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Question 1 (a)

Solution. The planes are orthogonal if the scalar product of their normal vector is zero.

nQ = (−1, 5,−3)

nP = (3,−9

5
,−4)

nQ · nP = (−1) · 3 + 5 · (−9

5
) + (−3) · (−4) = 0.

Hence the two planes are orthogonal.

Question 1 (b)

Solution. Setting V = π,

πx2y

3
= π

x2y = 3

y =
3

x2

We plot the equation y = 3
x2 noting that x ≥ 0 is necessary for the curve to make physical sense.
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Question 1 (c)

Solution. First, take the derivative with respect to y using the chain rule and treating x as a constant.
Then use take the derivative with respect to x using the product rule and the chain rule:

∂2

∂x∂y
f(x, y) =

∂2

∂x∂y
sin(xy)

=
∂

∂x

(
∂

∂y
sin(xy)

)
=

∂

∂x
(cos(xy)x)

= − sin(xy)xy + cos(xy)

Question 1 (d)

Solution. Set a = 5, b = 15 and n = 50.

∆x =
b− a
n

=
15− 5

50
=

1

5
;

xi = a+ i∆x = 5 +
i

5
;

xi−1 + xi
2

=

(
5 + i−1

5

)
+
(
5 + i

5

)
2

= 5 +
2i− 1

10
.

Hence, the Riemann sum is:

R =
∑n
i=1 f

(
xi−1+xi

2

)
·∆x =

∑50
i=1

(
5 + 2i−1

10

)8 · 15 .
Question 1 (e)

Solution. Split the interval of integration to [1, 3] and [3, 5]:

∫ 5

1

f(x)dx =

∫ 3

1

f(x)dx+

∫ 5

3

f(x)dx

=

∫ 3

1

3dx+

∫ 5

3

xdx

= 3x
∣∣∣3
1

+
x2

2

∣∣∣5
3

= (9− 3) +

(
25

2
− 9

2

)
= 14.

Question 1 (f)

Solution 1. We define G(x) as 1
2 (f ′(x))2. Then G′(x) =

(
1
2 (f ′(x))2

)′
= f ′(x)f ′′(x) and we have:
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∫ 2

1

f ′(x)f ′′(x)dx =

∫ 2

1

G′(x)dx

= G(x)|21

=
1

2
(f ′(x))2

∣∣∣∣2
1

=
1

2
(f ′(2))

2 − 1

2
(f ′(1))

2

=
9

2
− 2

=
5

2

Solution 2. We use integration by parts and set u = f ′(x) and dv = f ′′(x)dx. Then∫ 2

1
f ′(x)f ′′(x)dx =

[
f ′(x)2

]2
1
−
∫ 2

1
f ′′(x)f ′(x)dx

Note that the integral on the left and right are the same and thus we can rewrite this as

2
∫ 2

1
f ′(x)f ′′(x)dx =

[
f ′(x)2

]2
1

= 32 − 22 = 9− 4 = 5

Dividing by 2 leads to
∫ 2

1
f ′(x)f ′′(x)dx = 5

2

Solution 3. We use integration by substitution. If u = f ′(x) then du = f ′′(x)dx. Thus, f ′(x)f ′′(x)dx =
udu. We also can transform the bounds so that 1 7→ f ′(1) = 2 and 2 7→ f ′(2) = 3. In terms of u, we can
integrate:

∫ 3

2

udu =
1

2
u2|32 =

5

2
.

This is our final answer.

Question 1 (g)

Solution. Recall the formula for integration by parts∫
udv = uv −

∫
vdu.

Let u = cos−1(y) and dv = dy. Then du = −1√
1−y2

dy and v = y.

∫
cos−1(y)dy = y cos−1(y)−

∫
y(cos−1(y))′dy

= y cos−1(y) +

∫
y√

1− y2
dy

Now, recognizing y as the derivative of 1 − y2 (to within a factor of -1/2), we can do a substitution with
x = 1− y2 and dx = −2ydy.

∫
cos−1(y)dy = y cos−1(y)− 1

2

∫
1√
x
dx

= y cos−1(y)−
√
x+ C

= y cos−1(y)−
√

1− y2 + C
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where we computed
∫

1√
x
dx =

∫
x−1/2dx = 1

−1/2+1x
−1/2+1 + C = 2

√
x+ C by the reverse power rule.

Question 1 (h)

Solution. Following the remark in the hint, we begin by factoring out cosx, the derivative of sinx so that
we can later do a substitution. In doing this substitution, we will need to express the integrand in terms of
powers of sinx with a single factor of cosx.

∫
cos3(x) sin4(x)dx =

∫
cos(x) cos2(x) sin4(x)dx

=

∫
cos(x)(1− sin2(x)) sin4(x)dx

=

∫
(sin4(x)− sin6(x)) cos(x)dx

With u = sin(x), du = cos(x)dx giving

∫
(u4 − u6)du =

u5

5
− u7

7
+ C

=
sin5(x)

5
− sin7(x)

7
+ C.

Question 1 (i)

Solution. First we complete the square in the expression 3 − 2x − x2 by considering 3 − 2x − x2 =
3− (x2 + 2x) = 3− ((x+ 1)2 − 1) = 4− (x+ 1)2.
This changes the integral to

∫
dx√

3−2x−x2
=
∫

dx√
4−(x+1)2

We substitute t = x+ 1 with dx = dt and obtain
∫

dt√
4−t2

We do another substitution with t = 2 sin(u) (so that u = sin−1( t2 ) ) and dt = 2 cos(u)du giving

∫
2 cos(u)du√
4− 4 sin(u)2

=

∫
2 cos(u)du

2
√

1− sin(u)2

=

∫
cos(u)du√

cos(u)2

where we used that 1− sin(u)2 = cos(u)2.

The remaining integral is
∫ cos(u)

cos(u)du =
∫
du = u+ C.

Now we re-substitute u+ C = sin−1
(
t
2

)
+ C = sin−1

(
x+1
2

)
+ C.

Question 1 (j)

Solution. THIS QUESTION HAS NOT YET BEEN REVIEWED! THE SOLUTION BE-
LOW MAY CONTAIN MISTAKES!

Factor the denominator:
x2 − x− 6 = (x− 3)(x+ 2)
Use partial fraction:
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x− 13

x2 − x− 6
=

A

x− 3
+

B

x+ 2

=
Ax+ 2A+Bx− 3B

(x− 3)(x+ 2)

=
(A+B)x+ (2A− 3B)

(x− 3)(x+ 2)

Comparing the coefficients we get:

A+B = 1

2A− 3B = −13

Solve and get:

A = −2

B = 3

Hence:

∫
x− 13

x2 − x− 6
dx =

∫
−2

x− 3
+

3

x+ 2
dx

= −2 ln |x− 3|+ 3 ln |x+ 2|+ C

Question 1 (k)

Solution.

E(X) =

∫ ∞
−∞

xf(x)dx

=

∫ 1

−∞
xf(x)dx+

∫ ∞
1

xf(x)dx

=

∫ 1

−∞
0dx+

∫ ∞
1

x · 3

2
x−

5
2 dx

= 0 +

∫ ∞
1

3

2
x−

3
2 dx

= lim
b→∞

∫ b

1

3

2
x−

3
2 dx

= lim
b→∞

−3x−
1
2

∣∣∣b
1

= lim
b→∞

−3b−
1
2 − (−3(1)−

1
2 )

= 3.
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Question 1 (l)

Solution. We have

∞∑
n=1

[(
1

3

)n
+

(
−2

5

)n−1]
=

∞∑
n=0

[(
1

3

)n+1

+

(
−2

5

)n]

=
1

3

∞∑
n=0

(
1

3

)n
+

∞∑
n=0

(
−2

5

)n
=

1

3

1

1− 1/3
+

1

1− (−2/5)

=
1

2
+

5

7

=
17

14
.

With the first equality, we rewrote the geometries series starting from n = 0 in order to apply
∑∞
n=0 r

n = 1
1−r

for |r| < 1. This was accomplished by re-indexing. In the second equality, we split the sum into two and
factored out 1/3 from the first sum.

Question 1 (m)

Solution 1. We must have that
∫ 1

−1 f(x)dx = 1 because f(x) is a probability density function (which is
zero outside of [-1,1]). Hence, we have:

1 =

∫ 1

−1
(1 + k|x|)dx

= 2

∫ 1

0

(1 + k|x|)dx

= 2

∫ 1

0

(1 + kx)dx

= 2

(
x+

kx2

2

)∣∣∣∣1
0

= 2

(
1 +

k

2

)
= 2 + k.

Note that in the second equality we used that

∫ 1

−1
f(x)dx = 2

∫ 1

0

f(x)dx since f(x) is an even function; i. e.

f(x) = f(−x). In the third equality, we have used that for x > 0, |x| = x.
Finally we get 1 = 2 + k. Solve it to get k = −1.

Solution 2. We must have that
∫ 1

−1 f(x)dx = 1 since f(x) is a probability density function which is zero
outside of [-1,1]. Hence, we have:

1 =

∫ 1

−1
(1 + k|x|)dx

=

∫ 0

−1
(1 + k|x|)dx+

∫ 1

0

(1 + k|x|)dx
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Now, we use that that

|x| =

{
x, if x ≥ 0

−x if x < 0

to write

1 =

∫ 0

−1
(1− kx)dx+

∫ 1

0

(1 + kx)dx

=

(
x− kx2

2

)∣∣∣∣0
−1

+

(
x+

kx2

2

)∣∣∣∣1
0

= −
(
−1− k

2

)
+

(
1 +

k

2

)
= 2 + k.

Solving 1 = 2 + k gives us k = −1.

Question 1 (n)

Solution. THIS QUESTION HAS NOT YET BEEN REVIEWED! THE SOLUTION BE-
LOW MAY CONTAIN MISTAKES!

Let t = xy and G(t) =
∫ t
1
h(s)ds. Then G′(t) = h(t). By chain rule, we get:

fx(x, y) = G′(t) dtdx = G′(xy)y = h(xy)y.
Hence, fx(2, 5) = h(2 · 5) · 5 = h(10) · 5 = 2 · 5 = 10.

Question 2 (a)

Solution. Since
3
√
k4 + 1√
k5 + 9

≈
3
√
k4√
k5

=
k4/3

k5/2
=

1

k5/2−4/3
=

1

k7/6
, we want to compare

3
√
k4 + 1√
k5 + 9

with
1

k7/6
.

Let ak =
1

k7/6
> 0 and bk =

3
√
k4 + 1√
k5 + 9

> 0. Recall

∞∑
k=1

1

kα
converges if and only if α > 1. Hence

∞∑
k=1

ak

converges.

On the other hand, by the Limit Comparison Test, if lim
k→∞

bk
ak

= L for some nonzero finite value of L and

both series are positive then either both

∞∑
k=1

ak and

∞∑
k=1

bk converge or both diverge. Hence, if we can prove

lim
k→∞

bk
ak

= 1, then we know that

∞∑
k=1

bk converges. They key fact here is that we know the convergence

properties of one of the two series we are comparing, namely the series with 1
k7/6

.
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lim
k→∞

bk
ak

= lim
k→∞

k7/6
3
√
k4 + 1√
k5 + 9

= lim
k→∞

k7/6
3
√

(1 + k−4) · k4√
(1 + 9k−5) · k5

= lim
k→∞

k7/6
3
√

(1 + k−4)√
(1 + 9k−5)

k4/3

k5/2
= lim
k→∞

k7/6
3
√

(1 + k−4)√
(1 + 9k−5)

k4/3−5/2

= lim
k→∞

k7/6
3
√

(1 + k−4)√
(1 + 9k−5)

k−7/6 = lim
k→∞

3
√

(1 + k−4)√
(1 + 9k−5)

= lim
k→∞

3
√

(1 + k−4)√
(1 + 9k−5)

=
1

1
= 1.

Question 2 (b)

Solution. Let ak = xk

10k+1(k+1)!
be the terms in the series. From the ratio test, we are guaranteed absolute

convergence when limk→∞ |ak+1

ak
| < 1.

With ak = xk

10k+1(k+1)!
, we have ak+1 = xk+1

10k+2(k+2)!
and thus

|ak+1

ak
| = |

xk+1

10k+2(k+2)!

xk

10k+1(k+1)!

|

= |x
k+110k+1(k + 1)!

xk10k+2(k + 2)!
|

= | x
10

(k + 1)!

(k + 2)!
|.

We recall that k! = k(k − 1)(k − 2)...(3)(2)(1) and thus in general k! = k(k − 1)!. This also means that
(k + 2)! = (k + 2)(k + 1)!. Thus,

|ak+1

ak
| = | x(k + 1)!

10(k + 2)(k + 1)!
|

= | x

10(k + 2)
|

.
Computing limk→∞ | x

10(k+2) | = 0 < 1 for all x. Hence, the series converges absolutely for all x-values and the

radius of convergence is ∞.

Question 2 (c)

Solution. Using
1

1− y
=

∞∑
n=0

yn, we have

3
x+1 = 3

1−(−x) = 3 ·
∑∞
n=0(−x)n =

∑∞
n=0 3(−1)nxn;

− 1
2x−1 = 1

1−2x =
∑∞
n=0(2x)n =

∑∞
n=0 2nxn;

Therefore,

3

x+ 1
− 1

2x− 1
=

∞∑
n=0

3(−1)nxn +

∞∑
n=0

2nxn =

∞∑
n=0

(3(−1)n + 2n)xn.
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Hence, bn = 3(−1)n + 2n.

Question 3 (a)

Solution. The object function is f(x, y) = (x + 1)2 + (y − 2)2 and the constraint is x2 + y2 = 125, i. e.
g(x, y) = x2 + y2 − 125 = 0.
By the method Lagrange multipliers, set∇f = λ∇g, g = 0 which tells us 〈2(x+1), 2(y−2)〉 = λ〈2x, 2y〉, x2+
y2 − 125 = 0.
Looking at the vector equation in components, we have that

2(x+ 1) = 2λx =⇒ x+ 1 = λx (1)

2(y − 1) = 2λy =⇒ y − 2 = λy. (2)

Provided we don’t divide by zero (so that y 6= 2), we can divide (1) by (2) to yield x+1
y−2 = λx

λy = x
y =⇒

xy + y = xy − 2x =⇒ y = −2x where the first implication came by cross multiplying.
If y = x then from the constraint x2 + y2 − 125 = 0 we must have x2 + (−2x)2 − 125 = 5x2 − 125 = 0 =⇒
x = ±5 and y = −2x = ∓10.
Evaluating f(5,−10) = (5 + 1)2 + (−10 + 2)2 = 180 and f(−5, 10) = (−5 + 1)2 + (10− 2)2 = 80.
We still need to consider the possibility that y = 2. If y = 2 then (2) reads 0 = 2λ =⇒ λ = 0. If λ = 0 then
(1) tells us that x+ 1 = 0 so that x = −1. However, (−1, 2) does not satisfy g(x, y) = 0 so this is not a valid
solution to the Lagrange system.
Overall have found that the maximum value is 180 and the minimum value is 80.

Question 3 (b)

Solution. We want to find where
√

(x− (−1))2 + (y − 2)2 attains its minimum on the circle x2+y2 = 125.
Equivalently, we need to find where (x− (−1))2 + (y − 2)2 = (x+ 1)2 + (y − 2)2 is the smallest on the circle
x2 + y2 = 125. From (a), we know that the minimum is at (−5, 10).

Question 4 (a)

Solution. Compute the derivatives:
Tx(x, y) = 2x− 2y + 6 Ty(x, y) = 1

3y
2 − 2x− 6;

Txx(x, y) = 2, Txy(x, y) = −2, Tyy(x, y) = 2
3y.

Set Tx(x, y) = 0 and Ty(x, y) = 0 to find critical points:
2x− 2y + 6 = 0
1
3y

2 − 2x− 6 = 0.
From the first equality we get x = y−3. Plugging this into the second equality, we get 1

3y
2−2y = 0. Solving

it gives y = 0 and y = 6. This yields the critical points (x, y) = (−3, 0), and (x, y) = (3, 6).
For (−3, 0), Txx = 2, Tyy = 2

3y = 0 and Txy = −2, so we have a saddle point because TxxTyy−T 2
xy = −4 < 0.

For (3, 6), Txx = 2, Tyy = 2
3y = 4, and Txx · Tyy − T 2

xy = 2 · 23y − (−2)2 = 2 · 4− (−2)2 = 4 > 0 (and thus it
could be a local max or local min). Then, because Txx = 2 > 0, we conclude it is a local minimum.

Question 4 (b)

Solution. We just need to check the local maximum, the local minimum and the points on the boundary.
From question 4a above, we know that it has only one local minimum (3, 6) and no local maximum. Since
(3, 6) is not on R, we only need to find the min and max on the boundary.
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On C1:

C1 = {x = 0, y ∈ [−3, 3]},

T (x, y) =
1

9
y3 − 6y = f(y) f ′(y) =

1

3
y2 − 6

The critical points from above occur when 1
3y

2 − 6 = 0 which is at y = ±
√

18 = ±3
√

2, neither of which are
in [−3, 3]. Thus, we just test the endpoints

f(−3) = 15

and f(3) = −15. These are two values we will consider later.
On C2:
C2 = {x = 1

3y
2 − 3, y ∈ [−3, 3]},

T (x, y) = 1
9y

3 +
(
1
3y

2 − 3
)2 − 2

(
1
3y

2 − 3
)
y + 6

(
1
3y

2 − 3
)
− 6y = y4

9 −
5
9y

3 − 9 = g(y)

g′(y) = 4
9y

3 − 15
9 y

2 = y2

9 (4y− 15) = 0 at y = 0 and y = 15/4. As 15/4 is not in [−3, 3] we ignore it. We now
compute g(0) = −9 and the value at the endpoints with g(−3) = 15 and g(3) = −15.
From all of this, we find max = 15 and min = −15.

Question 5 (a)

Solution. We first solve for the differential equation:
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dB

dt
= aB −m

dB = (aB −m)dt

dB

aB −m
= dt (separating the variables)∫

dB

aB −m
=

∫
dt

1

a
ln |aB −m| = t+ C

ln |aB −m| = at+ C (or aC, but C is arbitrary so we still call it C)

|aB −m| = eat+C = Aeat (where A = eC)

aB −m = ±Aeat (removing the absolute values gives a ±)

B =
1

a
(m−Aeat) (A here is ±A is arbitrary and still unknown)

Now we can use the initial conditions with B(0) = 30000 and a = 0.02 = 1/50 to find:
B(0) = 30000 = 50(m−A) =⇒ A = m− 600 and thus
B(t) = 50(m− (m− 600)e0.02t) = 50((600−m)e0.02t +m).

Question 5 (b)

Solution 1. From B(t) = 50((600−m)e0.02t+m), we can see that if 600−m = 0, then B(t) is a constant.
Hence, m = 600.

Solution 2. If B(t) is a constant then B′(t) must be 0. Therefore

0 = B′(0)

= aB(0)−m
= 0.02 · 30000−m
= 600−m

Hence, m = 600.

Question 6 (a)

Solution. Since ex = 1 +

∞∑
k=1

xk

k!
, let x = 1

π and we get

e
1
π = 1 +

∑∞
k=1

( 1
π )
k

k! = 1 +
∑∞
k=1

1
πkk!

Hence∑∞
k=1

1
πkk!

= e
1
π − 1

Question 6 (b)

Solution. Since

∞∑
n=1

nan − 2n+ 1

n+ 1
converges, we have lim

n→∞

nan − 2n+ 1

n+ 1
= 0. Hence:

Free under CC-BY-NC-SA by the Math Education Resources. MATH105 April 2014

http://wiki.ubc.ca/Science:Math_Exam_Resources/Courses/MATH105/April_2014/Question_05_(b)
http://wiki.ubc.ca/Science:Math_Exam_Resources/Courses/MATH105/April_2014/Question_06_(a)
http://wiki.ubc.ca/Science:Math_Exam_Resources/Courses/MATH105/April_2014/Question_06_(b)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.math-education-resources.com


0 = lim
n→∞

nan − 2n+ 1

n+ 1

= lim
n→∞

(
(an − 2) · n

n+ 1
+

1

n+ 1

)
= lim
n→∞

(an − 2) · n

n+ 1
+ lim
n→∞

1

n+ 1

= lim
n→∞

(an − 2) · n

n+ 1
+ 0

= lim
n→∞

(an − 2) · lim
n→∞

n

n+ 1

= lim
n→∞

(an − 2) · 1

= lim
n→∞

(an − 2)

Therefore lim
n→∞

(an − 2) = 0. Or rather, lim
n→∞

an = 2.

On the other hand, ln
(

an
an+1

)
= ln an − ln an+1. Hence,

− ln a1 +

k∑
n=1

ln

(
an
an+1

)
= − ln a1 +

k∑
n=1

(ln an − ln an+1)

= − ln a1 + (ln a1 − ln a2) + (ln a2 − ln a3) + · · ·+ (ln ak − ln ak+1)

= − ln ak+1

Hence,

− ln a1 +

∞∑
n=1

ln

(
an
an+1

)
= lim
k→∞

(
− ln a1 +

k∑
n=1

ln

(
an
an+1

))
= lim
k→∞

− ln ak+1

= − ln 2.

Good Luck for your exams!

Free under CC-BY-NC-SA by the Math Education Resources. MATH105 April 2014

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.math-education-resources.com

	How to use this resource
	Tips for Using Previous Exams to Study: Exam Simulation

