
 

 

The University of British Columbia 
CPSC 210 

 
 Sample Midterm 1 Exam Questions (SAMPLE SOLUTIONS) 

        
 
Please don't look at these solutions until you have put significant effort into coming up with your own.  
Doing so could lead to a false sense of security, as understanding a given solution is much easier than 
constructing your own. You need to practice doing what the exam will ask you to do!   
 

 



   Name                                                                 Student No                      

   
  Page 2 

IMPORTANT:  Questions 1 to 3 apply to the JDrawing system provided in the specified repository.   
 
Question 1. Type Hierarchy  
 
Draw a type hierarchy that includes all subtypes of AbstractSymbol declared in the 
com.marinilli.draw  package.  Do not include any class(es) or interface(s) declared in the Java 
library.  
 
 

«abstract»
AbstractSymbol

«abstract»
AbstractCurve

«abstract»
AbstractIcon

«abstract»
AbstractLine Circle

Curve Line

BitmapIcon

 
 



   Name                                                                 Student No                      

   
  Page 3 

Question 2. Inter-method Control Flow (Call Graph)  
 

Draw a call graph starting from the processMouseEvent(MouseEvent me) method defined in 
the AbstractLine class of the com.marinilli.draw package.  Do not include calls to 
methods in any Java library.  If you abbreviate any names, please provide a legend.  You might want to 
rotate the page and draw your graph in landscape mode. 
 

AL.processMouseEvent

AS.isEditMode

AL.addCtrPoint

AS.getLocation

AL.redraw

AL.drawTo

AC.processMouseEvent

AS.getLocation

AC.redraw

AS.setLocation

LEGEND
AL: AbstractLine
AS: AbstractSymbol
AC: AbstractCurve

 
 
 



   Name                                                                 Student No                      

   
  Page 4 

 
Question 3. Intra-method Control Flow (Flowchart)  
 
Draw a flowchart for the redraw() method defined in the AbstractLine class of the 
com.marinilli.draw package.   
 

start

generalPath = new GeneralPath()

boolean first = true

ctrPts
hasNext()

Point2D.Float p = new Point2D.Float(point[0], point[1])

f irst

true

false true

generalPath.moveTo(p.x, p.y)

first = false

drawTo(p.x, p.y)

   false

stop

 
 



   Name                                                                 Student No                      

   
  Page 5 

 
Question 4. Unit Testing 
 
Consider the following specification for methods of the Entity class. 
 
public class Entity { 
 
       /**  
    * Create a new Entity 
    * EFFECTS: this.isForegroundColour is set to false 
    */ 
   public Entity() {…} 

 
/** 
 * Sets colour of entity. 
 * REQUIRES: colourString is one of "red", "green" or "blue" 
 * MODIFIES: this  
 * EFFECTS: if this.isForegroundColour is true, sets foreground  
 *          colour of this entity to colour specified by 
 *          colourString; otherwise sets background colour of 
 *          entity. 
 */ 
public setColour(String colourString) {…} 
 
/** 
 * Sets a flag to indicate whether or not foreground colour  
 * should be processed 
 * MODIFIES: this 
 * EFFECTS: this.isForegroundColour is set to isForeground 
 */ 
public void setIsForegroundColour(boolean isForeground) {…} 
 
/**  
 * Get the current foreground colour of the Entity 
 * EFFECTS: returns the foreground colour of the Entity 
 */ 
public String getForegroundColour() {…} 
 
/** 
 * Get the current background colour of the Entity 
 * EFFECTS: returns the background colour of the Entity 
 */ 
public String getBackgroundColour() {…} 
 

} 
 
Provide the input and output for all test cases needed to thoroughly test the setColour method 
according to its specification. For each test case, you can assume a new Entity object, referred to 
through a variable named anEntity, is created at the start of the test case in a method annotated with 
@Before. 
 
 



   Name                                                                 Student No                      

   
  Page 6 

@Test 
public void testSetForegroundRed() { 
    anEntity.setIsForegroundColour(true); 
    anEntity.setColour("red"); 
    assertEquals("red", anEntity.getForegroundColour()); 
} 
 
@Test 
public void testSetForegroundGreen() { 
    anEntity.setIsForegroundColour(true); 
    anEntity.setColour("green"); 
    assertEquals("green", anEntity.getForegroundColour()); 
} 

 
@Test 
public void testSetForegroundBlue() { 
    anEntity.setIsForegroundColour(true); 
    anEntity.setColour("blue"); 
    assertEquals("blue", anEntity.getForegroundColour()); 
} 
 
@Test 
public void testSetBackgroundRed() { 
    anEntity.setIsForegroundColour(false); 
    anEntity.setColour("red"); 
    assertEquals("red", anEntity.getBackgroundColour()); 
} 
 
@Test 
public void testSetBackgroundGreen() { 
    anEntity.setIsForegroundColour(false); 
    anEntity.setColour("green"); 
    assertEquals("green", anEntity.getBackgroundColour()); 
} 

 
@Test 
public void testSetBackgroundBlue() { 
    anEntity.setIsForegroundColour(false); 
    anEntity.setColour("blue"); 
    assertEquals("blue", anEntity.getBackgroundColour()); 
} 
 
 

 
 
 
 



   Name                                                                 Student No                      

   
  Page 7 

 
Questions 5 through 8 apply to the PaymentSystem provided in the specified repository. 
 
Question 5. Type Hierarchy 
 
Draw the type hierarchy for all types declared in the ca.ubc.cpsc210.payment.model 
package. Use directional arrows to relate subtypes to supertypes in the drawing (i.e., lines between 
types should have an arrowhead only at one end; lines should go from the subtype to the supertype 
with the arrowhead at the supertype). 
 

«interface»
InternetPayment

«interface»
Payment

«abstract»
ElectronicPayment Cash

DebitCard«abstract»
CreditCard

PalPay

ASIVCard SubordinateCard

AuditTrail

PaymentRecord

 
 
 
 
 
 
 
 
 
 
 
 
 



   Name                                                                 Student No                      

   
  Page 8 

 
Question 6. Call Graph 

 
Draw a call graph starting from the generateCreditCardPayments(AuditTrail 
auditTrail) function defined in the Main class (Main.java). Stop following method calls for any 
method defined in a class outside of ca.ubc.cpsc210.payment.model. You might want to 
sketch the call graph on a scrap piece of paper before placing it on this sheet. You can also rotate the 
paper and write in landscape mode for more space. If you abbreviate any names, please provide a 
legend. 

 
 
 
 
 
Note:  
 
- if there are multiple calls to method 
B from method A, we record the call 
only once on the call graph 
 
- to distinguish between calls to 
different versions of an overloaded 
method, we include parameter lists.  
For example: 
 
ASIV.processPayment(String) 
 
and 
 
ASIV.processPayment(double) 
 
represent calls to different methods in 
the same class. 
 



   Name                                                                 Student No                      

   
  Page 9 

 
Question 7. Types.  
 
Consider the following code: 
 
(1) Payment p; 
(2) p = new DebitCard(3, 4); 
(3) InternetPayment i = new PalPay(); 
 
i) What is the actual type of the variable p at the statement numbered (2) after the statement 

executes? 
 
DebitCard 
 

ii) What is the apparent type of the variable p at the statement numbered (2) after the statement 
executes? 
 
Payment 
 

iii) What is the apparent type of the variable i at the statement numbered (3) after the statement 
executes? 
 
InternetPayment 
 

iv) What is the actual type of the variable i at the statement numbered (3) after the statement 
executes? 
 
PalPay 

 
 
Question 8. Debugging.  
 
If you run the Main class as a Java application, the output will include the following: 
 
Payment[ num=15, type=PalPay, amt=0.724302501394058, txNum=15] 
Payment[ num=16, type=PalPay, amt=1.2554252514453499, txNum=16] 
Payment[ num=-83, type=Cash, amt=0.0] 
Payment[ num=-82, type=Cash, amt=0.3682269387159234] 
 
Note that the last two lines of this output have a negative payment number, which is illegal according 
to the specification of the PaymentRecord data abstraction. Generate two hypotheses about what might 
be causing this error. 
 
Given that negative payment numbers appear to be generated only for Cash type payments, we 
generate the following hypotheses: 
 
(1) payment numbers are generated incorrectly when the type is Cash payment 
(2) payment numbers are printed incorrectly when the type is Cash payment 



   Name                                                                 Student No                      

   
  Page 10 

(Extra credit.) What is actually causing the error in the output shown above? 
 
The second hypothesis above is correct.  The error is in the toString method of the 
PaymentRecord class:   
 
if (typeOfPayment.equals("Cash")) 
    repesentationAsString =  
        repesentationAsString.concat(paymentNumber-100 + ", "); 
 
 
should be: 
 
if (typeOfPayment.equals("Cash")) 
    repesentationAsString = 
        repesentationAsString.concat(paymentNumber + ", "); 
 
 
 
Question 9. Specification 
 
Suppose you are designing a new data type to represent a fare box on a bus.  The fare box accepts pre-
paid tickets and cash (in the form of coins only).  When a ticket is inserted into the machine, the value 
of the ticket is read and that amount is added to the total fare collected.  The amount of the fare is 
deducted from the ticket.  When coins are inserted, their value is added to the total fare collected.  
Write the specification for the payByTicket and payByCash methods: 
 
public class FareBox { 
    private int totalFareCollected;   // in cents 
 
    // Modifies: this, t 
    // Effects: value of ticket is added to total fare collected  
    //          and value is deducted from t 
    public void payByTicket(Ticket t) { 
        …  
    } 
 
    // Modifies: this 
    // Effects: value of coins is added to total fare collected 
    public void payByCash(int coinValue) { 
        … 
    } 
} 
 
Note: it would not be unreasonable to put a requires clause on payByTicket to indicate that the 
ticket is valid – in other words, that it hasn't already been used.  
 
 



   Name                                                                 Student No                      

   
  Page 11 

Question 10.  Data Abstraction: The SimGame project contains the partial specification and 
implementation for a SimPet class, along with associated unit tests.  The SimPet represents a pet in a 
simulated world.  Each pet has a location in the two-dimensional world and an energy level.  A pet can 
be pointing in one of only four directions: North, South, East or West.  We assume that the pet's 
location is specified using integer coordinates.  In this question, we do not concern ourselves with the 
size of the world – so we don't worry about pets walking off the edge.   
 
We want to be able to feed the pet and specify the number of units of energy it eats, assumed to be an 
integer value.  We also want to be able to move the pet one unit in whatever direction it is currently 
pointing.  Each time the pet moves, it consumes one unit of energy.  We also want to be able to rotate 
the pet left or right by 90 degrees so that it can move in different directions.  When a pet rotates, it does 
not consume any energy. If the pet's energy level drops to zero, it dies. 
 
In this question, you can write your code in Eclipse but you must copy it on to this exam paper before 
the end of the exam – there is no electronic submission!  Note that it is not necessary to copy the 
comment statements.  
 
a)  Write the implementation of the SimPet constructor.  Run the JUnit tests provided in 
ca.ubc.cpsc210.simgame.test.TestSimPet and ensure that testConstructor passes. 
 
public SimPet(int x, int y, int initialEnergy) { 
 this.x = x; 
 this.y = y; 
 this.energy = initialEnergy; 
 this.direction = 0; 
 this.hasHadShots = false; 
} 
 
 
 
b) Write the implementation of the SimPet.move method.  Run the JUnit tests provided and ensure 
that they all pass. 
 
public void move() { 
 if (energy > 0) { 
  if (direction == 0) 
   x = x + 1; 
  else if (direction == 1) 
   y = y + 1; 
  else if (direction == 2) 
   x = x – 1; 
  else if (direction == 3) 
   y = y – 1; 
  energy = energy – ENERGY_TO_MOVE;   
 } 
} 
 



   Name                                                                 Student No                      

   
  Page 12 

c)  Now suppose we want to add a method that will give a pet its shots.  Write the specification for a 
method SimPet.giveShots and include a stub for this method.  Assume that a pet can be given its 
shots only if it has an energy level of at least 5 and hasn't already had its shots.  Note that a pet does 
not consume any energy when it is given its shots. Write your specification in such a way that there is 
no requires clause.   
 
// REQUIRES: 
// MODIFIES:  this 
// EFFECTS:   if this pet has energy level at least 5 and it has  
//            not had its shots, then record that the pet has now  
//            had its shots 
public void giveShots() { 
    // stub 
} 
 
 
 
d)  In this part of the question, we ask you to demonstrate how to use a data abstraction.  Write code 
that will create a new SimPet object located at the origin with 10 units of energy.  Your code must 
then rotate the SimPet so that it is pointing west and move it forward 5 steps.  Finally, declare a 
variable of an appropriate type and assign to it the amount of energy that your pet has remaining after 
rotating and moving.   
 
 
public void doStuff() { 
 SimPet p = new SimPet(0, 0, 10); 
 p.rotateLeft();   
 p.rotateLeft(); 
 for (int i = 0; i < 5; i++) { 
  p.move(); 
 } 
 int remainingEnergy = p.getEnergy(); 
} 
 



   Name                                                                 Student No                      

   
  Page 13 

 
Question 11. Data Abstraction:  
 
The ca.ubc.cs.cpsc210.kafe.CoffeeCard class in the KafeCompany project contains a partial 
specification for a data type that represents a loyalty card for the Kafe company.  A coffee card can be 
loaded with credits that can be used to purchase drinks at Kafe stores.  Every time a drink is purchased, 
a bean is added to the card.  For every 9 beans earned, a free drink is added to the card.  To be 
purchased, some drinks require more credits than others.  However, only one bean is earned per drink 
purchase, regardless of the number of credits required to purchase the drink. 
 
Study the provided code for the CoffeeCard class carefully before continuing. 
 
a) Suppose the topUp method has the following implementation rather than the one provided in the 

CoffeeCard class checked out of the repository. 
 
 public void topUp(int numCredits) { 
  if (numCredits > 0) 

credits += numCredits; 
 } 
 

Write the specification for the version shown above. 
 

// top up credits 
// MODIFIES: this 
// EFFECTS: adds numCredits to number of credits on card  
// only if numCredits > 0 

 
 
 
b) Design jUnit tests for the CoffeeCard.useFreeDrink method – be sure to study the 

specification for this method carefully.  Don't worry if your Java syntax isn't perfect but note that it 
may help you to examine the tests provided in the CoffeeCardTests class.  You must assume that 
the method CoffeeCardTests.runBefore runs before each of your tests.  If you are unsure 
about your syntax, include comments to explain what you are trying to do.  Note that there's more 
space for your answer to this question on the following page.  You may use Eclipse to develop your 
solution but you must make a copy of your work onto the exam paper before the end of the exam.   

 
 @Test 
 public void testUseFreeDrinkNoneAvailable() { 
  assertFalse(card.useFreeDrink()); 
 }



   Name                                                                 Student No                      

   
  Page 14 

 
 @Test 
 public void testUseFreeDrinkWhenAvailable() { 
  // add credits to purchase enough drinks to earn a free one 
  card.topUp(CoffeeCard.BEANS_PER_FREE_DRINK); 
   
  // buy enough drinks to earn a free one 
  for (int i = 0; i < CoffeeCard.BEANS_PER_FREE_DRINK - 1; i++) { 
   assertTrue(card.purchaseDrink(1)); 
  } 
   
  assertEquals(1, card.getFreeDrinks());   // not strictly needed 
  assertTrue(card.useFreeDrink()); 
  assertEquals(0, card.getFreeDrinks()); 
 } 

 
 

 
Question 12. Data Abstraction 
 
Write an implementation for the CoffeeCard.purchaseDrink method.  Note that some tests are 
provided for you in the CoffeeCardTests class but do not assume that these tests will catch every 
possible bug in your code.  You may use Eclipse to develop your solution but you must make a copy of 
your work onto the exam paper before the end of the exam.  It is not necessary to copy the provided 
documentation/comments.   
 
 public boolean purchaseDrink(int numCredits) { 
  if (credits < numCredits)  
   return false; 
   
  credits -= numCredits; 
  beans++; 
   
  if (beans >= BEANS_PER_FREE_DRINK) { 
   freeDrinks++; 
   beans = 0; 
  } 
   
  return true; 
 } 
 
 
 
 
 
 
 



   Name                                                                 Student No                      

   
  Page 15 

 
Question 13: Debugging 
 
The class ca.ubc.cs.cpsc210.tests.ContactTests contains three unit tests for the Contact 
class in the ca.ubc.cs.cpsc210.addressbook package.  Run these tests and notice that all of 
them fail.  Note that each test identifies a single software bug in the code.  For each test: 

• write the name of the test  
• indicate how would fix the software bug identified by that test by writing a correct 

implementation of the method that contains the bug.  Note that it is not necessary to copy the 
method's documentation (comment statements). 

Note that the problem might be with the test rather than the method it is testing.  In this case, you 
should re-write the test.  You may use Eclipse to develop your solution but you must make a copy of 
your work onto the exam paper before the end of the exam.   
 
testOneParamConstructor – bug is in the test 
 
 public void testOneParamConstructor() { 
  Contact c = new Contact("Joey"); 
  assertEquals("Joey", c.getName()); 
 } 
 
testTwoParamConstructor  - bug is in the constructor 
 
 public Contact(String name, String eMailAddress) { 
  super(name); 
        this.eMailAddress = eMailAddress; 
 } 
 
testGetAddressList – bug is in the getAddressList method 
 
 public List<String> getAddressList() { 
  List<String> al = new LinkedList<String(); 
  al.add(eMailAddress); 
  return al; 
 } 
 
 
 
  
 


