
CPSC 210

Sample Midterm #2 Exam Questions

Note: the questions in this document do not constitute an actual midterm. However, many of the questions
are taken from actual midterm exams and are therefore representative of the kinds of questions that could
be asked. Please keep in mind that this set of questions does not exhaust all the possibilities and therefore
should not be used as your primary source of study material.

You will need to check out the following systems from the lectures repository:

EmailManager

 Page 2

Question 1. UML Sequence Diagram

Consider the UML Sequence Diagram given below. Sketch the code implementing the method
createDataset() on a WeatherData object that is described by this diagram. You may need to
assume where there are likely return values from calls to methods. Handle these return values in the
code you sketch. You can add comments to explain your code. We will not be grading for correct Java
syntax.

wd:WD

createDataSet()

ts:TS

TimeSeries()

mdp1:MTD

getMeanTemp()

add(meanTemp1)

mdp2:MTD

getMeanTemp()

add(meanTemp2)

dataset:TSC

TimeSeriesCollection()

addSeries(ts)

LEGEND
WD: WeatherData
TS: TimeSeries
MTD: MonthlyTemperatureData
TSC: TimeSeriesCollection

Note: we include parameters for method calls on this sequence diagram to provide sufficient detail for
you to build the code from this model. When drawing your own sequence diagrams on exams, do not
include parameters unless you are told to do so, or you need to distinguish between overloaded
methods.

 Page 3

Note: Question 2 refers to the EMailManager project checked out of the repository.

Question 2: Control & Data Models

Draw a sequence diagram for the method AddressBook.addGroup within the package
ca.ubc.cs.cpsc210.addressbook. If you have to loop over a collection, you must assume that
there are exactly two objects in that collection. Include calls to all methods in the EMailManager
project except constructors. You must also include the first level of calls to the Java library, if any. Be
sure to include a legend if you abbreviate class names.

 Page 4

Question 3. Reading Code with Exception Handling.
Consider the following partial class implementations. In addition to the methods shown below, you
can assume that each class has appropriate constructors.

public class ClassA {

 public void methodA() throws WindException, RainException {
 if (conditionOne())
 throw new WindException();
 if (conditionTwo())
 throw new RainException();
 System.out.println("Done method A");
 }

 private boolean conditionOne() {
 return ???;
 }

 private boolean conditionTwo() {
 return ???;
 }
}

public class ClassB {

 public void methodB() throws RainException {
 ClassA myA = new ClassA();
 try {
 myA.methodA();
 System.out.println("Just back from method A");
 } catch (WindException e) {
 System.out.println("Caught WindException in method B");
 } finally {
 System.out.println("Finally in B");
 }

 System.out.println("Now we're done with B");
 }
}

public class ClassC {

 public void methodC() {
 ClassB myB = new ClassB();
 try {
 myB.methodB();
 } catch (RainException e) {
 System.out.println("Caught RainException in method C");
 }
 }
}

 Page 5

You may not use IntelliJ in any way for this question. Consider the following statements:

 ClassC myC = new ClassC();
 myC.methodC(); // (***)

i) Assuming that methods conditionOne() and conditionTwo()in ClassA both return false,
what is printed on the screen when the statement marked with (***) at the top of this page executes?

ii) Assuming that method conditionOne() returns true and method conditionTwo() returns
false, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

iii) Assuming that method conditionOne() returns false and method conditionTwo() returns
true, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

iv) Assuming that methods conditionOne() and conditionTwo()in ClassA both return true,
what is printed on the screen when the statement marked with (***) at the top of this page executes?

 Page 6

Question 4: Designing Robust Classes

Suppose the cook method of a Microwave class has the following specification:

// Cook
// Requires: !isDoorOpen()
// Modifies: this
// Effects: microwave is cooking
public void cook() {
 cooking = true;
}

Assume that the Microwave class has a field of type boolean named cooking. Redesign the
method so that it is more robust. Note that a solution that has the cook method silently return (i.e., do
nothing) if the door is open is not acceptable. Write a jUnit test class to fully test your redesigned
method. Further assume that the Microwave class has the following methods:

public boolean isDoorOpen(); // true if door is open,
 // false otherwise
public boolean isCooking(); // true if microwave is cooking,
 // false otherwise
public void openDoor(); // opens door and stops cooking

 Page 7

Question 5. Designing Robust Classes

Suppose the installNewFurnace() method of a House class has the following specification:

// installNewFurnace
// REQUIRES: !isFurnaceInstalled() and isGasTurnedOff()
// MODIFIES: this
// EFFECTS: records that the furnace has been installed
public void installNewFurnace() {
 furnaceInstalled = true;
}

Assume that the House class has a field of type boolean named furnaceInstalled. Further
assume that the House class has the following methods:

public House(); // constructs a new House object
public boolean isGasTurnedOff(); // true if gas is off,
 // false otherwise
public boolean isFurnaceInstalled(); // true if house has had
 // the furnace installed, false otherwise
public void setFurnaceInstalled(boolean installed); // if installed
 // is true, furnace has been installed, otherwise furnace
 // not installed
public void turnGasOnOrOff(Boolean onOnOff); // turns natural
 // gas on if onOrOff is true, turns gas off otherwise

a) Robustness

Redesign the method so that it is more robust. Note that a solution that has the
installNewFurnace() method silently return (i.e., do nothing) if the natural gas is on is not
acceptable. A solution that silently installs a second furnace is also not acceptable.

b) Testing
Write a JUnit test class to fully test your redesigned method.

 Page 8

Question 6. Implementing an Object-Oriented Design

Consider	the	UML	class	diagram	shown	below:

User PaymentHistory Payment
 *1 1

It	represents	the	design	for	a	small	part	of	an	online	storage	system.		Users	have	to	pay	for	the	
service	and	a	history	of	payments	is	maintained	in	the	system.		Write	the	code	for	the	
PaymentHistory	class.		You	must	include	fields	and	methods	that	are	necessary	to	support	
relationships	between	the	other	classes	shown	on	the	UML	diagram	but	it	is	not	necessary	to	
include	any	others.			Assume	that	you	can	add	a	Payment	to	the	PaymentHistory	but	a	Payment	
cannot	be	removed.		Further	assume	that	the	payments	must	be	stored	in	the	order	in	which	they	
were	added	and	that	the	PaymentHistory	must	not	contain	duplicate	Payment	objects.		Assume	
that	the	constructor	of	the	User	class	creates	the	corresponding	PaymentHistory	object.		

Question 7. Object-Oriented Design - Modelling

Draw a UML class diagram to represent the design of all the types in the addressBook and email
packages of the EMailManager system checked out from the lectures repository.

Question 8. Object-Oriented Design - Modelling

a) Draw a UML class diagram to represent the design of all the types in the model package of the
SnakeStarter project checked out of the labs repository for Lab 1. It is recommended that
you check out a new copy of this code and assume that the Food class has been implemented
according to the given specification.

b) Draw a UML sequence diagram to model the call to Snake.move. Include the first level of
calls to the Java library. Model only the code found in the first case in any switch statement
that you encounter.

