00202
=

THE UNIVERSITY OF BRITISH COLUMBIA
CPSC 210: MIDTERM EXAMINATION - March 8, 2017

Last Name: Zhao First Name: OTeven

Signature: C\ — UBC Student #: . ' 1% |C1 |T Iq 1 l 16 I+J

PR

Important notes about this examination

1. You have 90 minutes to write this exam.
2. You should have received a separate collection of pages including Java code.
3. All questions must be answered on this portion of the exam.
4. You may complete the exam in either pen or pencil.
5. Put away books, papers, laptops, cell phones... everything but pens, pencils, erasers and this exam.
6. Good luck!
Student Conduct during Examinations Please do not write in this space:

1. Each examination candidate must be prepared to produce, upon the request of

the invigilator or examiner, his or her UBCcard for identification.

2. Examination candidates are not permitted to ask questions of the examiners or ] O j
invigilators, except in cases of supposed errors or ambiguities in examination Question 1:
questions, illegible or missing material, or the like.

3. No examination candidate shall be permitted to enter the examination room [ LQ no
after the expiration of one-half hour from the scheduled starting time, or to leave Question 2: |

during the first half hour of the examination. Should the examination run forty- ‘
five (45) minutes or less, no examination candidate shall be permitted to enter ‘
the examination room once the examination has begun.

4. Examination candidates must conduct themselves honestly and in accordance Question 3: L—LJ—L}—‘
with established rules for a given examination, which will be articulated by the
examiner or invigilator prior to the examination commencing. Should dishonest é SD
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or Question 4: ‘ O R
forgetfulness shall not be received.

5. Examination candidates suspected of any of the following, or any other similar
practices, may be immediately dismissed from the examination by the . ) S K/

examiner/invigilator, and may be subject to disciplinary action: Question 5: —

i. speaking or communicating with other examination candidates, unless
otherwise authorized; é#
ii. purposely exposing written papers to the view of other examination Question 6:
candidates or imaging devices;
iii. purposely viewing the written papers of other examination candidates;
iv. using or having visible at the place of writing any books, papers or other
memory aid devices other than those authorized by the examiner(s); and, ‘
v. using or operating electronic devices including but not limited to telephones,
calculators, computers, or similar devices other than those authorized by the
examiner(s)—(electronic devices other than those authorized by the
examiner(s) must be completely powered down if present at the place of
writing).

6. Examination candidates must not destroy or damage any examination material,
must hand in all examination papers, and must not take any examination material
from the examination room without permission of the examiner or invigilator.

7. Notwithstanding the above, for any mode of examination that does not fall into
the traditional, paper-based method, examination candidates shall adhere to any
special rules for conduct as established and articulated by the examiner.

8. Examination candidates must follow any additional examination rules or
directions communicated by the examiner(s) or invigilator(s).

= [ | o'b36366'453321" [




Use this page if you need more space to answer a question.



Question 1 [10 marks]: Type Hierarchies

In the code segment that follows, the lines labelled (1) and (2) compile, while the
remaining lines do not compile.

(1) TypeA al
(2) TypeB bl

new TypeC();
new TypeC();

1}

(3) al = bl;
(4) bl al;

(5) TypeA a2
(6) TypeB b2

new TypeA();
new TypeB();

Draw a type hierarachy that includes TypeA, TypeB and TypeC that is consistent with
the information provided above.

[Typeh Type R
LCintefface?) (Cintedac?)
' ]
73
AN /




Question 2 [16 marks]: Exception Handling - Flow of Control

public class Main {
public static void main(String[] args) {
int n = 100;
Dividend d = new Dividend(n);
System.out.println("main: start");
try {
System.out.println("main: try");
n = 50;
.divideBy(n);
= 0;
.divideBy(n);
= -50;
.divideBy(n);
} catch (RangeException e) {
System.out.println("main: catchl: n==" + n);
} catch (ZeroValueException e) {
System.out.println("main: catch2: n==" + n);
} finally {
System.out.println("main: finally: n==" + n);

Q3> > A

}

System.out.println("main: end: n==

+ n);

}

public class Dividend {
private Ranger ranger;
private final int DIVIDEND; —! ©¢

public Dividend (int dividend) {
DIVIDEND = dividend;
ranger = new Ranger(dividend);

}

public int divideBy(int divisor) throws ZeroValueException,
RangeException {

try {
int result = DIVIDEND / ranger.check(divisor);
System.out.println("divideBy: result==" + result);
return result;

} catch(ArithmeticException e) {
System.out.println("divideBy: catch");
throw new ZeroValueException();




00202

public class Ranger {
private final int MAX;

public Ranger(int max) {
MAX = max;
}

public int check(int num) throws RangeException {
System.out.println("check(" + num + "): start");
if (num@@ || MAX < num) {
throw new RangeException();

}

System.out.println("check(" + num + "): end");

return num;

Assuming that RangeException and ZeroValueException are checked exceptions
and that each provides all the necessary constructors for the code above to compile,
what is printed on the console when we run the method Main.main?

Note that an ArithmeticException is thrown if an attempt is made to divide an
integer by zero.

Main: Start

M&in © £ ro

checie (dpy s fort
Checle (50) “end
O‘('Videeyl resyle == 2
Checl (0) ", stoct
Checlc (0Y - end
divide By . catch
Main' catch2® nz20
Main . Snall, A==
Main' end . n==0




Question 3 [16 marks]: Designing and Testing Robust Methods

// Represents an automatic garage door that is open or closed
// and has a sensor that is triggered if there is something
// blocking the door.
class GarageDoor {

private boolean isOpen;

private boolean isSensorTriggered;

// EFFECTS: constructs door that is closed with sensor not triggered
public GarageDoor() {
// stub

}

// MODIFIES: this
// EFFECTS: sensor is cleared
public void clearSensor() {

// stub

}

// MODIFIES: this
// EFFECTS: 1if the door is closed, throws StateException

Véd otherwise sensor is triggered

public void triggerSensor() throws StateException {
// stub

}

// EFFECTS: returns true if door is open, false otherwise
public boolean isOpen() {
return false; // stub

}

// EFFECTS: returns true is sensor is triggered, false otherwise
public boolean isSensorTriggered() {
return false; // stub

}

// MODIFIES: this
// EFFECTS: 1if the door is already open, throws StateException

// otherwise opens the door

public void openDoor() throws StateException {
// stub

}

// MODIFIES: this
// EFFECTS: 1if the door is already closed, throws StateException

// otherwise, if the sensor 1is triggered, throws SensorException
// otherwise, closes the door
public void closeDoor() throws StateException, SensorException {
// stub
}




00202

a) Design a jUnit test for GarageDoor.closeDoor in the case where the method is
expected to throw a SensorException. Do not rely on a method tagged with the
@Before annotation. All the code needed must be written in your test method.

@ T&St '\tﬁ(eedeal = SensoOr Ex(,ef{;,'ov\ i C/,db ) Hhorows Se,,,créx\&(,h'm

public void test C‘OSCDOOfSemwEfcert,onﬂ"{

(}a(‘ageDOOr 30\ = New G;/u@c[)mr()"
assertFalse (9d.is0pen 1)
€y €
ad.openDeor (),
N\ d. EriggerSensor() |
Catdn ( StateEreeptone) A
jcml(”CaucoH( W:cxpechf,l §tate Brception )/

(
l
\
e
: ad.clase Door( 1 0w fensExceplim
l

3

b) Implement the method GarageDoor.closeDoor. Assume that the exceptions
referred to in the specification have been designed to include a constructor that
takes no arguments. It is not necessary to copy the comment statements that form
part of the method's specification into your answer.

R/H"C VO(‘(A 6'036 DOof(‘ th(OW‘g S‘f‘a‘{‘EE)(Cng,()q/QMOIEXCQ‘O {',’3.4(
; ¥ C!Um's.fSO\Oen(w
~ throw mew StateException ()
g ('ﬁ\\ t'>,iSS€'\§0r‘Tr,Me(gd( \)
thon new Seﬂjofﬁxceré;om ()}

IS O\Oen = $al se.

/

P W



Question 4 [16 marks]: Extracting a UML Class Diagram

Extract a UML class diagram that includes the following types presented in the code
package: Feature, PointOfInterest, LatLong, KeyValueStore,
MemoryKeyValueStore, POIRegistry and TourState. You must include all
implements, extends, association and aggregation relationships as well as
multiplicities where appropriate.

On your diagram it is necessary to include only the name of the type in the box that
represents that type - do not add fields or methods to those boxes.

\/l ~

ke
\ Ke\/\/od ve Stolp

a.




Question 5 [16 marks]: Extracting a UML Sequence Diagram

Extract a UML sequence diagram for the method TourState.setSelectedPOIs
presented in the code package. Include only calls that are specified in the code
package (so don't include calls to any methods in the Java library). If you encounter
a for-each loop in the code, you must assume that the collection over which you are
iterating contains exactly two values.

Note that the method Feature.values(), used in the TourState.setSelectedPOIs
method, returns a collection of all the values in the Feature enumeration. Further
note that there are exactly two such values: LEED_CERTIFICATION and
SOLAR_ENERGY.

Draw your diagram onto the skeleton UML sequence diagram provided on the
following page. Be sure to fill in all necessary details. Note that you may not need
all of the objects provided but you will not need more than those provided. If
necessary, abbreviate the names of types and functions and provide a legend to
specify the correspondence between the abbreviation and the full name.

Do not attempt to draw your diagram on this page!



Aaysibsytod. 3
20353112043y SA
\) 4 2u 0019 Tog

.
I

no0ne) 5] " " _
: “ " . |
_ . ; ‘ 1
— + \b\.xﬁ.? - ' : " \
0 @mﬁl = |
) bewt& ><fk&h PV T\\Wﬂ\uﬁ
" >

>3 éui_gf.o%% -
n

tj ?:t +

@Q\N a3 uuﬂ -

AN
et
~
N
B
<
~
-

&r—————————--————————

Q
QL
W
(o

'3

Sy
™

A

Q-
g™



Question 6 [16 marks]: Implementing an Object-Oriented Design
In this question you are to provide an implementation for the Recipe class
according to the design presented in the following UML class diagram

«interface»
Completable

AN i

|
|
| ~
|
|

Recipe > ~ Step

Note that the Completable interface includes only one method, specified as follows:

// EFFECTS: returns true if this 1is complete, false otherwise
boolean isComplete();

In addition to conforming to the design presented in the UML class diagram above,
your Recipe class must meet the following requirements:

- there must be only one constructor that takes no arguments

- arecipe is considered complete if all of its individual steps are complete; a
recipe having no steps is considered complete

- you can add steps to a recipe one at a time but, once added, you cannot
remove them

- you can get a list of all the steps in a recipe in the order in which those steps
were added to the recipe

You must not provide any functionality other than that specified above. Write the
implementation of your Recipe class on the following page. Be sure to provide
appropriate Requires/Modifies/Effects style documentation. Note that jUnit tests
are not required.

Write your answer to this question on the following page.

9

<

02



Unmod ifah €
/AY&S\”\[\T’NQ ﬂe'(jS"'e,pJ ce fuiry wnqﬁ,ﬂ,,,u,,f of s

This space provided for your answer to Question 6.

/

P()b\;c CldSQ RCCipc Lﬂp’eﬂeﬂb ComPleta |€£

Pv{vﬁc i)+(S+ep') 5{;@?3, \

MOOTFHES  thiy , -
%/ $FkCT inffantat€S  Pew Rreqpe oyt

Pu e Rcc«PC”{ \
Chis steps = pew ArayListes()"

;MDOFF’U) thiy
JEFFECT: odds o step + the BecipC Thje<f

public Void a.ddHePCS‘f‘eP stew ) ()
Steps.add (Step) .

[
)

VEFECT etuns a it o fle Sfepy m ords

Poblic Ly CStep) gefSteps () ¢ v’
petorn Cdlections. Unyodifiable List (step)),

JEFFeCT | refumy whethr B all §fep) dn Redipe © completel
public boo\ew\ 13 Coora ple tel) ¢
Sor (Step step t steps) ¢

i3 Clstep . isCompleteQ)
fetun Salse )

) |
feturn tyee!, (ﬂ ,D-‘ s



