

The University of British Columbia
CPSC 210

 Sample Midterm Exam Questions (SOLUTION)

Please don't look at these solutions until you have put significant effort into coming up with your own.
The midterm exam will not ask you to understand a solution that has been presented to you. You need
to practice doing what the exam will ask you to do – construct your own solution!

 Page 2

Question 1. UML Sequence Diagram

Consider the UML Sequence Diagram given below. Sketch the code implementing the method
createDataSet() on a WeatherData object that is described by this diagram. You may need to
assume where there are likely return values from calls to methods. Handle these return values in the
code you sketch. You can add comments to explain your code. We will not be grading for correct Java
syntax.

wd:WD

createDataSet()

ts:TS

TimeSeries()

mdp1:MTD

getMeanTemp()

add(meanTemp1)

mdp2:MTD

getMeanTemp()

add(meanTemp2)

dataset:TSC

TimeSeriesCollection()

addSeries(ts)

LEGEND
WD: WeatherData
TS: TimeSeries
MTD: MonthlyTemperatureData
TSC: TimeSeriesCollection

createDataSet() {
 ts = new TimeSeries();
 meanTemp1 = mdp1.getMeanTemp();
 ts.add(meanTemp1);
 meanTemp2 = mdp2.getMeanTemp();
 ts.add(meanTemp2);
 dataset = new TimeSeriesCollection();
 dataset.addSeries(ts);
}

 Page 3

Question 2: Control & Data Models

Draw a sequence diagram for the method AddressBook.addGroup within the package
ca.ubc.cs.cpsc210.addressbook. If you have to loop over a collection, you must assume that
there are exactly two objects in that collection. Include calls to all methods in the EMailManager
project except constructors. You must also include the first level of calls to the Java library, if any. Be
sure to include a legend if you abbreviate class names.

AB - AddressBook
S - Set
E - Entry
G - Group

add

addaddEntry

add

members:S<E>

addEntry

g:G

remove

contains

entries:S<E>

 checkDuplicate
addGroup

ab:AB

 Page 4

Question 3. Reading Code with Exception Handling.

i) Assuming that methods conditionOne() and conditionTwo()in ClassA both return
false, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

Done method A
Just back from method A
Finally in B
Now we're done with B

ii) Assuming that method conditionOne() returns true and method conditionTwo() returns
false, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

Caught WindException in method B
Finally in B
Now we're done with B

iii) Assuming that method conditionOne() returns false and method conditionTwo() returns
true, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

Finally in B
Caught RainException in method C

iv) Assuming that methods conditionOne() and conditionTwo()in ClassA both return
true, what is printed on the screen when the statement marked with (***) at the top of this page
executes?

Caught WindException in method B
Finally in B
Now we're done with B

 Page 5

Question 4: Designing Robust Classes

// Modifies: this
// Effects: if !isDoorOpen(), microwave is cooking;
// otherwise DoorException is thrown
public void cook() throws DoorException {
 if(!isDoorOpen())
 cooking = true;
 else
 throw new DoorException("Door is open!");
}

// unit tests
public class TestMicrowave {

 @Test
 public void testCookWithDoorClosed() {
 try {
 mw.cook();
 assertTrue(mw.isCooking());
 } catch(DoorException e) {
 fail("Door exception was thrown");
 }
 }

 @Test (expected = DoorException.class)
 public void testCookWithDoorOpen() throws DoorException {
 mw.openDoor();
 mw.cook();
 fail("Door exception should have been thrown");
 }
}

 Page 6

Question 5. Designing Robust Classes

a) Redesign the method so that it is more robust. Note that a solution that has the
installNewFurnace() method silently return (i.e., do nothing) if the natural gas is on is not
acceptable. A solution that silently installs a second furnace is also not acceptable.

// MODIFIES: this
// EFFECTS: If a furnace has already been installed, throw a
// FurnaceInstalledException. If no furnace has been
// installed and the gas is turned off, install the furnace.
// If no furnace has been installed and the gas is turned on
// throw a GasOnException.
public void installNewFurnace()
 throws FurnaceInstalledException, GasOnException {

 if (isFurnaceInstalled())
 throw new FurnaceInstalledException();

 if (isGasTurnedOff())
 furnaceInstalled = true;
 else
 throw new GasOnException();
}

b) Write a jUnit test class to fully test your redesigned method.

 public class HouseTest {
 private House aHouse;

 @Before
 public void setUp() {
 aHouse = new House();
 }

 @Test
 public void testInstallFurnaceAllOK() {
 aHouse.setFurnaceInstalled(false);
 aHouse.turnGasOnorOff(false);
 try {
 aHouse.installNewFurnace();
 assertTrue(aHouse.isFurnaceInstalled());
 } catch (GasOnException e) {
 fail("Gas on exception thrown!");
 } catch (FurnaceInstalledException e) {
 fail("Furnace Installed Exception thrown!");

 }
 }

 Page 7

 @Test (expected = FurnaceInstalledException.class)
 public void testInstallFurnaceTwice()
 throws FurnaceInstalledException, GasOnException {
 aHouse.setFurnaceInstalled(false);
 aHouse.turnGasOnorOff(false);
 aHouse.installNewFurnace();
 assertTrue(aHouse.isFurnaceInstalled());
 aHouse.installNewFurnace();
 }

 @Test (expected = GasOnException.class)
 public void testInstallFurnaceWithGasOn()
 throws FurnaceInstalledException, GasOnException {
 aHouse.setFurnaceInstalled(false);
 aHouse.turnGasOnorOff(true);
 aHouse.installNewFurnace();
 }

 @Test (expected = FurnaceInstalledException.class)
 public void testInstallFurnaceTwiceWithGasOn()
 throws FurnaceInstalledException, GasOnException {
 aHouse.setFurnaceInstalled(true);
 aHouse.turnGasOnorOff(true);
 aHouse.installNewFurnace();
 }
}

Question 6. Implementing an Object-Oriented Design

 public class PaymentHistory {
 private List<Payment> payments;

 private User user;

 public PaymentHistory(User user) {
 this.user = user;
 payments = new LinkedList<>(); // or ArrayList
 }

 public void addPayment(Payment p) {
 if (!payments.contains(p))
 payments.add(p);
 }
}

Note: this solution assumes that the user associated with a PaymentHistory object cannot be
changed after the PaymentHistory object has been constructed.

 Page 8

Question 7. Object-Oriented Design - Modelling

Question 8. Object-Oriented Design - Modelling

a)

 Page 9

b)

