

783

Glossary

2-3 tree A search tree in which each node may have two or
three children.

2-3-4 tree A search tree in which each node may have two,
three, or four children.

2-node A node in a 2-3 or 2-3-4 tree with two children.
3-node A node in a 2-3 or 2-3-4 tree with three children.
4-node A node in a 2-3-4 tree with four children.

abstract class A class that contains at least one abstract
member function. An abstract class cannot have
instances.

abstract data type An implementation-independent specifi-
cation of a set of data items and the operations per-
formed on those data items.

abstract function A virtual function that is declared but
not defined in a base class. It leaves its definition up to
the derived classes. Sometimes also called a pure virtual
function.

abstraction A model of a physical entity or activity.
acceptance testing A sequence of tests that demonstrates to

the customer that a software product meets all of its
requirements. Acceptance testing generally is observed by
a customer representative.

access specifier One of the key words public, protected,
or private that appears within a class definition that
specifies the access rules of the members following it. All
members following an access specifier have the specified
access until the next access specifier or the end of the
class definition.

accessor A member function that returns the current value
of an instance variable of an object. The accessor should
have no other effects. Also called a getter; it is recom-
mended that the name of the accessor consist of the word
get_ followed by the name of the instance variable.

activation bar The thick line along the life line in a
sequence diagram that indicates the time that a function
is executing in response to the receipt of a message.

activation frame An area of memory allocated to store the
actual parameters and local variables for a particular call
to a function. In C++, activation frames are stored on the
run-time stack. When a function is called, a new activa-
tion frame is pushed onto the stack, and when a function
exits, the activation frame is popped.

actor An entity that is external to a given software system.
In many cases an actor is a human user of the software
system, but an actor may be another system.

actual class A class for which objects can be instantiated.
An actual class cannot have any abstract members. If an
actual class is derived from an abstract class, it must
implement all inherited abstract member functions. Also
called a concrete class.

adapter class A class that provides the same or very similar
functionality as another class but with different function
signatures. The actual work is performed by delegation
to the functions in the other class.

address A number that represents an object’s location in
memory.

address-of operator The operator &, which returns the
address of the object whose identifier follows.

adjacency lists A representation of a graph in which the
vertices (the destinations) adjacent to a given vertex (the
source) are stored in a list associated with that vertex.
The actual edge (source, destination, weight) from the
source vertex to the destination may be stored.

adjacency matrix A representation of a graph in which the
presence or absence of an edge is indicated by a value in
a matrix that is indexed by the two vertices. The value
stored is 0 for no edge, 1 for an edge in an unweighted
graph, and the weight itself for a weighted graph.

adjacent (vertex) In a directed graph, a vertex, v, is adja-
cent to another vertex, u, if there is an edge, (u, v), from
vertex u to vertex v. In an undirected graph v is adjacent
to u if there is an edge {u, v} between them.

aggregation An association between two classes in which
one class is composed of a collection of objects of the
other class.

alias An alternate name for the same thing. Aliases for
types are declared using the keyword typedef. Many
compilers simply replace the alias with the original type
name. Aliases for variables are declared using references.

allocator A class that contains functions for allocating
memory to be used by objects and deallocating it when
no longer needed. A programmer may write a custom
allocator and supply it as a parameter when instantiating
a template class to replace the template class’s default
allocator.

amortized constant time The time taken by part of an oper-
ation, made to be constant on average by performing the
part sufficiently infrequently. For example, expanding an
array and copying the elements to the new array to make
room for new elements takes O(n) time. If the array is
expanded by doubling each time, the expansion opera-
tion will not have to be performed again until another n

C++ Glossary.v2 7/7/05 11:27 AM Page 783

elements are added, so the expansion adds, on average,
O(1) to the time required to add an element.

analysis In the waterfall model, the phase of the software
life cycle (or, in the Unified Model, the workflow) during
which the requirements are clarified and the overall
architecture of the solution is determined.

ancestor A node in a tree that is at a higher level than a
given node and from which there is a path to that node
(the descendant).

ancestor-descendant relationship A generalization of the
parent-child relationship. (See ancestor and descendant).

anchor The symbol, �, that is used in a UML class diagram
to indicate that a class is an inner class of another class.

anonymous object An object for which there is no named
reference. The C++ new operator returns a pointer to an
anonymous object.

anonymous pointer A pointer not yet stored in a variable,
generated by a dynamic cast.

argument The value specified for a parameter of a function
when the function is called.

assertion A statement about the current value of one or
more variables.

association A relationship between two classes.
associative array A container for key-value pairs in which

an expression containing a key with the same syntax used
for the index of an array returns the corresponding value.

associative container A container class in which the objects
contained are not in a linear order and are accessed by
value rather than by position.

assignment operator The operator operator=, used to give
a class-type variable a value.

attributes The set of data values that determine the state of
an object. Generally the attributes of a class are repre-
sented by data fields within the class.

AVL tree A self-balancing binary search tree (discovered by
G. M. Adel’son-Vel’skii and E. M. Landis) in which the
difference between the heights of the subtrees is stored in
each tree node. The insertion and removal algorithms use
rotations to maintain this difference within the range –1
to +1.

back edge An edge that is discovered during a depth-first
search that leads to an ancestor in the depth-first search
tree.

back end The part of an application program that interacts
with data in persistent storage rather than with the user.

backtracking An approach to implementing a systematic
trial-and-error search for a solution. When a dead end is
reached, the algorithm follows a path back to the deci-
sion point that led to the dead end, then moves forward
along a different path.

balanced binary search tree A binary search tree in which
the height of each pair of subtrees is approximately the
same.

base case The case in a recursive algorithm that can be
solved directly.

base class A class from which another class is derived.
Compare derived class. Also called a superclass.

batch processing A way of using a computer in which a
series of jobs (individual programs) are collected together
and then executed sequentially.

big-O notation The specification of a set of functions that
represent the upper bound of a given function. Formally
the function f(n) is said to be O(g(n)) if there are con-
stants c > 0 and n0 > 0 such that for all n > n0, cg(n) ≥
f(n).

binary search The process of searching a sorted sequence
that begins by examining the middle element. If the mid-
dle element is greater than the target, then the search is
applied recursively to the lower half; if it is less than the
target, the search is applied recursively to the upper half.

binary search tree A binary tree in which the items in the
left subtree of a node are all less than that node, and the
items in the right subtree are all greater than that node.

binary tree A tree in which each node has 0, 1, or 2 chil-
dren. The children are distinguished by the names left
and right. If a node has one child, that child is distin-
guished as being a left child or a right child.

black-box testing A testing approach in which the internal
structure of the item being tested is not known or taken
into account in the design of the test cases. The test cases
are based only on the functional requirements for the
item being tested.

block A compound statement that may contain local vari-
ables and class declarations.

bottom-up design A design process in which the lower-level
functions are designed first. A lowest-level function is one
that does not depend on other functions to perform its
task.

boundary condition A value of a variable that causes a dif-
ferent path to be taken. For example, in the statement if
(x > C) { ... } else { ... }, the value of C is a
boundary condition.

branch coverage A measure of testing thoroughness. Each
alternative from a decision point (if, switch, or while
statement) is considered a branch. If a test exercises a
branch, then that branch is considered covered. The ratio
of the covered branches to the total number of branches
is the branch coverage. See also path coverage and state-
ment coverage.

branch In a tree, the link between a parent node and one of
its children.

breadth-first search A way of searching through a graph in
which the vertices adjacent to a given vertex are all exam-
ined and placed into a queue. Once all the adjacent ver-
tices are examined, the next vertex is removed from the
queue. Thus vertices are examined in increasing distance
(as measured by the number of edges) from the starting
vertex.

784 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 784

breadth-first traversal See breadth-first search.
breakpoint A point in a program at which the debugger is

instructed to suspend execution when it is reached. This
allows for examination of the value of variables at a
given point before execution is resumed.

B-tree A balanced search tree in which each node is a leaf
or may have up to n children and n – 1 data items. The
leaves are all at the bottom level. Each node (except for
the root) is kept at least half full. That is, each node has
between (n – 1)/2 and n – 1 data items. The root either
is a single node (leaf) or has at least one data item and
two children.

B+tree A variation of the B-tree in which the leaves contain
keys and pointers to the associated data values, but the
internal nodes contain keys and pointers to other nodes.
The key of the parent is repeated as the first key in the
child. Each node holds up to n pointers and n keys.

bubble sort A sort algorithm that makes several passes
through the sequence being sorted. During each pass,
adjacent items are examined and, if out of order,
swapped. If there are no exchanges on a given pass, then
the process is complete. The effect of each pass is that the
largest item in the unsorted part of the sequence is moved
to (bubbles to) the end of the sequence.

bucket The list of keys stored in a hash table entry that uses
chaining. All the keys in the list map to the index of that
table entry.

bucket hashing See chaining.

C-style cast An expression of the form (type)value. The
kind of cast actually performed depends upon the type of
the value and the target type. Use of an explicit type con-
version or one of the cast operations is the preferred C++
programming practice.

call by reference A way of specifying a parameter for a
function in which the function receives a reference to the
object named by the corresponding argument. If the func-
tion changes the value of such a parameter, the object
itself will be changed after the function exits. The param-
eter can be specified to be const to prevent the function
from modifying it.

call by value A way of specifying a parameter to a function
in which the function receives a copy of the object named
by the corresponding argument. The function may
change the value of the parameter, but only the copy will
be affected. After the function exits, the original object
remains unchanged.

casting The process of converting or reinterpreting the type
of a value. C++ has several casting operators. The explicit
type conversion, dynamic_cast, and const_cast opera-
tions are used in this text.

catch an exception See handle an exception.
catch block The specification of an exception type and

the statements to be executed when an exception of that

type is caught. One or more catch blocks follow a try
block and will catch the exceptions thrown from that try
block. Also called an exception handler.

chaining An approach to hashing in which all keys that are
mapped to a given entry in the hash table are placed into
a list. The list is called a bucket.

child A node in a tree that is the immediate descendant of
another node.

class diagram A UML diagram that shows a number of
classes and the relationships between them.

class A fundamental programming unit in C++. A class
defines a particular kind of object. The class consists of a
collection of zero or more pieces of information (data
fields or instance variables) characteristic of an object of
that kind (an instance of the class) as well as zero or more
functions (or member functions) that specify actions that
take place involving instances of the class.

class definition Code that identifies the name of a class, the
types and access specifiers of its data members, and the
signatures of its member functions. It is usually in a file
with the .h extension.

class implementation Code that defines the member func-
tions of a class. It is usually in a file with the .cpp exten-
sion.

class type A type of data whose definition is not built into
the C++ language and therefore must be supplied as a
class; it is built up of one or more data fields that may be
of primitive type or class type.

client A class or function that uses a given class.
closed-box testing See black-box testing.
collision The mapping of two or more keys into the same

position in a hash table.
compile To translate a program from a programming lan-

guage such as C++ into machine language.
complete binary tree A binary tree in which the nodes at all

but the deepest level contain two children. At the deepest
level, all nodes that have two children are to the left of
those that have no children, and there is at most one node
with a left child that is between these two groups.

component testing The testing of an individual part of a
program by itself. In a C++ program a component may
be a function or a class.

component class A class whose objects are part of another
object. See composition.

composition The association between two classes in which
objects of one class are part of another class. The parts
generally do not have an independent existence, but are
created when the parent object is created. For example an
Airplane object is composed of a Body object, two Wing
objects, and a Tail object.

compound statement Zero or more statements enclosed
within braces { ... }.

concept A common interface that a generic class must
meet.

Glossary 785

C++ Glossary.v2 7/7/05 11:27 AM Page 785

concrete class See actual class.
connected components A set of vertices within a graph for

which there is a path between every pair of vertices.
connected graph A graph that consists of a single con-

nected component.
construction phase The phase of the Unified Model of the

software life cycle during which most of the activity is
devoted to writing the software.

constructor A function that initializes an object when it is
first created.

container A template class whose instances can contain one
or more objects.

contract The specification of the pre- and postconditions of
a function.

copy constructor A constructor used to make an independ-
ent copy of an object.

cost of a spanning tree The sum of the weights of the edges.
coverage testing Testing the performance of a function

under all possible combinations of conditions for which
it was programmed.

cycle A path in a graph in which the first and final vertices
are the same.

constant casting A cast operation that can change the
const attribute of a pointer or reference.

data abstraction The specification of the data items of a
problem and the operations to be performed on these
data items that does not specify how they (the data items)
will be represented and stored in memory. See also
abstract data type.

data field See instance variable.
data member See instance variable.
debugging The process of finding and removing defects

(“bugs”) from a program.
declaration A statement that informs the C++ compiler

that a function, variable, or class is available for use and
gives the compiler all the information necessary to use
that item, such as its name, the type of a variable, the
types of arguments and return value of a function, or the
declarations of all the functions in a class.

deep copy A copy of an object in which data field values
and pointers to immutable objects are simply duplicated,
but each pointer to a mutable object references a copy of
that object. If any object that is copied contains pointers
to other mutable objects, the corresponding pointers in
the copy reference copies of those objects. The effect is
that you can change any value in a deep copy of an object
without modifiying the original object.

default constructor The no-parameter constructor that is
generated by the C++ compiler if no constructors are
defined.

defensive programming An approach to designing a program
that builds in statements to test the values of variables that

might result in an exception or run-time error (to be sure
that they are valid) before statements that use the variables
are executed.

delegation The implementation of a function in one class
by merely calling a function in another class.

delimiter characters Characters that are defined to separate
a string into tokens.

dense graph A graph in which the number of edges, |E|, is
close to the square of the number of vertices, |V | — that
is, one in which nearly every edge that could exist does
exist.

depth (level) The number of nodes in a path from the root
to a node.

depth-first search A method of searching a graph in which
adjacent vertices are examined along a path until a dead
end is reached. The search then backtracks until an unex-
amined vertex is found, and the search continues with
that vertex.

depth-first traversal See depth-first search.
deque An abstract data type consisting of a structure in

which elements may be inserted at either end, and
removed from either end, combining the access capabili-
ties of a stack and a queue.

dereference To obtain the object to which a pointer points.
derived class A class that extends one or more classes,

known as base classes, inheriting the members of all of
them. Particularly in discussion of object-oriented lan-
guages other than C++, such as Java, a derived class is
also known as a subclass.

descendant In a tree, a lower node that can be reached by
following a path from a given node.

design The process (workflow, in the Unified Model)
by which classes and functions are identified and
defined to create a program that satisfies a given set of
requirements.

destination The vertex in a directed graph to which an edge
is directed.

destructor A member function called when an object is no
longer to be used, before the memory for the object is
released to the operating system for use in allocating new
objects. If the object has other objects as instance vari-
ables, the destructor should ensure that the memory for
those objects is also relinquished in order to prevent
memory leaks.

digraph See directed graph.
directed edge An edge in a directed graph.
directed acyclic graph A directed graph that contains no

cycles.
directed graph A graph in which every edge is considered

to have a direction. If u and v are vertices in a graph, then
the presence of the edge (u, v) indicates that v is adjacent
to u, but u may not be adjacent to v. Contrast with undi-
rected graph.

786 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 786

discovery order The order in which vertices are discovered
in a depth-first search.

dot notation Writing an object identifier followed by a dot
followed by the name of a member function of the
object’s class to apply the member function to the object.

downcast A cast of a pointer to a base class to a pointer to
a derived class. See dynamic casting.

driver A program whose purpose is to call a function being
tested and provide it with appropriate argument values.
Usually, the result of executing the function is displayed
immediately to the user.

dynamic casting Conversion of a base-class pointer to a
derived-class pointer, matching the type of the object
actually pointed to, at run time.

edges In a graph, the links between pairs of vertices.
elaboration phase The phase in the Unified Model of the

software life cycle during which the software architecture
is defined.

encapsulate To combine the various pieces of information
about an abstract data type into one module with which
the outside world interacts through a specifically defined
interface without having to be concerned with the details
of implementation.

enumeration A data type that is declared as a list of per-
missible values and each instance of the type consists of
one of those values.

escape sequence A sequence of characters beginning with
the backslash (\) which is used to indicate another char-
acter that cannot be directly entered. For example the
sequence \n represents the newline character.

Euler tour A path around a tree, starting and ending with
the root. The tree is always kept to the left of the path
when viewed from the direction of travel along the path.

event The occurrence of an external input or an internal
state change.

exception An object that can be thrown when an error is
encountered. By catching the exception, the program
may be able to recover from the error.

exception handler See catch block.
extending The process of adding functionality by defining

a new class that adds data fields and/or adds or overrides
functions of an existing class.

external node See leaf.
explicit type conversion An expression of the form

type(value). If there is a conversion defined, the type of
the value is converted to the target type.

Extreme Programming A software development process in
which programmers work in pairs. One programmer
writes functions while the other designs tests for those
functions. The programmers alternate roles. The pro-
grammers also share a workstation so that when one pro-
grammer is using the workstation the other is observing.

factory function A function that is responsible for creating
objects of a class. Generally a factory function will be
associated with an abstract class and will choose an
appropriate concrete class that extends the abstract class
based upon parameters passed to the factory function,
system parameters, or both. It returns a pointer to a new
object of this concrete class.

finish order The order in which the vertices are finished in
a depth-first search. A vertex is considered finished when
all of the paths to adjacent vertices have been finished.

forest A collection of trees that may result from a depth-
first search of a directed graph or an unconnected graph.

friend A class or function that another class allows to have
access to the latter class’s private data members.

front end The part of an application program that interacts
with a user rather than with data in persistent storage.

full binary tree A binary tree in which each node is a leaf
or has two children.

function The fundamental unit in C++ programming; a
sequence of statements that performs a specific task,
given all the information needed to perform the task, and
possibly returns a value indicating the result.

functional testing Testing that concentrates on verifying
that software meets its functional requirements. See also
black-box testing.

function declaration The specification of the name, param-
eters, and return type of a function. See also signature.

function overloading The presence of multiple functions in
a class with the same name but different signatures.

function overriding The replacement of an inherited vir-
tual function with a different implementation in a
subclass.

function class A class that overrides the function call oper-
ator, operator().

function object An instance of a function class.
generalization The relationship between two classes in

which one class is the base class (or superclass) and the
other is a derived class (or subclass). The base class is a
generalization of the derived class.

generic class A class with type parameters that are specified
when instances are created. These parameters specify the
actual data type for the internal data fields of the object
that is created. See also template class.

generic function A function whose arguments are not
restricted as to type. Type parameters are used to repre-
sent the data types of its formal parameters. The type
parameters are determined when the function is called
and enable the function to process actual parameters of
different data types. See also template function.

generic type See generic class.
getter See accessor.
glass-box testing See white-box testing.
global object An object declared outside the scope of any

function or class.

Glossary 787

C++ Glossary.v2 7/7/05 11:27 AM Page 787

graph A mathematical structure consisting of a set of ver-
tices and edges. The edges represent a relationship be-
tween the vertices.

handle an exception To respond in a controlled way when
a particular type of exception is thrown so that the pro-
gram can recover from the error, clean up memory, or
report the error intelligently.

has-a relationship The relationship between two classes,
each instance of one of which is associated with zero or
more instances of the other, but not necessarily the other
way around. For example, an airplane may have wheels,
but not all wheels belong to airplanes; furthermore, an
airplane is not a wheel and a wheel is not an airplane.
Object-oriented languages capture the has-a relationship
by giving the possessing class data members whose type
is the possessed class.

hash code A function that transforms an object into an
integer value that may be used as an index into a hash
table.

hash table A data structure in which items are accessed
directly based on a computed hash code rather than
through a search.

header A C++ file containing declarations of functions,
classes, and variables to be included in every program
that uses those functions, classes, and variables.

heap A binary tree in which the value in a node is
beyond—greater than (in a max heap) or less than (in a
min heap)—all the values in both subtrees.

heapsort A sort algorithm in which the items being sorted
are inserted into a heap, then removed one at a time.

height of a node In a tree, the number of nodes in the
longest path from the node to a leaf.

height of a tree The number of nodes in a path from the
root to the deepest leaf.

Huffman code A varying length binary code in which each
symbol is assigned a code whose length is inversely pro-
portional to the frequency with which that symbol
appears (or is expected to appear) in a message. The
resulting coded message is the minimum possible length.

immutable A class that is immutable has no functions to
change the value of its data fields. An immutable object
can’t be changed.

implement (an abstract data type) To provide in a class an
implementation of all of the functions specified by the
interface of an abstract data type.

implicit parameter The object to which a member function
of that object’s class is applied using the member access
operator (. or ->) notation.

inception phase In the Unified model of the software life
cycle, the initial phase of a project in which the require-
ments are first identified.

include file A file containing declarations of classes and
functions (such as those in the C++ standard library) that
can be used by a C++ program. See also header.

increment operator The operator that has the side effect of
adding one to its operand.

independent copy An object that has been copied from
another object and can be modified without modifying
the original object.

index A value that specifies a position within an array.
infix notation Mathematical notation in which the opera-

tors are between the operands.
information hiding The design principle that states that the

internal data representations of a class cannot be used or
directly modified by clients.

inherit To receive from an ancestor. In an object-oriented
language, a derived class inherits the member functions
and data fields of its base classes. These inherited func-
tions and data fields appear to clients of the derived class
as if they were members specifically declared in that class.

inline function A function for which code is substituted
for the function call during compilation, allowing more
rapid execution. Functions whose bodies are defined
within a class definition are compiled inline. Also a func-
tion may be declared inline by preceding its declaration
with the keyword inline.

initializer list A list of values, enclosed in braces, that ini-
tializes the values in an array.

inner class A class that is defined within another class.
inorder predecessor For a binary search tree, the inorder

predecessor of an item is the largest item that is less than
this item. The node containing an item’s inorder prece-
cessor would be visited just prior to that item in an
inorder traversal.

inorder traversal Processing a binary tree by traversing a
node’s left subtree, visiting the node itself, and then tra-
versing the node’s right subtree, beginning with the root
node.

input stream A sequence of characters from some source,
from which a program can obtain input.

insertion sort A sorting algorithm in which each item is
inserted into its proper place in the sorted region.

instance See object.
instance function A function (member function) that is

associated with an object. Contrast with static function.
instance variables A variable of a class that is associated

with an object (i.e., a data field of an object). Contrast
with static variable.

I/O manipulator A member function of the stream
input/output classes that can be used to control the for-
mat of subsequent input or output.

integration testing Testing in which the interaction of the
components or units of a software program is validated.

interface The external view of a class. In C++ the interface
of a class is defined by its public members.

788 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 788

internal node A node in a tree that has one or more chil-
dren. Contrast with leaf.

is-a relationship The relationship between two classes in
which all the instances of one are also instances of the
other, but not necessarily the other way around. For
example, a jet airplane is an airplane, and a laptop com-
puter is a computer, but not all airplanes are jets and not
all computers are laptops. Object-oriented languages
capture the is-a relationship by extending classes.

iteration In a loop, a complete execution of the loop body.
In the Unified Model of the software life cycle, a
sequence of activities that results in the release of a set of
software artifacts.

iterator An object that accesses the objects contained in a
sequence one at a time.

Javadoc In the Java system, a program that generates Web-
compatible documentation from comments that follow
specific conventions in a Java source program. Software
is now available to do the same for C++ programs.

key A value or reference that is unique to a particular
object and thereby identifies that object (e.g., a social
security number). Keys are used to access elements in
associative containers.

Last In, First Out (LIFO) An organization of data such that
the most recently inserted item is the one that is removed
first.

last-line recursion A recursive algorithm or function in
which the recursive call is the last executable statement.

leaf (node) A node in a tree that has no children. Contrast
with internal node.

left rotation The transformation of a binary search tree in
which the right child of the current root becomes the new
root, and the old root becomes the left child of the new
root.

level of a node The number of nodes in a path from the
root to this node.

life line The dotted vertical line in a UML sequence dia-
gram that indicates the life time of an object.

linear probing A collision resolution method in which
sequential locations in a hash table are searched to find
the item sought or an empty location.

linear search A search algorithm in which items in a
sequence are examined sequentially.

link A pointer from one node to another.
linker A program that takes one or more object files pro-

duced by the compiler and puts them together into a
machine langage file that the computer can execute.

literal A constant value that appears directly in a
statement.

load factor In a hash table, the proportion of total capac-
ity that is filled.

logic error An error in the design of an algorithm or pro-
gram that does not prevent the program from compiling
or running but produces incorrect results. Contrast with
syntax error and run-time error.

logical view A description of the data stored in an object
that does not specify the physical layout of the data in
memory.

loop invariant An assertion that is true before each execu-
tion of the loop body and is true when the loop exits.

l-value An expression that can have a value assigned to it;
that is, it can be put on the left side of an assignment
operator.

machine language The form of a computer program that
the computer can execute directly.

many-to-one mapping An association among items in
which more than one item (a key) is associated with a sin-
gle item (a value).

max heap A heap in which the value at a node is greater
than the values in the node’s subtrees.

member A piece of information found in all objects belong-
ing to a class (a data member) or a function that can be
invoked on any object of the class (a member function).

member function A function that can be called on any
object of a class. The identifier for the object is written
followed by a dot followed by the name of the function.
Within the function implementation, the identifier for a
data member means the value of that data member for
that object.

memory leak A condition in which a program allocates
memory for objects but fails to give the memory back to
the operating system when the objects go out of use. The
computer’s performance gradually degrades as the oper-
ating system has less and less memory available.
Destructor functions must be coded correctly to prevent
memory leaks.

merge The process of combining two sorted sequences into
a single sorted sequence.

merge sort A sorting algorithm in which sorted subse-
quences are merged to form larger sorted sequences.

message In an object-oriented design, a message represents
an occurrence of a function call.

message to self A message that is passed from an object to
itself. It represents a function calling another function
within the same class.

method A sequence of statements that can be invoked (or
called) passing a fixed number of values as arguments
and optionally returning a value. See also member
function.

min heap A heap in which the value at a node is less than
all the values in its subtrees.

minimum spanning tree A subset of the edges of a con-
nected graph such that the graph remains connected and
the sum of the weights of the edges is the minimum.

Glossary 789

C++ Glossary.v2 7/7/05 11:27 AM Page 789

modifier A member function to enable a client to change
the value of an instance variable. The modifier should
not return any value. Also called a mutator or setter. The
name of the modifier function should begin with the
word set_ followed by the name of the instance variable.

multiple inheritance The ability of a class to inheriting
from more than one base class.

multiplicity An indication of the number of objects in an
association.

mutator See modifier.

namespace A collection of names that are all defined
together and are all distinct from each other.

narrowing conversion A conversion from a type that has a
larger range of values to a type that has a smaller one.

nested class See inner class.
network A system consisting of interconnected entities.
new operator The C++ operator that creates objects (or

instances) of a class.
newline The special character that indicates the end of a

line of input or output.
node An object to store data in a linked list or tree. This

object will also contain pointers to other nodes.
null character A character whose value in seven-bit ASCII

is zero. The null character, represented by '\0' in C++,
is not the same as the printable zero character '0'.

null pointer A pointer value that indicates that the pointer
does not reference any object.

object An example or instance of a class. Internally, it is an
area of memory that is structured as defined by a class.
The functions of that class operate on the values defined
within this memory area.

object code A form of a program that has been mostly
translated into machine language except for references to
variables, functions, or classes defined outside of the
original source file.

object-oriented design A design approach that identifies
the entities, or objects, that participate in a problem or
system and then designs classes to model these objects
within a program.

offset A constant that can be added to a pointer.
onto mapping A mapping in which each value in the value

set is mapped to by at least one member of the key set.
open addressing Resolving collisions in a hash table by

inserting the new item in the first unoccupied position
above the location of the collision. The item can then be
found by linear probing.

open-box testing See white-box testing.
operations The functions (or methods) defined in a class.
operator For classes, operator is another name for func-

tion. For primitive types, it represents a pre-defined func-
tion on one or two values (for example, addition).

operator function A function whose name is in the form
operator@, where @ is one of the operator symbols (e.g.
+, *, =). These functions may be defined for classes so
that they define the corresponding operator for that class.

order of a B-tree The maximum number of children in a
node.

output buffer A memory area in which information written
to an output stream is stored prior to being written to
disk.

output stream A sequence of characters produced by a pro-
gram for use by some other program or a user.

overload To define more than one member function or
operator with the same name but different signatures so
that they can be called with different sets and/or types of
parameters.

override To define a virtual member function in a derived
class that replaces the member function with the same
signature inherited from the base class.

parameter An item of information for which a function
needs a value when it is called in order to perform its
task.

parent The node that is directly above a node within a tree.
partitioning The process of separating a sequence into two

sequences; used in quicksort.
path In a graph, a sequence of vertices in which each ver-

tex is adjacent to its predecessor.
path coverage A measure of testing thoroughness. If a test

exercises a path through a function, then that path is con-
sidered covered. The ratio of the covered paths to the
total number of paths is the path coverage. See also
branch coverage and statement coverage.

peeking the stack Accessing the top element of a stack
without removing it.

persistent storage Part of a computer system that keeps
data even when the application program that works with
that data is not running, such as a hard disk drive.

phase In the Unified Model of the software life cycle, the
span of time between two major milestones.

physical view A view of an object that considers its actual
representation in computer memory.

pivot In the quicksort algorithm, a value in the sequence
being sorted that is used to partition the sequence. The
sequence is partitioned into one subsequence of values
that are less than or equal to the pivot and another sub-
sequence of values that are greater than the pivot.

pointer An object that contains the memory address of
another object.

polymorphism The ability to select the correct definition of
a member function based on the type of the actual object
being pointed to at run time, regardless of the type of the
pointer variable. In C++ a member function has poly-
morphism if it is declared virtual.

790 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 790

pop Remove the top element of a stack.
postcondition An assertion that will be true after a func-

tion is executed assuming that the preconditions were
true before the function is executed.

postfix increment The increment operator (e.g., i++) that
has the side effect of incrementing the variable to which
it is applied, but its current value is the value of the vari-
able before the increment takes place (e.g., i).

postfix notation A mathematical notation in which the
operators appear after their operands.

postorder traversal An approach to traversal of a tree in
which the left and right subtrees of each node are tra-
versed before the node itself is visited.

precedence The degree of binding of infix operators.
Operators of higher precedence are evaluated before
operators of lower precedence.

precondition An assertion that must be true before a func-
tion is executed for the function to perform as specified.

prefix increment The increment operator (e.g., ++i) that
has the side effect of incrementing the variable to which
it is applied, and its current value is the value of the vari-
able after the increment takes place (e.g., i + 1).

preorder traversal An approach to traversal of a tree in
which each node is visited before its subtrees are tra-
versed.

preprocessor Part of the C++ compiler system that modifies
a program before the compiler itself begins to translate
the modified source code into machine language. The
preprocessor is used to define constants and incorporate
other source code files.

primitive type A type of data whose definition is built into
the C++ language, such as a character or number.

priority queue A data structure in which the item with the
highest priority is removed next, rather than the most
recently added item (as in a stack) or the first item added
(as in a queue).

private Of a class member, visible only to functions defined
in the same class or to classes or functions declared to be
friends.

procedural abstraction The philosophy that procedure
(function) development should separate the concern of
what is to be achieved by a procedure (or function) from
the details of how it is to be achieved.

proof by induction A proof method which demonstrates
that a proposition is true for a base case (usually 0) and
then demonstrates that if the proposition is true for an
arbitrary value (k) is it then true for the successor of that
value (k + 1).

protected visibility A level of visibility whereby variables
and functions are visible to functions defined in the same
class, derived classes of that class, or friends of that class.

pseudocode A description of an algorithm that is struc-
tured like a programming language implementation, but
lacks the formal syntax and notation of a programming

language. Generally pseudocode will use common pro-
gramming language decision and looping constructs.

pseudorandom numbers A computer-generated sequence
of values that appear to be random because they pass
various statistical tests that are consistent with those that
would be produced by a truly random sequence.

public visibility Of a class member, visible to all functions.
pure virtual function See abstract function.

quadratic probing In a hash table, a collision resolution
technique in which the sequence of locations that are
examined increases as the square of the number of probes
made.

queue An abstract data type consisting of a structure in
which elements can be added at one end and removed at
the other so that the first element added is the first ele-
ment retrieved.

queuing theory The branch of mathematics developed to
solve problems associated with queues by developing
mathematical models for these problems.

quicksort A sorting algorithm in which a sequence is parti-
tioned into two subsequences, one that is less than or
equal to a pivot value and the other that is greater than
the pivot value. The process is then recursively applied to
the subsequences until a subsequence with one item is
reached.

random access The ability to access any object in a
sequence by means of an index.

recursion A programming technique in which a function
solves a problem by calling itself to solve simpler versions
of the problem.

recursive case A case in a recursive algorithm that is solved
by applying the algorithm to a transformed version of its
parameter.

recursive data structure A data structure that is defined in
terms of itself.

recursive function A function that calls itself.
Red-Black tree A self balancing binary search tree that

maintains balance by distinguishing the nodes by one of
two states: “red” or “black”. Algorithms for insertion
and deletion maintain the balance by ensuring that the
number of black nodes in any path from the root to a leaf
is the same.

refactoring Reorganizing a class hierarchy so that members
common to more than one class are grouped together in
a class by themselves.

reference To contain the memory location of an object.
reference variable A variable that references an object. A

reference is an alias for the referenced object.
regression testing Testing that ensures that changes to the

item being tested do not invalidate previously verified
functions.

Glossary 791

C++ Glossary.v2 7/7/05 11:27 AM Page 791

rehashing The process of moving the items in one hash
table to a larger hash table using hashing to find each
item’s new location.

relocatable Of object code, able to work correctly regard-
less of where it is placed in the computer’s memory.

requirements specification A document that specifies what
a program or system is to do without specifying how it is
done.

reusable code Code written for one program that can be
used in another.

right rotation The transformation of a binary search tree in
which the left child of the current root becomes the new
root, and the old root becomes the right child of the new
root.

root The node in a tree that has no parent and is at the top
level.

run-time error An error that is detected when the program
executes.

r-value The expression to the right of an assignment oper-
ator. In a strongly typed language such as C++, the r-
value must be of the same type as the l-value in that
assignment.

seed The initial value in a pseudorandom number
sequence. Changing the seed causes a different sequence
to be generated by the pseudorandom number generator.

selection sort A sort algorithm in which the smallest item is
selected from the unsorted portion of the sequence and
placed into the next position in the sorted portion.

self-balancing search tree A search tree with insertion and
removal algorithms that maintain the tree in balance.
See balanced binary search tree, AVL tree, Red-Black
tree, 2-3 tree, and 2-3-4 tree.

sequence A data structure that contains one or more ele-
ments, within which elements can be inserted or deleted
at any position.

sequence diagram A UML diagram that shows the
sequence of messages between objects that are required
to perform a given function or realize a use case.

sequential access Access to elements within a sequence in a
specific order.

sequential container A container class in which the objects
contained are in some linear order and can be accessed by
position in that order (such as the vector element at a
given index position, or the list element that precedes or
follows a given one).

set difference For sets A and B, A–B is the subset of a set,
A, that does not contain elements of some other set, B.

set intersection A set of the elements that are common to
two sets.

setter See modifier.
set union A set of the elements that are in one set or the

other.

shallow copy A copy of an object in which only the values
of the data fields are copied. If a data field is a pointer,
the original and the copy reference the same target object.

Shell sort A variation on insertion sort in which elements
separated by a value known as the gap are sorted using
the insertion sort algorithm. This process repeats using a
decreasing sequence of values for the gap.

sibling One of two or more nodes in a tree that have a com-
mon parent.

signature A function’s name and the types of its parame-
ters. The return type is not part of the signature, because
it is illegal to have two functions with the same signature
and different return types.

simple path A path that contains no cycles.
simulation The process of modeling a physical system

using a computer program.
single-step execution In debugging, the process of execut-

ing one statement at a time so that the user may examine
the values of variables after each statement is executed.

smart pointer An object that acts like a pointer but deletes
the object it points to when that object has no owner.

software life cycle The sequence of phases that a software
product goes through as it is developed.

source The vertex from which an edge in a directed graph
is directed.

spanning tree A subset of the vertices of a connected graph
that contains no more than one edge between any two
vertices but that still results in a connected graph.

sparse graph A graph in which the number of edges, |E|, is
much less than the square of the number of vertices,
|V |—that is, one in which most of the edges that could
exist do not.

specialization An implementation of a template function
(or class) specially written for a particular parameter type
so that the compiler will use it rather than instantiate the
general template function (or class) when called (or
instantiated) on that type.

stack An abstract data type consisting of a structure in
which elements are added and removed at one end so
that only the most recently added element can be
accessed or removed.

standard library A collection of classes and functions that
is available to any C++ program.

Standard Template Library (STL) A collection of template
classes that are incorporated into the standard library.
The STL consists of the collection classes, iterators, and
algorithm functions.

starter function See wrapper function.
state The current value of all of the data fields in an object.
statement coverage A measure of testing thoroughness. If a

test exercises a statement, then the statement is consid-
ered covered. The ratio of the covered statements to the
total number of statements is the statement coverage. See
also branch coverage, and path coverage.

792 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 792

static function A member function defined within a class,
but not associated with any particular object of that
class. Contrast with instance function.

static variable A variable defined in a class that is not a
member of any particular object, but shared by all
objects of the class. Contrast with instance variable.

step into When debugging in single-step mode, setting the
next statement to be executed to be the first statement of
the function. Each individual statement in the function is
executed in sequence.

step over When debugging in single-step mode, setting the
function call to be treated as a single statement.

stepwise refinement The process of breaking a complicated
problem into simpler problems. This process is repeated
with the smaller problems until a problem of solvable
size is reached.

strongly typed language A programming language in which
the type of objects is verified when arguments are bound
to parameters and when values are assigned to variables.
A syntax error occurs if the types are not compatible.

structure chart A diagram that represents the relationship
between problems and their subproblems.

structured walkthrough A design or code review following
a defined process in which the author of a program leads
the review team through the design and implementation,
and the reviewers follow a check-list of common defects
to verify that these defects are not present.

stub A dummy function that is used to test another func-
tion. A stub takes the place of a function that the func-
tion being tested calls. A stub will typically return a
known result.

subclass See derived class.
subset A set that contains only elements that are in some

other set. A subset may contain any or all of the elements
of the other set or it may be the empty set.

subtree of a node The tree that consists of this node as its
root.

superclass See base class.
syntax error An error that violates the syntax rules of the

language, preventing successful compilation. Syntax
errors are generally the result of a mistake in entering the
program into the computer (typographical error) or a
misunderstanding of the language syntax. Syntax errors
are detected by the compiler.

system analyst A person who analyzes a problem to deter-
mine the requirements for a software program.

system testing Testing of a complete program or solution to
a problem in the context (operating system, other appli-
cations) in which it will be used.

tail recursion See last line recursion.
template class A class that enables a programmer to create

and manage pieces of information whose type is passed
to the template class as a parameter when objects of the
class are created. See also generic class.

template function A function in which the parameter types
are given as template types and are replaced by actual
parameter types at compile time. See also generic func-
tion.

test case An individual test.
test framework A set of classes and procedures used to

design and conduct tests.
test harness A function that executes the individual test

cases of a test suite and records the results.
test suite A collection of test cases.
throw an exception Indicate that the situation that causes

an exception has been detected.
token A character or string extracted from a larger string.

Tokens are separated by delimiters.
top-down design An approach to design that represents the

solution to a higher module in terms of the solution to
one or more lower-level modules.

topological sort An ordering of a sequence of items for
which a partial order is defined that does not violate the
partial order. For example, if a is defined to be before b
(a is a prerequisite of b) by the partial order, then a will
not appear later in the sequence than b. A partial order is
defined by a directed acyclic graph.

transition phase In the Unified Model of the software life
cycle, the phase in which the software product is turned
over to the end users.

traverse a graph Visit all the vertices in the graph by ad-
vancing from vertex to vertex along edges.

tree A data structure consisting of nodes that have one or
more successors (children) but no more than one prede-
cessor (parent).

tree traversal The process of systematically visiting each
node in a tree.

try block A compound statement preceded by the key-
word try so that exceptions generated within that state-
ment sequence can be handled by the exception handlers
that follow.

type A property of an item of data that specifies what kind
of information it contains. The type determines what val-
ues the item can have and what can and cannot be done
with the information.

type cast The process of converting from one type to
another.

undirected edge An edge in an undirected graph.
undirected graph A graph in which no edge has a direction.

If u and v are vertices in a graph then the presence of the
edge {u, v} indicates that v is adjacent to u, and u is adja-
cent to v. Contrast with directed graph.

Unified Model A software development life cycle model
that is defined in terms of a sequence of phases and work-
flows. The workflows are exercised during each iteration
of each phase, but the distribution of the amount
of effort for each workflow varies from iteration to
iteration.

Glossary 793

C++ Glossary.v2 7/7/05 11:27 AM Page 793

Unified Modeling Language (UML) A language to describe
the modeling of an object-oriented design that is the uni-
fication of several previous modeling systems. Specifi-
cally, the modeling techniques developed by Booch,
Jacobson, and Rumbaugh were combined to form the ini-
tial version. UML has since evolved and is defined by a
standard issued by the Object Modeling Group.

unit testing Testing of an individual unit of a software pro-
gram. In C++, a unit is generally a function or a class.

unnamed pointer See anonymous pointer.
unnamed reference See anonymous reference.
unwinding the recursion The process of returning from a

sequence of function calls and forming the result.
use case The documentation of the sequences of interac-

tions between a computer system and its user needed to
accomplish a given process.

user interface (UI) The way in which the user and a pro-
gram interact, or the class that provides this interaction.

using declaration A line that indicates that an identifier
declared in another namespace can be used in this name-
space without need of a qualifying prefix.

using directive A line that indicates that all identifiers
declared in a given namespace can be used in this name-
space without need of a qualifying prefix.

vector An indexed sequence into which elements may be
inserted or deleted at any position and whose length can
be changed.

version control The process of keeping track of the various
changes that are made to a program as it is developed or
maintained.

vertices The set of items that are part of a graph. The ver-
tices are related to one another by edges.

virtual function A member function whose definition is to
be selected at run time based on the type of the actual
object on which it is called. If a member function is not
declared virtual, the definition is determined when the
class is compiled, and that definition will always be
called when the function is invoked through a pointer to
that class, even if the object pointed to actually belongs
to a derived class that overrides the function.

visit a node In tree traversal, to process and consume the
information in the node. Merely encountering the node
and going on to a child of the node does not constitute
visiting the node.

waterfall model A software development model in which
all of the activities of one workflow are completed before
the next one is started.

weight A value associated with an edge in a weighted
graph.

weighted graph A graph in which each edge is assigned a
value.

white-box testing Testing that takes into account the inter-
nal structure of the unit being tested. Also called glass-
box testing or open-box testing. See also coverage testing.

widening conversion A conversion from a type that has a
smaller set of values to one that has a larger set of values.

workflow In the Unified Model of the software life cycle, a
sequence of activities performed by participating workers
and the artifacts they produce.

wrapper class A class that encapsulates a primitive data type.
wrapper function A function whose only purpose is to call

a recursive function, perhaps providing initial values for
some parameters, and returning the result. Also called a
starter function.

794 Glossary

C++ Glossary.v2 7/7/05 11:27 AM Page 794

795

Index

Terms beginning with numbers, such
as 2-3-4 trees, are indexed as if spelled
out.

?: operator, 20t
*, See dereferencing operator
*, to represent indefinite number of

multiplicities, 775
! operator, 12
!= operator, 20t
operator, 9
% operator, 20t
& operator, 24, 25
&& operator, 12
* operator, 19, 20t
+ operator, 19, 20t, 31
++ operator, See increment operator
- operator, 19, 20t, 31
-- operator, See decrement operator
-> operator, 20t
/ operator, 19, 20t
< operator, 20t
<< operator, 20t
<= operator, 20t
= operator, 20t
== operator, 20t
> operator, 20t
>= operator, 20t
>> operator, 20t
|| operator, 12
~ operator, 20t

A
abstract classes, 202–204, 771
abstract data types, 99–100

interface notation to represent, 99,
771

preconditions and postconditions,
100–101

abstract functions, 202–204
abstraction, 73–75
acceptance testing, 68t, 149
accessor member functions, 87

inline definition, 88
access specifiers, 77

accumulate function, 301t
activation bars, in UML sequence

diagrams, 778
activation frames, 409–411
actual classes, 204
adapter classes

queue class as, 366
stack class as, 326

addresses, displaying for different
countries case study, 206–209

address function, allocator class, 758t
address-of operator (&), 24

syntax, 25
adjacency list, graphs, 701–702
adjacency matrix, graphs, 701,

702–703
adjacent vertex, 694
airline passengers simulation case

study, 381–397
algorithm library, 299–301
algorithms

Dijkstra’s, 734, 736–738
efficiency, 170–178
growth rates compared, 176, 177
Prim’s, 738–742
recursive algorithms, 404–411
using weighted graphs, 734–742

allocate function, allocator class,
757, 758t

allocator, 235–236, 756–757
allocator class, 757, 758t
alternate keywords, 756, 756t
amortized constant time, 246
analysis, in software life cycle, 65, 66,

69–70
ancestor-descendant relationship, 447
anchor, for inner or nested classes,

774
and_eq keyword, digraphs, trigraphs,

or equivalents for, 756t
and keyword, digraphs, trigraphs, or

equivalents for, 756t
and operator, 12, 20t
anonymous pointer, 205
app openmode flag, 55t
architectural design, 68t

arguments, 30
arrays, 36

arithmetic operators, 19, 20t
array arguments, 36
array data fields, 94
array indexing, 34
array index out of bounds error, 132t,

132–135
array-pointer equivalence, 34–35
Array_Queue.tc, 370, 372, 374–375
arrays, 33–37

crude nature of, 231
disadvantages relative vectors, 233
dynamically allocated, 34–35
falling off either end, 613
multidimensional, 36–37
out-of-bound subscripts, 33
performance of sorted compared to

hash tables and binary search
trees, 540

recursive algorithm to search, 405
returning failure before examining

all elements, 119
security holes associated with lack

of range checking, 237
selection sort using, 576
for storage in queue, 370–374
telephone directory case study,

108–113
array subscript operator, 20t
artificial intelligence (AI), 403
The Art of Computer Programming,

Vol 3: Sorting and Searching
(Knuth), 496, 539

ASCII (American Standard Code for
Information Interchange), 17–18,
18t, 755

assertions, 166
assert macro, 168–169
assignment, 204
assignment operator, 20t, 250–251

failure to define, 252
association, UML notation, 774–775
associative array, 523
associative container concept, 292
associative containers, 292, 511, 774

C++ Index.v2 8/15/05 10:10 PM Page 795

at function
deque class, 377t
sequences, 295t
string class, 39t
subscripting operator compared,

237
vector class, 236t, 236–237

attributes, 4, 75
UML syntax, 771–772

attribute types, UML syntax, 772–773
automatic teller machines (ATMS),

logic errors, 137
automobile recalls, logic errors

responsible for many, 137
auto_ptr class, 765
AVLNode class, 636
AVLNode.h, 636
AVL_Tree class, 634–636
AVL_Tree.h, 635–636
AVL trees, 628–643

B
back edges, 722
back function

deque class, 377t
list class, 265t
sequences, 295t
backtracking, 435
finding path through maze applica-

tion case study, 436–439
bad_alloc exception, 142t
bad_cast exception, 142t
bad function, stream class, 48, 48t
bad_typeid exception, 142t
balanced binary search trees, 530, 624
balanced parentheses, testing expres-

sions for, 320–324
base case, 406
base classes, 186, 188–190

failure to qualify template base class
name, 472

protected visibility for data fields,
192

virtual, 759–764
basic_ios class, 187
begin function

containers, 293t
deque class, 377t
Graph class, 704
hash_map class, 543t
list class, 265t, 266
List_Graph class, 707t, 710–711
set class, 513, 514t
vector class, 296

big-O notation, 172–178
binary openmode flag, 55t

binary search, 446, 450–451
recursive, 422–426

binary_search function, 424–425
B_Tree class, 675

Binary_Search_Tree class, 468–479
Binary_Search_Tree.h, 469–470
binary search trees, 446, 450–451,

466–472
AVL trees, 628–643
balanced, 530, 624
insertion into, 472–474
performance compared to hash

tables and sorted arrays, 540
Red-Black trees, 643–655, 671
removal from, 474–479
rotation, 624–628
self-balancing, 623
testing, 479–484
traversal, 455–456
writing index for term paper case

study, 479–484
Binary_Tree class, 457, 458–465
binary trees, 446, 448–452

fullness and completeness, 451–452,
623

bidirectional_iterator, 267
bitand keyword, digraphs, trigraphs,

or equivalents for, 756t
bitor keyword, digraphs, trigraphs, or

equivalents for, 756t
bitwise and operator, 20t
bitwise complement operator, 20t
bitwise exclusive or operator, 20t
black-box testing, 149
blobs, cell counting case study,

431–434
bool data type, 16, 17t, 18

in control statements, 12
to indicate errors, 138
returning unnecessarily, 91
using to indicate success or failure

of programs, 135
Boost Graph Library, 697
bottom-up design, 71
boundary conditions, testing, 153–155
braces

in control statements, 14
omitting around compound state-

ment, 15
branch coverage, 150
breadth-first search, 715–720
Breadth_First_Search.cpp, 719–720
breadth_first_search function,

718–719
break, in switch statements, 13t, 15
breakpoints, debugger, 162

BST_With_Rotate class, 627–628
BST_With_Rotate.h, 627–628
BTNode class, 457–458
BTNode.h, 458
B_Tree class, 673–674
B+ trees, 681
B-trees, 643, 663, 672–680
bubble sort, 576–580, 587t
BubbleSort.h, 579–580
bucket, 538
bucket hashing, 538
buffer overruns, 135
bugs, 130–137

C
C

macros in, 8
strings in, 36
type casting in, 133

C++
advanced topics, 755–767
allocator, 756–757
assert macro, 168–169
class and struct keywords, 256
control statements, 12–15, 13t
identifier convention, 21
macros, 8–9
program execution, 6–7
smart pointers, 764–767
sorting functions, 570–572
source character set, trigraphs,

digraphs, and alternate keywords,
755–756

standard library, 2–7, 99, 186
strings in, 36
as strongly typed language, 204, 205
traits, 757–759
type casting in, 133
virtual base classes, 759–764

cache, 170
call by constant reference, 31
call by reference, 30–31
call by value, 30–31
camel notation, 21
capacity, of vector, 234
case, in switch statements, 13t, 15
case studies

building custom Huffman trees,
498–504

converting expressions with
parentheses, 347–350

converting infix expressions to post-
fix expressions, 339–347

counting cells in blob, 431–434
displaying addresses for different

countries, 206–209

796 Index

C++ Index.v2 8/15/05 10:10 PM Page 796

Dutch National Flag problem,
616–619

evaluating postfix expressions,
333–338

finding palindromes, 315–320
finding path through maze using

backtracking, 436–439
geometric shape processing,

220–225
Huffman coding, 561–564
Huffman trees, building custom,

498–504
maintaining a customer queue,

362–365
maintaining an ordered list,

285–291
shortest path through maze,

727–730
simulate strategy for serving airline

passengers, 381–397
telephone directory, 102–124
telephone directory with map

application, 558–560
telephone directory with vector

application, 239
testing expressions for balanced

parentheses, 320–324
topological sort of graph, 731–733
Towers of Hanoi problem, 427–431
writing index for term paper,

479–484
catch blocks, 140–141

and unreachable exception handlers,
146

catching exceptions, See exception
catching

C++ compiler, 3
cell counting case study, 431–434
C++ environment, 2–7
cerr object, 44–45
chaining, hash tables, 538, 540–541
char data type, 17t, 17–18

extraction operator processing, 45t
insertion operator processing, 49t
char_traits class, 759

children, 447
cin object, 44–45
circular arrays

to implement deque, 376, 378
to implement queue, 370–374

circular linked lists, 262
class declaration, 3–4
class definition, 4, 75–79
class diagrams, See UML class

diagrams

classes, 3–4
actual and abstract compared, 204t
as components of other classes, 94
documentation style, 96–97
function, 303–306
for implementing abstract data

types, 99, 100
testing, 157–158
virtual base classes, 759–764

class hierarchies, 186–192. See also
inheritance

abstract classes, assignment, and
casting in, 202–209

displaying addresses for different
countries case study, 206–209

processing geometric shapes case
study, 220–225

class implementation, 75, 79–85
class keyword, 256
class member access operator, 20t, 31,

198
class names, 21, 78

UML syntax, 770
class types, 16
client programmer, 77
clients, 76

of lists and stacks, 311
closed-box testing, 149
collisions, hash tables, 531

reducing by expanding table size,
536–537

reducing using quadratic probing,
537–538

comments
assertions, 166
removing by preprocessor, 7

compare function, 494, 522, 528
string class, 40t
compiled program, 3

compiler, 3, 4
switch, 7, 206

compiling, 3, 6
conditional, 9–10

complement operator, 12, 20t
complete binary tree, 452
completeness, of trees, 452, 623
complexity, using abstraction to

manage, 73–75
compl keyword, digraphs, trigraphs, or

equivalents for, 756t
component design, 68t
composition, UML notation, 775–776
compound assignment operators, 20t
compound statements, 12

omitting braces around, 15

concept, 268, 292, 771
condition, in control statements, 13t
conditional compilation, 9–10
conditional operator, 20t, 22, 31
connected components, 696
connected graphs, 696
console input/output, 44–45
constant declaration, 324
constant growth rate algorithms,

177
constant member functions, 79
const_cast, 523
const_iterator, 267, 283–284
construct function, allocator class,

758t
construction, in Unified Model, of

software life cycle, 66, 67
constructors, 85–88

copy, 247, 250
inline definition, 88
no-parameter, 191
using initialization expressions

in, 86
container class hierarchy, 292
container concept, 292
containers, 774

standard library containers,
292–296

contract, abstract data type as, 100
control statements, 12–16

braces and indentation, 14
syntax and purpose, 13t
conversion, of operators, 22

copy constructor, 247
failure to define, 252

copy function, 300t
copying objects, 247–250
count function, shared_ptr class, 767t
count_occurrences function, 31
cout object, 44–45
coverage testing, 149–150
CppUnit test framework, 779–781
create_graph function, Graph class,

704t, 726
critically unbalanced trees, 632–634
cryptographic algorithms, 178
c_str function, string class, 40t
cubic growth rate algorithms, 176,

177
customer queue, 358

maintaining case study, 362–365
cycles, graphs, 694–695, 694–696

D
data abstraction, 73–74

Index 797

C++ Index.v2 8/15/05 10:10 PM Page 797

data fields, 4, 771
arrays, 94
initialization in derived classes,

190–191
referencing when hidden by local

declaration, 92
specified as private in class

definition, 75, 77–79
data function, string class, 40t
data members, 75. See also data

fields
deallocate function, allocator class,

758t
debuggers, 162–164
debugging, 130, 160–164
dec I/O manipulator, 50t
decrement operator, 19, 20t

using in expression with other
operators, 22

deep copy, 247–250
default allocator, 757
default constructor, 87
default copy constructor, 247
default destructor, 251
#define directive, 77
delegation pattern, 288

stacks, 326
delete operator, 27
delete[] operator, 35
delimiters, 42
dense graph, 713–714
depth, of tree, 448
depth-first search, 715, 720–726
Depth_First_Search.cpp, 724–725
depth_first_search function, 724, 726
deque, 365, 376–380
deque class, 376–380

and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
dereferencing operator (*), 24, 198

syntax, 26
derived classes, 186, 188–190

data field initialization, 190–191
omitting abstract function

definition, 203
descendant, 447
design

in software life cycle, 65, 66, 68t,
70–72

telephone directory case study,
102–124

destination, directed graphs, 693
destroy function, allocator class, 757,

758t

destructor, 251
declaring virtual, 200
failure to define, 252

detailed design, 68t
digraph, 693–694
digraphs, 756, 756t
Dijkstra.cpp, 737–738
Dijkstra’s algorithm, 734, 736–738
directed acyclic graphs, 731
directed graphs, 693–694
discovery order, in depth-first search,

722
divide-and-conquer, 569
division by zero error, 131–132, 132t
DNode class, 259, 260
DNode.h, 260
do ... while statement, 13t
DOC++ program, 97
documentation comment tags, 97t
documentation style, 96–97
domain_error exception, 142t
dot notation, 32
double data type, 17, 17t

compatibility with other data types,
22

conversion of int data type to, 22
extraction operator processing, 45t
insertion operator processing, 49t
double-ended queue, 376

double-linked lists, 258–262
implementation, 271–284
implementing queues as, 365–367

downcast, 205
Doxygen program, 96–97, 114
driver program, 92, 157
drivers, for testing, 157
Dutch National Flag problem case

study, 616–619
dynamically allocated arrays, 34–35

failure to delete, 120
dynamically created objects, 27–28
dynamic casting, 206–207

and run-time type identification, 206

E
Eclipse Platform, 162–164, 165
Edge class, 700
edges, of graphs, 692, 693–694

back, 722
elaboration, in Unified Model, of soft-

ware life cycle, 66, 67
#else directive, 10

to select stack implementation, 343
empty function

containers, 294t

deque class, 377t
hash_map class, 543t
list class, 265t
priority_queue class, 491t
queue class, 359, 360t
set class, 513, 514t
stack class, 313t, 329
vector class, 236t
encapsulation, 98
using visibility to support, 217

end function
containers, 294t
deque class, 377t
Graph class, 704
hash_map class, 543t
list class, 265t, 266, 270
List_Graph class, 707t, 710–711
set class, 513, 514t
vector class, 296

#endif directive, 10, 77
endl I/O manipulator, 50t
English, frequency of letters in text,

496, 497t
enumeration type, 432
eof function, stream class, 48, 48t
epsilon function, numeric_limits class,

19t
equal function, 301t
equal to operator, 20t
erase function

AVL_Tree class, 634
Binary_Search_Tree class, 468, 468t,

469, 476–477
deque class, 377t
hash_map class, 543t, 549, 553
list class, 265t, 265–266, 269,

277–278
multiset class, 518
Red_Black_Tree class, 650
sequences, 294t
set class, 513, 514t, 517
vector class, 236, 236t, 244–245,

295–296, 517
error messages, 138
error recovery, 143–145
errors. See also program defects

debugging, 160–164
logic, 131, 136–137
run-time, 131–136
syntax, 131
ways to indicate, 138

Euler tour, 455
exception catching, 138

all, 147
with try and catch blocks, 140–141

798 Index

C++ Index.v2 8/15/05 10:10 PM Page 798

exception classes, 141
creating your own, 338
hierarchy, 145–146

exception handler, 139
unreachable, 146

exception handling, 138
error recovery, 143–145
with try and catch blocks, 140–141

exceptions, 131, 138–147
to enable straightforward code, 146
standard, 141–143, 142t
try and catch blocks, 140–141
uncaught, 139–140
ways to indicate errors, 138

exception throwing, 138
executable file, 4
execution time, 170, 172
exponential growth rate algorithms,

176, 177, 178
expression trees, 446, 449

traversal, 455–456
extending classes, 186
external nodes, 447
extraction operator, 45, 92

processing of primitive data types
and strings, 45t

Extreme Programming, 156

F
factorial, recursive algorithm for

computing, 412–413
factorial growth rate algorithms, 177,

178
factory function, 223
Fibonacci numbers, 417–419
FIFO (First-In-First-Out), 357, 489
file streams, 54–57
find_first_not_of function, string

class, 40t, 42
find_first_of function, string class,

40t, 41–42
find function, 300t

Binary_Search_Tree class, 468t, 469,
471

hash_map class, 543t
set class, 513, 514t, 517
string class, 40t
template function, 297–299

find_if function, 300t, 304t
finish order, in depth-first search, 722
First-In-First-Out (FIFO), 357, 489
fixed floating-point format, 52t
fixed I/O manipulator, 50t
float data type, 17, 17t

compatibility with other data types,
22

extraction operator processing, 45t
insertion operator processing, 49t

floating-point formats, 52t, 52–54
for_each function, 300t
forest, 724
for statement, 13

purpose and syntax, 13t
4-node, 663–664
friend declaration, 89, 217–218
friends, 89
front function

deque class, 377t
list class, 265t
queue class, 359, 360t, 366, 368
sequences, 295t

fstream class, 54, 187
full binary tree, 451–452
fullness, of trees, 451–452
functional testing, 149
function call operator, 20t
function class, 303–306
function declaration, 3–4, 30
function definition, 4
function objects, 303–306
functions, 3–4, 29–32. See also

member functions
call by value versus call by refer-

ence, 30–31
documentation style, 96–97

function signature, 190

G
gcc compiler, 6
general floating–point format, 52t
generalization, UML notation, 773–774
general trees, 452–453
generic classes, UML notation, 776
generic functions, 9
geometric shape processing case study,

220–225
get_data function, Binary_Tree class,

460t
get_dest function, Edge class, 700t
get_edge function

Graph class, 704
List_Graph class, 707t, 710
Matrix_Graph class, 713

get function, shared_ptr class, 767t
get_left_subtree function, Binary_Tree

class, 460t, 462, 465
getline function, stream class, 46–47,

47t
get_num_v function, Graph class, 704t
get_right_subtree function,

Binary_Tree class, 460t, 462, 465
get_source function, Edge class, 700t

getter, 87
get_weight function, Edge class, 700t
glass-box testing, 149
global namespace, 214
global objects, 24
graph abstract data type, 697–700

implementing, 701–714
Graph class, 697–700, 704–705
Graph.cpp, 705–706
Graph.h, 698–700
Graph::iter_impl class, 711
graphs

adjacency list, 701–702
adjacency matrix, 701, 702–703
algorithms using weighted graphs,

734–742
applications, 696–697
dense and sparse contrasted, 713
directed acyclic, 731
directed and undirected, 693–694
minimum spanning trees, 738–742
paths and cycles, 694–695,

694–696
terminology, 692–697
and trees, 694–696, 696

graph traversal, 697
breadth-first search, 715–720
depth-first search, 715, 720–726
shortest path through maze case

study, 727–730
topological sort of graph case study,

731–733
greater than operator, 20t
greater than or equal operator, 20t
greatest common divisor, recursive

algorithm for computing,
414–415

growth rate, algorithm performance
compared, 176, 177

guillemets, 771

H
handling exceptions, See exception

handling
has-a relationship, 187–188

and composition, 775–776
hash codes, 531–533
hash function class (proposed), 533
hashing, 531
hash_map class, 542–557
Hash_Table_Chain.h, 551–552
Hash_Table_Open.h, 544–545
hash tables, 512, 530–532

chaining, 538, 540–541
expanding size, 536–537
implementing, 542–554

Index 799

C++ Index.v2 8/15/05 10:10 PM Page 799

open addressing, 532–535, 536,
540–541, 554

performance, 539–541
quadratic probing, 537–538
traversing, 535–536

headers, 4
using declaration and using direc-

tives in, 216
heaps, 446, 484–485

as basis of priority queues, 490
implementing, 486–489

heapsort, 569, 599–603
HeapSort.h, 602–603
height, of a node, 448
height, of a tree, 448
hexadecimal number, 18
hex I/O manipulator, 50t
Huffman codes, 449, 531

case study, 561–564
Huffman_Tree class, 504
Huffman trees, 446, 449–450,

496–497
building custom case study,

498–504

I
identifiers, 19, 21
if ... else statement

with multiple alternatives, 15
nested, 14–15
and program testing, 150, 153
purpose and syntax, 13t

#ifdef directive, 10
to select stack implementation, 343

#ifndef directive, 10, 77
ifstream class, 54, 187
ignore function, stream class, 47, 47t
implementation, in software life cycle,

65, 66, 68t
implicit parameters, 32
inception, in Unified Model, of soft-

ware life cycle, 66, 67
#include directive, 4–5, 10–11
include files, 3, 4

explicit namespace qualification in,
85

using preprocessor directives to
prevent multiple inclusion, 11

increment operator, 19, 20t
postfix and prefix, 21
using in expression with other

operators, 22
indentation, in control statements, 14
independent copy, 247
indexed arrays, 34
indexed sequences, 231–232

indexes, using size_t versus int, 547
index for term paper case study,

479–484
infinite recursion, 413
infinity function, numeric_limits

class, 19t
infix expressions, converting to postfix

case study, 339–347
infix notation, 332
information hiding, 74–75
inherit, 186
inheritance, 186–192. See also class

hierarchies
is-a and has-a relationships con-

trasted, 187–188
member function overloading,

194–196
member function overriding,

193–194, 200
multiple, 210–212
polymorphism, 197–201
and virtual functions, 196–197

initialization, in control statements,
13t

initialization expressions, using in
constructors, 86

inline definition, 88
inline functions, 303
inner classes, UML syntax, 774
in openmode flag, 55t
inorder predecessor, 475
inorder traversal, 454
input streams, 44, 45–49

class hierarchy, 187
using fail state to indicate errors,

138, 143–144
insert function

AVL_Tree class, 634, 637–638
Binary_Search_Tree class, 468, 468t,

469, 473–474
B_Tree class, 673–676
deque class, 377t
Graph class, 704
hash_map class, 543t, 547–548,

552–553
list class, 265t, 265–266, 274–276
List_Graph class, 707t, 710
multiset class, 518
Red_Black_Tree class, 650, 653–654
sequences, 294t
set class, 513, 514t, 515, 517
Two_Three_Four_Tree class, 668–670
vector class, 236, 236t, 244,

295–296, 517
insert_into_node function

B_Tree class, 675

Two_Three_Four_Tree class, 670
insertion

into AVL tree, 636–642
into binary search tree, 472–474
into B-trees, 672–679
into heaps, 485, 487–488
into linked lists, 254
nodes into double-linked lists, 260,

261
nodes into single-linked lists, 257
into Red-Black tree, 644–655
into sequences, 231
into 2-3 trees, 658–661
into 2-3-4 trees, 668–670

insertion operator, 44
processing of primitive data types

and strings, 45t
insertion sort, 581–586, 587t
InsertionSort.h, 583–584
installation, 68t
instance variables, 4, 75
int data type, 17, 17t

compatibility with other data types,
22

conversion to other data types, 22
extraction operator processing, 45t
insertion operator processing, 49t

Integrated Development Environment
(IDE), 6

integration testing, 68t, 149, 159–160
Intel x86

division by zero, 132
primitive data types, 17t

interfaces, 63–64, 99, 771
internal nodes, 447
international character set (ISO 646-

1983), 755
invalid_argument exception, 142t
I/O manipulators, 50t, 50–54, 51t
ios_base class, 187
ios_base::failure exception, 141,

142t, 144, 145
iostream class, 50, 54, 187
is-a relationship, 187–188
is_directed function, Graph class, 704t
is_edge function

Graph class, 704
List_Graph class, 7–7t, 709–710
Matrix_Graph class, 713

is_leaf function, Binary_Tree class,
460t, 463

is_null function, Binary_Tree class,
460t

ISO 646-1983, 755
is_red function, Red_Black_Tree class,

654–655

800 Index

C++ Index.v2 8/15/05 10:10 PM Page 800

istream class, 44, 45, 54, 187
reading binary tree, 464–465

istringstream class, 57, 187
iteration

recursion contrasted, 415
in Unified Model, of software life

cycle, 66
iterator class (Graph::iterator), 706,

711
iterator operators, 268–269t
iterators

lists, 264–270, 278–283
as loop control variable, 319
selection sort using, 574–576

iterator_traits, 584–586
iter_impl class (Graph::iter_impl),

706, 711
iter_impl class

(List_Graph::iter_impl), 711–712
iter_impl class

(Matrix_Graph::iter_impl), 713
iter_swap function, 300t

J
Javadoc comment style, 96–97, 114
Java type casting, 133
Josephus problem, 309–310

K
keys

associative containers, 295
maps, 511, 521
side effect of retrieving missing, 527

L
l-value, 204
label, in control statements, 13t
Last-In-First-Out (LIFO), 312, 357
last-line recursion, 416
leaf node, 447
left I/O manipulator, 50t
Left-Left tree, 629–630
Left-Right tree, 630–631
left rotation, of binary seach trees,

626
length_error exception, 142t
length function, string class, 39t
less than operator, 20t
less than or equal operator, 20t
library-defined include files, 4
library-defined object files, 4
life lines, in UML sequence diagrams,

107, 778
LIFO (Last-In-First-Out), 312, 357
linear growth rate algorithms, 176,

177

linear probing, hash tables, 533, 537
linear search, recursive, 420–421
linear_search function, 420–421
linked lists, 252–254. See also double-

linked lists; single-linked lists
circular, 262
falling off end of, 259
removing elements from, 269–270
traversing, 258, 259

Linked_Queue.tc, 368–370
Linked_Stack.tc, 330–331
linker, 3, 4, 6
links, 255
Linux operating system

attempting to pop empty stack, 324
division by zero, 132
nullpointer reference, 135
uncaught exceptions, 140

list class, 264–270, 271–284
applications, 285–291
and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
List_Graph class, 703, 707–711
List_Graph.h, 708–709
List_Graph::iterator class, 706–707
List_Graph::iter_impl class, 706–707,

711–712
List_Queue.tc, 366–367
literals, 19
load_edges_from_file function, Graph

class, 704, 704t
local declaration, 92
locate function, hash_map class, 546t,

546–547
logarithmic growth rate algorithms,

176, 177
logical operators, 12, 20t
logical view, 73
logic errors, 131, 136–137

structured walkthroughs, 148–149
testing for, 148–159

log-linear growth rate algorithms,
176, 177

long data type, 17, 17t
extraction operator processing, 45t
insertion operator processing, 49t

long double data type, 17, 17t
extraction operator processing, 45t
insertion operator processing, 49t

loop invariants, 167–168
as design tool, 168

lower_bound function
multimap class, 528
multiset class, 518

l-value, 204

M
machine language, 3
macros, 7, 8–9
main function, 6

passing file names as parameters to,
134

maintenance, 68t
many-to-one mapping, 521
map class, 513, 521–528

and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
map.h, 524–525
mapping, 521
maps, 511, 521–528

telephone directory application,
558–560

Mars Lander spacecraft, crash due to
logic error, 136

Matrix_Graph class, 703, 713–714
Matrix_Graph::iter_impl class, 713
max_element function, 300t
max function, numeric_limits class, 19t
max heap, 485
max_size function, allocator class,

758t
maze, path finding case study,

436–439
member access operator, 20t, 31, 198
member function overloading,

194–196
member function overriding, 193–194

must have same return type, 200
member functions, 4, 74

access, 87
constant, 79
failure to declare virtual in base

class, 199
and implicit parameters, 32
modifier, 87
specified as public in class defini-

tion, 75, 77–79
members, 4
memory-leak, 120
merge, 592
merge sort, 569, 592–598
merge_sort function, 595–596
MergeSort.h, 597–598
messages, 71

in UML sequence diagrams, 778
message to self, 107
Microsoft C++ compiler, 7
Microsoft Visual Studio .NET devel-

opment environment, 779
Microsoft Windows operating system,

See Windows operating system

Index 801

C++ Index.v2 8/15/05 10:10 PM Page 801

min_char function, 29
min_element function, 300t
min function, numeric_limits class, 19t
min heap, 485
minimum spanning trees, 738–742
modeling language, 769
modifier member functions, 87

inline definition, 88
multidimensional arrays, 36–37
multimap class, 513, 528–529

and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
multimaps, 528–529
multiple inheritance, 210–212
multiplicity, in association, 774–775
multiset class, 513, 518–519

and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
multisets, 518–519
mutator, 87
my_vector class, 242–243

N
namespace declaration, 213–214
namespaces, 5–6

explicit namespace qualification in
include files, 85

global, 214
and visibility, 213–218
when to use, 215

namespace std, 5–6
narrowing conversion, 22
nested classes, UML syntax, 774
nested if statements, 14–15
new operator, 20t, 27

new object creation using, 197
syntax, 28

new[] operator, 35
Node class, 255–256
Node.h, 255, 367
nodes, 255–256

connecting, 256–257
inserting into double-linked list,

260, 261
inserting into single-linked list, 257
removing from double-linked list,

260–261
removing from single-linked list,

257–258
testing if there are more to process,

267
nodes, in graphs, 692

as inner classes, 775
nodes, in linked lists, 253

no-parameter constructor, 191
noshowpoint I/O manipulator, 50t
noskipws I/O manipulator, 50t
not_eq keyword, digraphs, trigraphs,

or equivalents for, 756t
not equal to operator, 20t
notes, in UML sequence diagrams,

778
not keyword, digraphs, trigraphs, or

equivalents for, 756t
not operator, 12
null character, 36
null pointer, 27

error in deferencing, 132t,
135–136

numeric_limits class, 19

O
object code, 3
object file, 4
Object Modeling Group, 769
object-oriented design, 71–72
object-oriented programming (OOP),

186
objects, 4, 23

copying, 247–250
dynamically created, 27–28
function, 303–306
lifetimes, 23–24
referencing actual, 203–204
in UML sequence diagrams,

776–777
object type, 23
offset, to pointer, 602
ofstream class, 54, 187
onto mapping, 521
open addressing, hash tables,

532–535, 536, 540–541, 554
open-box testing, 149
openmode flags, 54
operations, 773
operator functions, 31–32
operator precedence, 20t
operators, 19, 71, 73–74, 88–89
order, of B-tree, 672
ordered list case study, 285–291
order of magnitude, 173
or_eq keyword, digraphs, trigraphs, or

equivalents for, 756t
or keyword, digraphs, trigraphs, or

equivalents for, 756t
or operator, 12, 20t
ostream class, 44, 49, 54, 187

reading binary tree, 464–465
ostringstream class, 57, 187
out-of-bound subscripts, 33

out_of_range exception, 138–139,
140, 142t

out openmode flag, 55t
output streams, 44, 49–50

class hierarchy, 187
using fail state to indicate errors,

138
overflow_error exception, 141, 142t
overloading, of member functions,

194–196
overloading operators, 88
overriding, of member functions,

193–194, 200

P
pair class, 515, 518–519
palindrome case study, 315–320
@param documentation comment tag,

97, 97t
parameters, 30

referencing when hidden by local
declaration, 92

parent, 447
parentheses

converting expressions with case
study, 347–350

testing expressions for balanced
case study, 320–324

partition function (Quicksort),
607–613

path coverage, 150
paths, graphs, 694–695, 694–696
Pez dispenser, as example of stack,

312
phases, in Unified Model, software life

cycle, 66
physical view, 73
pivot, in quicksort, 604
Plain Old Data (POD), 256
plug-ins, 164
pointers, 24–26. See also smart

pointers
accessing object through (derefer-

encing operator), 198
array-pointer equivalence, 34–35
declaring multiple in one

declaration, 27
declaring type, 197
initializing to NULL, 136
invalid arithmetic, 602
null, 27, 135–136
when to reference an object

through, 199
polymorphism, 200–201
pop_back function

deque class, 376, 377t

802 Index

C++ Index.v2 8/15/05 10:10 PM Page 802

list class, 265t, 277
sequences, 295t
vector class, 236t

pop_front function
deque class, 376, 377t, 380
list class, 265t, 276–277
sequences, 295t

pop function
priority_queue class, 491t, 493–494
queue class, 359, 360t, 368,

372–373
stack class, 313t, 329

postconditions, 100–101, 166
postfix expressions

converting infix to case study,
339–347

evaluating case study, 333–338
postfix increment, 20t, 21

using with subscript, 243
postfix notation, 332
postorder traversal, 454
preconditions, 100–101, 166
prefix increment, 20t, 21

using with subscript, 243
preorder traversal, 454
preprocessor, 3, 4
preprocessor directives, 7–11, 77
Prim.cpp, 741–742
primitive data types, 16–19, 17t

compatibility, 22
extraction operator processing, 45t

primitive types, 16
primitive-type variables, 19
Prim’s algorithm, 738–742
print_index function, multimap class,

529
print queue, 359
print stack, unsuitability of, 359
priority_queue class, 490–495
priority queues, 446, 489–495
private visibility/keyword

data fields specified as in class
definition, 75, 77–79

summarized, 217t
UML syntax, 772

procedural abstraction, 73
program defects

debugging, 160–164
exception handling to recover from,

143–145
types of, 130–137
ways to indicate, 138

programs, reasoning about, 166–169
program testing, See testing
protected visibility/keyword

for base class data fields, 192

summarized, 217t
UML syntax, 772

pseudocode, 106
pseudorandom numbers, 393,

395–396
public visibility/keyword

member function specified as in
class definition, 75, 77–79

neglecting when declaring derived
class, 190

summarized, 217t
UML syntax, 772

push_back function
deque class, 376, 377t, 378,

379–380
list class, 265t, 274
sequences, 295t
vector class, 236t, 239, 243

push_front function
deque class, 376, 377t, 378
list class, 265t, 274
sequences, 295t

push function
priority_queue class, 491t, 493
queue class, 359, 360t, 366, 368,

372
stack class, 313t, 329

Q
quadratic growth rate algorithms,

176, 177
quadratic probing, hash tables,

537–538
quadratic sorts, 586–588
quality assurance (QA) organization,

role in verifying testing, 156
queue, 358–361

maintaining a customer queue case
study, 362–365

simulating waiting lines using,
380–397

queue abstract data type, 358–361
implementing, 365–375

queue class, 359–360, 366
queue container, 359–360
queue.h, 360–361
queueing theory, 381
quicksort, 569, 604–613
quick_sort function, 606–607
QuickSort.h, 606–607

R
r-value, 204
radiation machines, logic errors led to

injuries in 1980s, 137
rand function, 393, 395–396

random access, 232
random_access_iterator, 267
random_shuffle function, 300t
range checking, security holes associ-

ated with lack of, 237
range_error exception, 142, 142t
RBNode class, 650–651
read_binary_tree function, Binary_Tree

class, 460t, 464–465
reasoning, about programs, 166–169
rebalance_left function, AVL_Tree

class, 636, 639–642
rebalance_right function, AVL_Tree

class, 636, 639, 642
recursion, 404–411

counting cells in blob application
case study, 431–434

efficiency, 416–419
infinite, 413
iteration contrasted, 415
problem solving with, 426–434
tail or last-line, 416
Towers of Hanoi problem applica-

tion case study, 427–431
unwinding, 409

recursive algorithms, 404–411
definitions of mathematical formu-

las, 412–419
recursive binary search, 421–426
recursive case, 406
recursive functions, 407–409

tracing, 409
Recursive_Functions.cpp (on Web site),

406
recursive linear search, 420–421
recursive search, 420–426
recursive thinking, 404–411
Red_Black_Tree class, 650–651
Red-Black trees, 512, 643–655, 671

and 2-3-4 trees, 671
refactoring, 212, 759–763
references, 29
reference variable, 29
regression testing, 159
rehash function, hash_map class, 546t,

549–550
removal

from AVL tree, 642
from binary search trees, 474–479
from B-trees, 679
elements from lists using iterators,

269–270
from heaps, 486, 488–489
from linked lists, 254
nodes from double-linked lists,

260–261

Index 803

C++ Index.v2 8/15/05 10:10 PM Page 803

nodes from double-linked lists using
iterators, 269–270

nodes from single-linked lists,
257–258

from Red-Black tree, 655
from sequences, 231
from 2-3 trees, 661–662

remove function
deque class, 377t
list class, 265t

repetition control, 12–14
replace_parent function,

Binary_Search_Tree class, 478–479
requirements, in software life cycle,

65, 66
requirements specification, 65, 68–69

telephone directory case study,
102–108

reserve function, vector class, 244,
245–246

resetiosflags I/O manipulator, 51t
resize function

deque class, 377t
vector class, 236t

@return documentation comment tag,
97, 97t

reusability, 185
reusable code, 98
reverse function, 300t
rfind function, string class, 40t
right I/O manipulator, 50t
right rotation, of binary search trees,

625
rotate_left function, BST_With_Rotate

class, 627, 628
rotate_right function, BST_With_Rotate

class, 627, 628
rotation, of binary search trees,

624–628
rule of three, 252
run-time errors, 131–136
run-time type identification, 206
r-value, 204

S
scientific floating-point format, 52t
scientific I/O manipulator, 50t
scope resolution operator, 31
search. See also binary search

breadth-first, 715–720
depth-first, 715, 720–726
recursive linear, 420–421
2-3 trees, 657

secondary branches, of trees, 445
security concerns

buffer overruns, 135

and lack of range checking for
arrays, 237

seed, for rand function, 395–396
selection control, 12–14
selection sort, 572–576, 587t
SelectionSortArray.h, 576
SelectionSort.h, 574–576
selector, in control statements, 13t
self-balancing search trees, 623

AVL trees, 628–643
B+ trees, 681
B-trees, 672–680
Red-Black trees, 643–655, 671
2-3 trees, 656–662
2-3-4 trees, 663–671

sequence concept, 292, 774
sequence diagrams, See UML sequence

diagrams
sequences, 231–232, 292, 294–295,

771
sequence statements, 12
sequential access, 232
sequential containers, 292. See also list

class; vectors
set class, 513–517, 514t

and container class hierarchy, 292
relation to other container concepts,

subconcepts, and classes, 774
set difference, 513
set_difference function, 514t,

516–517
setfill I/O manipulator, 51t
set hierarchy, 513
set intersection, 513
set_intersection function, 514t,

516–517
setiosflags I/O manipulator, 51t
set operators, 516–517
setprecision I/O manipulator, 51t
set_red function, Red_Black_Tree class,

654–655
sets, 511, 512–513

vectors compared, 517–518
setter, 87
set union, 513
set_union function, 514t, 515,

516–517
setw I/O manipulator, 51t
7-bit international character set (ISO

646-1983), 755
shallow copy, 247–250
shared_ptr class, 765–767, 767–768t
~shared_ptr function, 767t
Shell sort, 569, 586, 588–592
ShellSort.h, 591–592
short-circuit evaluation, 12

short data type, 17, 17t
extraction operator processing, 45t
insertion operator processing, 49t

showpoint I/O manipulator, 50t
siblings, 447
signature, of a function, 190
signed bit shift left operator, 20t
signed bit shift right operator, 20t
signed char data type, 17t, 17–18
simple paths, graphs, 694, 695
simulation, 380–381
single-linked lists, 252–258

implementing queues as, 367–370
implementing stacks as, 329–331
problems with, 258–259
traversing, 258

single-step execution, debugger, 162
size, of vector, 234
size function

containers, 294t
deque class, 377t
hash_map class, 543t
list class, 265t
priority_queue class, 491t
queue class, 360t, 368
set class, 513, 514t
string class, 39t
vector class, 236t

size_t function, hash_map class, 556
skipws I/O manipulator, 50t
smart pointers, 764–767

for BTNode and Binary_Tree classes,
465

software life cycle, 64–72
software life cycle activities, 67–72

Unified Model, 66–67
software life cycle models, 65–67
software performance, 176–178
sort function, 300t
sorting, 569

bubble sort, 576–580, 587t
comparison of quadratic, 586–588
comparisons and exchanges con-

trasted, 588
Dutch National Flag problem case

study, 616–619
heapsort, 569, 599–603
insertion sort, 581–586, 587t
merge sort, 569, 592–598
quicksort, 569, 604–613
selection sort, 572–576, 587t
Shell sort, 569, 586, 588–592
testing, 614–616
using C++ functions, 570–572

source, directed graphs, 693
source character set, 755–756

804 Index

C++ Index.v2 8/15/05 10:10 PM Page 804

source file, 4
spanning trees, 738–742
sparse graph, 713–714
specialization, of swap function, 302,

303
split_node function

B_Tree class, 675, 676–679
Two_Three_Four_Tree class, 670

stable_sort function, 290
stack abstract data type, 312–315
stack class, 312–315
stack container, 312–313
stack.h, 313–315, 327–329
stacks, 311, 312–315

activation frames and recursive
functions, 409–411

applications, 315–324, 332–350
attempting to pop empty, 324
converting expressions with paren-

theses case study, 347–350
converting infix to postfix case

study, 339–347
evaluating postfix expressions case

study, 333–338
finding palindromes case study,

315–320
implementing, 325–331
overflow from infinite recursion,

413
testing expressions for balanced

parentheses case study, 320–324
stack.tc, 326–327, 328
standard exceptions, 141–143, 142t
standard library, 2–7, 186

abstract data type implementations,
99

algorithms, 299–301
Standard Template Library (STL), 231
static attributes, 772
std::less function class, 495
step into, 162
step over, 162
stepwise refinement, 70
streams, 44

file, 54–57
input, 44, 45–49
output, 44, 49–50
string, 57–58

str function, 57t
string class, 36, 38–43

functions, 39–40t
string function, string class, 39t
~string function, string class, 39t
string literals, 36
strings, 38–43

extraction operator processing, 45t

insertion operator processing, 49t
splitting into tokens, 42
as templates, 43

stringstream class, 187
string streams, 57–58
strongly typed language, 204, 205
struct keyword, 255, 256
structure chart, 70
structured walkthroughs, 148–149
stubs, 156–157
subclasses, 186
subscript

out-of-bound, 33
using postfix and prefix increment

with, 243
subscripting operator

deque class, 377t, 379
hash_map class, 543t, 549
member function at compared, 237
vector class, 236t, 236–237,

242–243
substr function, string class, 40t, 41
subtrees, 447
sum_each_row function, 37
superclasses, 186
swap function, 300t, 302–303

containers, 293t
deque class, 377t
list class, 265t
shared_ptr class, 767t
specialization, 302, 303
vector class, 236t, 241–242

switch statement, 15–16
and program testing, 150
purpose and syntax, 13t

syntax
abstract function definition, 203
address-of operator, 25
alias for type, 289
assert statement, 169
calling base-class functions, 194
class definition, 78
constant pointer declaration, 546
const_cast, 523–524
constructor definition, 86
control statements, 13t
declaring a virtual base class, 764
define preprocessor directive, 8
delete operator, 28
delete[] operator, 35
dereferencing operator, 26
derived class definition, 190
destructor definition, 251
dynamic cast, 206
friend declaration, 217
inline function declaration, 303

instantiating static data members of
template class, 545

member function definition, 79
namespace declaration, 213–214
new operator, 28
new[] operator, 35
object declaration, 23–24
operator definition, 88
pointer declaration, 25
template class definition, 241
template class instantiation, 233
template function call, 299
template function definition, 298
throw statement, 139
try block, 141
UML syntax, 109
using declaration, 215
using directive, 215
virtual function definition, 199

syntax errors, 131
system analysts, 65
system testing, 149

T
tail recursion, 416
telephone directory case study,

102–124
map application, 558–560
vector application, 239

template classes, 232–233, 241
accessing type defined inside tem-

plate class from within template
class, 281

failure to qualify template base class
name, 472

instantiating static data members of,
545

UML notation, 776
template functions, 297–299
term paper index case study, 479–484
test cases, 136
test frameworks, 158–159

CppUnit, 779–781
test harness, 159
testing

binary search trees, 479–484
boundary conditions, 153–155
classes, 157–158
and drivers, 157
hash table implementations,

553–554
levels and types of, 149–151
logic errors, 148–159
for more nodes to process, 267
preparations for, 151
in software life cycle, 65, 66

Index 805

C++ Index.v2 8/15/05 10:10 PM Page 805

sorting, 614–616
structured walkthroughs, 148–149
and stubs, 156–157
telephone directory case study, 121
test data development, 152–153
tips for program systems, 152
who performs?, 156

test suite, 159
this parameter, 91
throws an exception, 138
throw statement, 138–139
time axis, in UML sequence diagrams,

776
tokens, 482

splitting a string into, 42
top-down design, 70–71
top function

priority_queue class, 491t
stack class, 313t, 329

Topological_Sort.cpp, 732–733
to_string function

Binary_Tree class, 460t, 463–464
BTNode class, 457
Edge class, 700t

Towers of Hanoi case study, 427–431
traits, 757–759
traits class, 757–759
transform function, 300t, 306t
transition, in Unified Model, of soft-

ware life cycle, 66, 67
trees, 445–446. See also binary search

trees; expression trees; heaps;
Huffman tree

B+ trees, 681
B-trees, 672–680
forest, 724
fullness and completeness, 451–452,

623
general, 452–453
and graphs, 696
terminology, 447–453
2-3 trees, 656–662
2-3-4 trees, 663–671

tree traversal, 454–456
trigraphs, 755–756, 756t
trunc openmode flag, 55t
trunk, 445
try blocks, 140–141
2-nodes, 656, 663
3-nodes, 656, 663
Two_Three_Four_Tree class, 666–667
2-3 trees, 656–662
2-3-4 trees, 663–671

and Red-Black trees, 671
type alias, 289

type casting, 133
typedef keyword, 289
types, 16–19

U
UML class diagrams, 72, 770–776

telephone directory case study,
104–106, 108–109

UML sequence diagrams, 72, 776–778
telephone directory case study,

106–108
UML (Unified Modeling Language)

association, 774–775
composition, 775–776
as design tool, 72
generalization, 773–774
overview, 769–778

unary plus/minus operator, 20t
unbalanced binary search trees, 624
uncaught exceptions, 139–140
underflow_error exception, 141, 142t
undirected graphs, 693–694
Unicode character set, 18
Unified Model, of software life cycle,

66–67
Unified Modeling Language (UML),

See UML
unit testing, 68t, 92, 149
unnamed pointer, 205
unreachable exception handler, 146
unsigned char data type, 17t, 17–18
unsigned int data type, 17, 17t

conversion with int data type, 22
unsigned long data type, 17, 17t
unsigned short data type, 17, 17t
unwinding the recursion, 409
update, in control statements, 13t
upper_bound function

multimap class, 528, 529
multiset class, 518

use cases, telephone directory case
study, 103–105

user-defined include files, 4
user-defined object files, 4
user input, exception handling to

recover from errors, 143
using declaration, 215, 216
using directive, 215, 216
using statement, 5–6

V
values, maps, 521
variable declaration, 3
variable names, 21
vector class, 233–235, 774

and container class hierarchy, 292
implementation, 240–246
member functions, 236t

vectors, 233–235
applications, 238–239
implementing stacks using vector as

container, 327
phone directory case study

application, 239
removal from heaps using, 488–489

vertices, 692
adjacent, 694
finding shortest path from a vertex

to all other vertices, 734–735
virtual base classes, 759–764

failure to initialize, 765
virtual destructor, 200
virtual functions, 196–201
visibility

namespaces, 213–218
summary of kinds of, 217t
to support encapsulation, 217
UML syntax, 771–772

void* function, stream class, 48, 48t

W
waterfall model, of software life cycle,

65–66
wchar_t data type, 17t, 18
weighted graphs, 694

algorithms using, 734–742
minimum spanning trees, 738–742

weights, 694
while statement, 13

purpose and syntax, 13t
white-box testing, 149–150
widening conversion, 22
Windows operating system

attempting to pop empty stack, 324
division by zero, 132
null pointer reference, 135
uncaught exceptions, 140

workflows, in Unified Model, soft-
ware life cycle, 66, 67

wrapper function, 418
ws I/O manipulator, 50t

X
xor_eq keyword, digraphs, trigraphs,

or equivalents for, 756t
xor keyword, digraphs, trigraphs, or

equivalents for, 756t
zero, division by, 131–132

806 Index

C++ Index.v2 8/15/05 10:10 PM Page 806

	Copyright
	Preface
	Contents
	Chapter P: A C++ Primer
	Chapter 1: Introduction to Software Design
	Chapter 2: Program Correctness and Efficiency
	Chapter 3: Inheritance and Class Hierarchies
	Chapter 4: Sequential Containers
	Chapter 5: Stacks
	Chapter 6: Queues and Deques
	Chapter 7: Recursion
	Chapter 8: Trees
	Chapter 9: Sets and Maps
	Chapter 10: Sorting
	Chapter 11: Self-Balancing Search Trees
	Chapter 12: Graphs
	Appendix A: Advanced C++ Topics
	Appendix B: Overview of UML
	Appendix C: The CppUnit Test Framework
	Glossary
	Index

