Lecture 1 January 13, 2017 8:02 PM

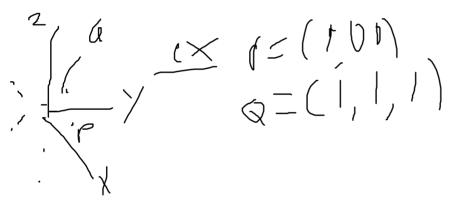
Website: http://www.math.ubc.ca/~kliu/common105.html

1.1 Vectors / xyz - coordinates review

xy - coordinates \cdot

Ex: movement of a ship

--> in general, need 3 dimensions for applications (trajectory of a plane)



In general, the triple (a,b,c) refers to the point obtained by moving a moving along x axis, distance b along y, distance c along z

Vectors

Vectors represent a translation

- It has magnitude + direction

We can write vectors as ordered triples

```
u = (x, y, z)
```

Points = capital, vectors = lowercase

Ex: unit vectors:

- x-unit vector: (1,0,0)
- y-unit vector: (0,1,0)
- z-unit vector: (0,0,1)

<u>Fact</u>

Given two points: $P = (P_1, P_2, P_3)$ $Q = (Q_1, Q_2, Q_3)$ The vector u = PQ $= (Q_1 - P_1, Q_2 - P_2, Q_3 - P_3)$ Call u vector from $P \rightarrow Q$

Difference between point/vectors

- Vectors correspond to displacement/translation
- Points correspond to locations in space.

_	
E.g.	- Times are "Points"
	(e.g. 4pm)
	- Durations are translations in time
	("+1 hours")

Note $u = (u_1, u_2, u_3)$ vector is given $u = 0 \rightarrow U$, Where $0 = (0,0,0), u = (U_1, U_2, U_3)$

<u>Vector operations</u> $u = (u_1, u_2, u_3) v = (v_1, v_2, v_3)$ $u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$

u - v = u + (-v)

Flip vector arrow to subtract

$$u - v = (u_1 - v_1, u_2 - v_2, u_3 - v_3)$$

Scalar multiplication $\alpha \in \mathbb{R}$

 $\alpha * v = (\alpha v_1, \alpha v_2, \alpha v_3)$

(i.e. by scaling by factor α)

1.2 Dot Product

Definition: $u * v = |u||v|cos\theta$ |u|, |v|: lengths of vectors u, v

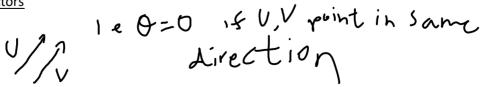
> θ : angle between vectors u, v $\theta \in \mathbb{R}(0, \pi]$

 $u_{1} * v > 0 \text{ since } \theta = \frac{\pi}{4} \text{ and } \cos\left(\frac{\pi}{4}\right) > 0$ $u_{2} * v = 0 \text{ since } \theta = \frac{\pi}{2} \text{ and } \cos\left(\frac{\pi}{2}\right) = 0$ $u_{3} * v < 0 \text{ since } \theta = \frac{3\pi}{4} \text{ and } \cos\left(\frac{3\pi}{4}\right) < 0$ $u_{4} * v = -|u_{4}||v| \text{ since } \theta = \pi \text{ and } \cos(\pi) = -1$

Definition: $u_2 v$ are orthogonal

u * v = 0 note: zero vector is orthogonal to all other vectors

Parallel vectors



i.e. $\theta = 0$ if u, v point in same direction

If u, v are parallel then u * v = |u||v| $\underline{Ex} \\
 u = (1,0,0) \\
 v = (0,2,0)$

What is u * v? = 0 since perpendicular

u = (1,1,0)v = (1,2,3)

What is u * v? Problem: need to find angle between u, v

<u>Theorem (11.1 in textbook)</u> $u = (u_1, u_2, u_3) \ v = (v_1, v_2, v_3)$ $u * v = u_1 * v_1 + u_2 * v_2 + u_3 * v_3$

E.g. u = (1,1,0), v = (1,2,3)u * v = 1 * 1 + 1 * 2 + 0 * 3 = 3

Length/Angle

 $u * v = u_1v_1 + u_2v_2 + u_3v_3$ = |u||v| cos(θ) θ = angle(u, v)

$$u * u = (u_1)^2 + (u_2)^2 + (u_3)^2 = |u|^2 * \cos(\theta) = |u|^2$$
$$|u| = \sqrt{(u_1)^2 + (u_2)^2 + (u_3)^2}$$

Angle : $\cos(\theta) = \frac{u * v}{|u||v|}$

i.e. we can compute θ from u, v in components $u_1v_1 + u_2v_2 + u_3v_3$

$$\cos(\theta) = \frac{u_1 v_1 v_2 v_2 v_3 v_3}{\left(\sqrt{(u_1)^2 + (u_2)^2 + (u_3)^2}\right) \left(\sqrt{(v_1)^2 + (v_2)^2 + (v_3)^2}\right)}$$

Properties of dot product (theorem 11.2)

1) u * v = v * u

- 2) $\alpha(u * v) = (\alpha u) * v = u * (\alpha v)$ where $\alpha \in \mathbb{R}$
- 3) u(v + w) = u * v + u * w

Proof: follows from theorem 11.1

$\frac{1.3 \text{ Planes in } \mathbb{R}^3(xyz - space)}{(page 858/854)}$

Lines in \mathbb{R}^2 (2-d space) - determine by two points - alternatively, point + vector

Planes in \mathbb{R}^3 (3-d space) - determined by three points - alternatively, point + normal vector

Definition: Given a fixed point P_0 , non-zero normal vector n, the set of points $P \in \mathbb{R}^3$ for which $P_0 \to P$ is is orthogonal to n is called a plane.